€

LI Y LIN |

Uyuni 2023.10

Retail Guide

October 31 2023

Table of Contents

Retail Guide Overview 1
1. Components 2
1.1. The Uyuni Server.o e e e e e e e e e 2
L2, Build HOSES . . . oo 2
1.3, Branch Serverso 2
1.4. Point-of-Service TerminalS 2
1.5. Fitting It All Together. e 3
1.5 1. Hardware Typeso vt 3

1.5.2. Branch System Groups oottt e e 3

1.5.3. Salt Formulaso e 3
L5.4.Saltbooto 3

2. Retail Requirements 5
2.1. Server ReqUITEMENLtS. o ot e e 5
2.2. Branch Server Requirementst 5
2.3. Build Host Requirementsttt 6
2.4, Network ReqUIremMentsottt e e e e e e 6
2.5. POS Terminal Requirementsttt e 6

3. Network Architecture 7
3.1. Branch Server Network Configuration i 7
3.1.1. Dedicated Network Architecture 7

3.1.2. External Network Architecture. i 8

3.1.3. Shared Network Architecture e 8

4. Retail Installation 10
4.1. Install Uyuni Retail Server with openSUSE 10
4.1.1. Install Uyuni on openSUSE Leap.t 10

4.2, Retail Uyuni SErver SEUPo v ettt e et e e 11
4.2.1.Setup Uyuni with YaST. 11
4.2.2. Create the Main Administration ACCOUNtottt ittt 12

4.3. Retail Uyuni Branch Server 12
4.3.1. Add Software Channels e 13
4.3.2. Check Synchronization Statusttt 13
4.3.3. Trust GPG Keys on CHentso it 14
4.3.4. Create Activation Key for a Branch Server and the Retail Terminal Images.......... 14
4.3.5. Register the Branch Server and Terminals as Clients 15

4.4. Set Up the Uyuni for Retail Environment. 16
4.4.1. Prepare and Build Terminal Images i, 17
4.4.2. Branch identification and architecture topology, 17
4.4.3. Required System GIOUPSottt ettt et e e e e e 18
4.4.4. Configure Services for Saltboot i 19
4.4.5. Synchronize Images to the Branch Server 20

5. Deploying Terminals 22
5.1. Deployment basiCso v vt e 22
5.1.1. Create A Hardware Type Group.ttt e 22

5.1.2. Assign and Configure the Saltboot Formula for Each Hardware Type Group. 23

5.1.3. Synchronize Images to the Branch Server 23

5.1.4. Deploy Images to the Terminals. i 24

5.1.5. Customize the Terminal Image Download Process.
5.2. Deploy Terminals - Other Methods i,
5.2.1. Deploy Terminals with a Removable USB Device
5.2.2. Deploy Terminals over a Wireless Network,
5.3. Deploy Terminals and Auto-Accept Keys.t
5.3.1. Configure Saltboot to Send Auto-Signed GrainOnce.ccoun...
5.3.2. Configure Saltboot to Keep Auto-Signed Grains,
5.3.3. Configure Saltboot to Auto-Sign During PXE Boot.
5.3.4. Configure the Server to AUtO-ACCEPLottt e
5.4. Forced Saltboot image redeploymentt
5.4.1. Force Saltboot redeployment using Salt grains,
5.4.2. Force Saltboot redeployment using custom info values.
5.4.3. Force Saltboot redeployment using Saltboot APIcall.
5.4.4. Force Saltboot redeployment by custom pillar
5.5. Terminal Boot Process (Saltboot Diagram)
5.6. Terminal Nameso
5.6.1. Naming by MY Pe ...
5.6.2. Naming by HOSt NaIme e
5.6.3. Naming by FQDN. e
5.6.4. Assign Hostnames to Terminalst
ST.0MHNE USE. . oot e
5.7.1. Offline Terminal Reboot i,
5.7.2. Cached Terminal Updates. e
5.8. Rate Limiting TerminalS. o
5.8.1. Troubleshooting e
6. Introduction to Retail Formulas
6.1. Branch Server Formulas
6.2. Partitioning and Image Deployment Formula.
7. Image Pillars
8. Administration
8.1. Mass Configuration ittt e e
8.1.1. Branch Server Mass Configuration.ouutvretnt e,
8.1.2. Terminal Mass Configuration.ttt
8.1.3. Export Configuration to Mass Configuration File.
8.2. Example YAML File for Mass Configuration.t
8.3. Delta Images. oo ottt
8.3.1. Building Delta Images
8.3.2. Tuning Delta Generationttt i,
8.3.3. Image Synchronizing to the Branch Server.
8.4. Network Administration.ttt e e e
9. Upgrade Uyuni for Retail Branch Server
10. Example configurations
10.1. Set Up the Uyuni for Retail Environment with dedicated network for terminal
TO.1.1. ASSUMPLIONS . « o o v ettt et e e e e e e e e e e e
10.1.2. Create required SYStEmM GrOUPS v v vttt ettt e e e e e e
10.1.3. Assign and configure branch server formulas.
10.1.4. Setup partitioning oot vttt ettt e e e
10.1.5. Synchronize iMages ov vttt et ettt e
10.2. Set Up the Uyuni for Retail Environment with dedicated network for terminal using

bundled SCIIPLSot
10.2.1. ASSUMPLIONS . « . o ottt ettt e e e e e e e e e e e e e e
10.2.2. Quick set up of Uyuni for Retail using for Retail tools
10.2.3. Setup partitioning oot v e ettt et e e
10.2.4. Synchronize iMageso ot vttt ettt ettt e e
10.3. Set Up the Uyuni for Retail Environment with shared network between terminals, branch
servers and UyUnio .o e
1031, ASSUMPLIONS . .« o v e ettt et e e et e e e e e e e e e e
10.3.2. Create required SYStEIM SIOUPS v v vttt et ettt e et e e
10.3.3. Assign and configure formulas
10.3.4. Synchronize iMageso vt ittt e e et e
10.4. Set Up the Uyuni for Retail Environment using containerized proxy
1041, ASSUMPLIONS . .« « . v vttt et e et e e e e e e e e e e
10.4.2. Create required SYStEmM GrOUPS v vt vttt ettt e e e e e e e
10.4.3. SaltboOt roUP . . . oo vttt e
10.4.4. Comparing containerized and non-containerized workflows
10.4.5. Validating Saltboot group configuration.t
11. Best practices
11.1. Deploying NeW TMAZES . . .« v vt vttt et e ettt e e et e et ettt
11.1.1. Controlling iMage VEISIONS« . v vttt et et et ettt et e e e
12. What Next?
12.1. More Documentationttt ettt ettt e
12,2, SUPPOTL. . o ottt e e e
13. GNU Free Documentation License

Retail Guide Overview
Updated: 2023-10-31

Uyuni for Retail 2023.10 is an open source infrastructure management solution, optimized and tailored
specifically for the retail industry. It uses the same technology as Uyuni, but is customized to address the
needs of retail organizations.

Uyuni for Retail is designed for use in retail situations where customers can use point-of-service terminals
to purchase or exchange goods, take part in promotions, or collect loyalty points. In addition to retail
installations, it can also be used for other purposes, such as maintaining student computers in an
educational environment, or self-service kiosks in banks or hospitals.

Uyuni for Retail is intended for use in installations that include servers, workstations, point-of-service
terminals, and other devices. It allows administrators to install, configure, and update the software on their
servers, and manage the deployment and provisioning of point-of-service machines.

This guide provides an overview of Uyuni for Retail, and its initial installation and setup.

It should be read in conjunction with the Uyuni documentation suite, available from https://www.uyuni-
project.org/uyuni-docs.

For more information about managing your Uyuni for Retail environment, or to find out where to get

help, see Retail > Retail-next.

https://www.uyuni-project.org/uyuni-docs
https://www.uyuni-project.org/uyuni-docs

Chapter 1. Components

Uyuni for Retail is made up of various components. For more on how these components work together,
see retail-network-arch.pdf.

I.1. The Uyuni Server

The Uyuni server contains information about infrastructure, network topology, and everything required to
automate image deployment and perform day-to-day operations on branches and terminals. This can
include database entries of registered systems, Salt pillar data for images, image assignments, partitioning,
network setup, network services, and more.

1.2. Build Hosts

Build hosts can be arbitrary servers or virtual machines. They are used to securely build operating system
images.

For more information on build hosts, see Administration > Image-management.

1.3. Branch Servers

Branch servers should be physically located close to point-of-service terminals, such as in an individual
store or branch office. Branch servers provide services for PXE boot, and act as an image cache, Salt
broker, and proxy for software components (RPM packages). The branch server can also manage local
networking, and provide DHCP and DNS services.

 For monitoring, you can install Prometheus server on the Branch servers.

* For visualization and analysis, you can install Grafana with multiple data
sources on a dedicated host. For more information about Prometheus and

Grafana, see Administration > Monitoring.

1.4. Point-of-Service Terminals

Point-of-Service (POS) terminals can come in many different formats, such as point-of-sale terminals,
kiosks, digital scales, self-service systems, and reverse-vending systems. Every terminal, however, is
provided by a vendor, who set basic information about the device in the firmware. Uyuni for Retail
accesses this vendor information to determine how best to work with the terminal in use.

In most cases, different terminals will require a different operating system (OS) image to ensure they work
correctly. For example, an information kiosk has a high-resolution touchscreen, where a cashier terminal
might only have a very basic display. While both of these terminals require similar processing and
network functionality, they will require different OS images. The OS images ensure that the different
display mechanisms work correctly.

Uyuni for Retail supports POS terminals that boot using both BIOS and UEFI. For UEFI booting

retail-network-arch.pdf

terminals, you will need to configure the EFI partition in the Saltboot formula. For more information on

EFTI in the Saltboot formula, see Specialized-guides > Salt.

1.5. Fitting It All Together

Uyuni for Retail uses the same technology as Uyuni, but is customized to address the needs of retail
organizations.

1.5.1. Hardware Types

Because every environment is different, and can contain many different configurations of many different
terminals, Uyuni for Retail uses hardware types to simplify device management.

Hardware types allow you to group devices according to manufacturer and device name. Then all devices
of a particular type can be managed as one.

1.5.2. Branch System Groups

Uyuni for Retail uses system groups to organize the various devices in your environment.
Each branch requires a system group, containing a single branch server, and the POS terminals associated

with that server. Each system group is identified with a Branch ID. The Branch ID is used in formulas and
scripts to automatically update the entire group.

1.5.3. Salt Formulas

Uyuni for Retail uses Salt formulas to help simplify configuration. Formulas are pre-written Salt states,
that are used to configure your installation.

You can use formulas to apply configuration patterns to your hardware groups. Uyuni for Retail uses the
Saltboot formula, which defines partitioning and OS images for terminals.

You can use default settings for formulas, or edit them to make them more specific to your environment.

For more information about formulas, see Retail > Retail-formulas-intro.

1.5.4. Saltboot

Saltboot is a collection of tools and processes that are used to bootstrap, deploy and validate Uyuni for
Retail terminals.

Saltboot consists of:
e Initialization:

The Saltboot i nitrd is created during image building and is required for bootstrapping
terminals.

* Saltboot state:
The Salt state that contains the logic for the entire Saltboot process.
* Partitioning pillars:

The Salt pillar structure that describes how terminals are partitioned and what image is deployed
on each terminal.

* Images and boot images pillars:

When the image building feature in Uyuni successfully builds an image that contains the Saltboot
i ni trd, the image and boot image Salt pillars are created.

The Saltboot process involves the Uyuni Server, a terminal running the Saltboot i ni t r d, and the branch
server providing the Saltboot services to the terminal.

For a detailed diagram explaining how the Saltboot boot process works, see Retail > Retail-saltboot-
diagram.

Chapter 2. Retail Requirements

Before you install Uyuni for Retail, ensure your environment meets the minimum requirements. This
section lists the requirements for the Uyuni for Retail installation. These requirements are in addition to

the Uyuni requirements listed at Installation-and-upgrade > General-requirements.

o Uyuni for Retail is tested on x86-64 architecture.

2.1. Server Requirements

Table 1. Hardware Requirements for Uyuni Server

Hardware Recommended
CPU Minimum 4 dedicated 64-bit CPU cores
RAM: Test Server Minimum 8 GB

Base Installation Minimum 16 GB

Production Server Minimum 32 GB
Disk Space: | (root) 24 GB

/var/li b/ pgsql Minimum 50 GB

/ srv Minimum 50 GB

[var / spacewal k Minimum 50 GB per SUSE
product and 360 GB per Red Hat product

2.2. Branch Server Requirements

Table 2. Hardware Requirements for Branch Server

Hardware Recommended
CPU Minimum 2 dedicated 64-bit CPU cores
RAM: Test Server Minimum 2 GB

Production Server Minimum 8 GB
Disk Space: ! (root) Minimum 24 GB
/ sr v Minimum 100 GB

/ var / cache Minimum 100 GB

2.3. Build Host Requirements

Table 3. Hardware Requirements for Build Host

Hardware Recommended
CPU Multi-core 64-bit CPU
RAM: Test Server Minimum 2 GB

Production Server Minimum 4 GB
Disk Space: | (root) Minimum 24 GB

[var/lib/Kiw Minimum 10 GB

2.4. Network Requirements

* The Uyuni Server requires a reliable and fast WAN connection.
* The branch server requires a reliable WAN connection, to reach the Uyuni Server.

e If you are using a dedicated network, the branch server requires at least two network interfaces:
one connected to the WAN with a reachable Uyuni Server, and one connected to the internal
branch LAN.

* Terminals require a LAN connection to the branch server network.

2.5. POS Terminal Requirements

Table 4. Hardware Requirements for Terminals

Hardware Recommended

RAM: Minimum 1 GB for hosts that need to run OS
images built with Kiwi (PXE booted or not)

Disk Space: Disk space depends on size of the OS image

For more information on Uyuni for Retail POS terminals, see documentation on Uyuni Salt clients

(Client-configuration » Client-config-overview).

Chapter 3. Network Architecture

Uyuni for Retail uses a layered architecture:

* The first layer contains the Uyuni Server.

* The second layer contains one or more branch servers to provide local network and boot services.
It also contains one or more build hosts.

* The final layer contains any number of deployed point-of-service terminals.

SUSE Manager Server
—
First
Layer —— 0
A 4
Branch Servers Build Host
Second - - -
Luyer — — —
— — — —
\ 2 . 2.

Third Layer Third Layer Third Layer
Terminals Terminals Terminals
] [] []]]]

cJued | cJued g ed Uy

Branch servers should be physically located close to point-of-service terminals, such as in an individual
store or branch office. We recommend you have a fast network connection between the branch server and
its terminals. Branch servers provide services for PXE boot, and act as an image cache, Salt broker, and
proxy for software components (RPM packages). The branch servers can also manage local networking,
and provide DHCP and DNS services.

Uyuni for Retail Branch Servers are implemented as enhanced Uyuni Proxies. For technical background
information on Uyuni Proxies, see Installation-and-upgrade > Install-proxy-uyuni.
3.1. Branch Server Network Configuration

You can use branch servers in different network configurations, depending on your installation
requirements.

3.1.1. Dedicated Network Architecture

The branch servers are in the same network as the Uyuni Server, and terminals use an isolated branch
network. In this configuration, the branch servers are in the corporate network, and provide all DHCP,
DNS, PXE, FTP, and TFTP services to the terminals in the branch networks.

Corporate
Network
Router
SUSE Manager Server Branch Servers
Terminals Terminals Terminals
cJC) e ud] e
Branch Network Branch Network Branch Network

3.1.2. External Network Architecture

The branch servers are in separate branch networks, along with the terminals they manage. In this
configuration, external routers provide DHCP and DNS services to the branch servers and the terminals,
and the branch server provides PXE, FTP, and TFTP services to the terminals in their branch network.

Corporate
Network
SUSE Manager Server Routers
p— ==1 ==]

= (][] =1] L]

— [r— —

= i — Terminals
Branch Terminals Sarol

Server Server

Branch Network

Branch Network

3.1.3. Shared Network Architecture

The branch server and the terminals are connected to the same network as the Uyuni Server. In this
configuration, external routers provide DHCP and DNS services to the branch servers and the terminals,
and the branch server provides PXE, FTP, and TFTP services to the terminals in their branch network.

3.1. Branch Server Network Configuration

For more information about network administration on Uyuni for Retail, see Retail > Retail-admin-
network.

9/81 3.1. Branch Server Network Configuration | Uyuni 2023.10

4.1. Install Uyuni Retail Server with openSUSE

Chapter 4. Retail Installation

Uyuni Retail Server and Uyuni Retail Branch Server are installed on top of openSUSE Leap.

4.1. Install Uyuni Retail Server with openSUSE

Uyuni for Retail Server can be installed on openSUSE.

For general requirements, see Installation-and-upgrade > Uyuni-install-requirements.

see https://doc.opensuse.org/release-notes/.

0 For more information about the latest version and updates of openSUSE Leap,

4.1.1. Install Uyuni on openSUSE Leap

You install Uyuni as an add-on to openSUSE Leap.

Procedure: Installing Uyuni on openSUSE Leap

L.

10/81

As the base system, install openSUSE Leap with all available service packs and package updates
applied.

Configure a resolvable fully qualified domain name (FQDN) with yast > System > Network
Settings > Hostname/DNS.

Set variables to use to create repository:

repo=r eposi tori es/ syst ensmanagenent : /
repo=${repo}Uyuni :/ St abl e/ i nages/ r epo/ Uyuni - Ser ver - POOL- x86_64- Medi al/

Add the repository for installing the Uyuni Server software as r 0ot :

[zypper ar https://downl oad. opensuse. or g/ $repo uyuni - server - st abl e ’

. Refresh metadata from the repositories as r 00t , and confirm the import of new GPG key into the

keyring:

[zypper ref J

Install the pattern for the Uyuni Server as r oot :

[zypper in patterns-uyuni _server]

Install the pattern for the Uyuni for Retail product as r oot :

4.1. Install Uyuni Retail Server with openSUSE | Uyuni 2023.10

https://doc.opensuse.org/release-notes/

8.

4.2. Retail Uyuni Server Setup

zypper in patterns-uyuni _retail

Reboot the Uyuni for Retail Server.

Continue with the server setup as described in Installation-and-upgrade > Uyuni-server-setup.

4.2. Retail Uyuni Server Setup

This section covers Uyuni for Retail Server setup, using these procedures:

Set up Uyuni with YaST

Create the main administration account
Add Software Channels

Check Synchronization Status

Trust GPG Keys on Clients

Register the Branch Server and Terminals as Clients

4.2.1. Set up Uyuni with YaST

This section guides you through Uyuni setup procedures.

Procedure: Uyuni Setup

1.

11/81

On the Uyuni Server, at the command prompt, as root, start YaST:

yast 2

Navigate to Network Services > Uyuni Setup to begin set up.

From the introduction screen, select Uyuni Setup > Set up Uyuni from scratch and click

- to continue.

Type an email address to receive status notifications and click - to continue. Uyuni can
sometimes send a large volume of notification emails. You can disable email notifications in the
Web UI after setup, if you need to.

Type your certificate information and provide a password. Passwords must be at at least seven
characters in length, and must not contain spaces, single or double quotation marks (* or "),
exclamation marks (!), or dollar signs ($). Always store your passwords in a secure location. You
must have the certificate password to set up the Uyuni Proxy.

Click btn:[Next] to continue.

- Navigate to Uyuni Setup > Database Settings screen, type a database username and password,

and click - to continue. Passwords must be at at least seven characters in length, and must

4.2. Retail Uyuni Server Setup | Uyuni 2023.10

7.
8.

0.

not contain spaces, single or double quotation marks (* or "), exclamation marks (!), or dollar
signs ($). Always store your passwords in a secure location.

Click btn:[Next] to continue.

Click (&S] to begin the setup process.

When setup is complete, click - to continue. Take note of the address to access the Uyuni
Web UL

Click ([[IEERESH] to complete Uyuni setup.

4.2.2. Create the Main Administration Account

This section covers how to create your organization’s main administration account for Uyuni.

The main administration account has the highest authority within Uyuni. Ensure
you keep access information for this account secure. We recommend that you
create lower level administration accounts for organizations and groups. Do not
share the main administration access details.

Procedure: Setting Up the Main Administration Account

1.

In your web browser, enter the address for the Uyuni Web UL This address was provided after you
completed setup. For more information, see retail:retail-uyuni-server-setup.pdf.

Sign in to the Web UI, navigate to the Create Organization > Organization Name field, and
enter your organization name.

In the Create Organization > Desired Login and Create Organization > Desired Password
fields, enter your username and password.

Complete the Account | nf or mat i on fields, including an email for system notifications.

Click ((EOREARENORGARRZARReR] to finish creating your administration account.

When you have completed the Uyuni Web Ul setup, you are taken to the Home > Qverview page.

4.3. Retail Uyuni Branch Server

This section covers Uyuni for Retail Branch Server installation and setup, using these procedures:

Add Software Channels
Check Synchronization Status
Trust GPG Keys on Clients

Register the Branch Server and Terminals as Clients

The Uyuni for Retail Branch Server is a Uyuni Proxy with additional Retail features. For proxy

installation procedures, see Installation-and-upgrade > Install-proxy-uyuni and Installation-and-

retail:retail-uyuni-server-setup.pdf#retail-server-setup-yast

upgrade > Uyuni-proxy-setup.

Then continue with the following sections.

4.3.1. Add Software Channels

Before you register Uyuni branch servers and terminals to your Uyuni Server, check that you have the
openSUSE product enabled, and the required channels are fully synchronized.

The products you need for this procedure are:

Table 5. openSUSE Channels - CLI

OS Version openSUSE Leap 15.4

Base Channel opensuse_leap15_4

Client Channel opensuse_leap15_4-uyuni-client
Updates Channel opensuse_leap15_4-updates

Non-OSS Channel opensuse_leap15_4-non-oss

Non-OSS Updates Channel opensuse_leap15_4-non-oss-updates
Backports Updates Channel opensuse_leap15_4-backports-updates
SLE Updates Channel opensuse_leap15_4-sle-updates

Procedure: Adding Software Channels at the Command Prompt

1. At the command prompt on the Uyuni Server, as root, use the spacewal k- cormon-
channel s command to add the appropriate channels:

spacewal k- common- channel s \

<base_channel _name> \

<chi | d_channel _nane_1> \

<chi | d_channel _nane_2> \
<chi | d_channel _name_n>

2. Synchronize the channels:

nmgr-sync refresh --refresh-channel s

4.3.2. Check Synchronization Status

Procedure: Checking Synchronization Progress

1. In the Uyuni Web UL navigate to Software > Manage > Channels, then click the channel
associated to the repository.

2. Navigate to the Reposi t or i es tab, then click Sync and check Sync St at us.

Procedure: Checking Synchronization Progress from the Command Prompt

1. At the command prompt on the Uyuni Server, as root, use the t ai | command to check the
synchronization log file:

‘ tail -f /var/log/rhn/reposync/ <channel -1 abel >. | og

2. Each child channel generates its own log during the synchronization progress. You will need to
check all the base and child channel log files to be sure that the synchronization is complete.

openSUSE channels can be very large. Synchronization can sometimes take
several hours.

4.3.3. Trust GPG Keys on Clients

By default, some operating systems do not trust the GPG key for the Uyuni client tools. The clients can be
successfully bootstrapped without the GPG key being trusted. However, you will not be able to install new
client tool packages or update them until the keys are trusted.

Procedure: Trusting GPG Keys on Clients

I. On the Uyuni Server, at the command prompt, check the contents of the
[srv/ www ht docs/ pub/ directory. This directory contains all available public keys. Take a
note of the key that applies to the client you are registering.

2. Open the relevant bootstrap script, locate the ORG_GPG_KEY= parameter and add the required
key. For example:

uyuni - gpg- pubkey- 0d20833e. key

You do not need to delete any previously stored keys.
. If you are bootstrapping clients fromthe {productnane} {webui}, you
will need to use a Salt state to trust the key.

Create the Salt state and assign it to the organi zati on.

You can then use an activation key and configuration channels to
deploy the key to the clients.

4.3.4. Create Activation Key for a Branch Server and the Retail Terminal Images

The branch server is based on the Uyuni Proxy. Its activation key must contain these child channels:

* openSUSE Leap 15.5 Updates (x86_64)
* Uyuni Client Tools for openSUSE Leap 15.5 (x86_64)
e Uyuni Proxy Stable for openSUSE Leap 15.5 (x86_64)

The activation key for retail terminal images based on openSUSE Leap 15.5 must contain these child
channels:

* openSUSE Leap 15.5 Updates (x86_64)
* Uyuni Client Tools for openSUSE Leap 15.5 (x86_64)

For more information about creating activation keys, see Client-configuration > Activation-keys.

4.3.5. Register the Branch Server and Terminals as Clients

You register both the branch server and the terminals as openSUSE clients. To register your openSUSE
clients, you need a bootstrap repository. By default, bootstrap repositories are automatically created, and
regenerated daily for all synchronized products. You can manually create the bootstrap repository from
the command prompt, using this command:

ngr - cr eat e- boot strap-repo --wth-custom channel s

For more information on registering your clients, see Client-configuration > Registration-overview.

4.3.5.1. Register the Branch Server

A retail branch server is registered as an openSUSE proxy. The proxy can be bootstrapped using the
Web U], or at the command prompt. Ensure you use the activation key you created for the proxy.

For more information about proxies, see Installation-and-upgrade > Uyuni-proxy-registration. For

more information about activation keys, see Client-configuration > Activation-keys.

Procedure: Setting Up the Uyuni Proxy

1. Check that the Uyuni Proxy Stable for openSUSE Leap 15.5 (x86_64)
channel is assigned to the proxy on the system profile page.
2. At the command prompt on the proxy, as root, install the proxy pattern:
zypper in -t pattern uyuni _proxy

3. Finalize the proxy setup:

confi gure-proxy. sh

[command] " " configure-proxy.sh™" is an interactive script.

For nmore information about the proxy setup script, see

xref:install ati on-and-upgrade: uyuni - proxy- set up. adoc#uyuni - pr oxy- set up-
conf proxy[].

4. OPTIONAL: If you want to use the same system also as a build host, navigate to the client’s

system profile and check OS | mage Bui |l d Host asa Add- On System Types.

5. Configure the proxy to become a branch server. On the Uyuni for Retail Server, for example, run:

retail _branch_init <branch_server mnion_id> --dedicated-nic ethl \
--branch-ip 192.168.7.5 \
--net mask 255.255.255.0 \
--dyn-range 192.168.7.100 192.168. 7. 200 \
--server-domai n branch. exanple.org \
--branch-prefix uyuni

For additional options, wuse the [conmand] “retail_branch_init --help
command.

4.4. Set Up the Uyuni for Retail Environment

To set up the Uyuni for Retail environment, you will need to have already installed and configured:

* Uyuni for Retail Server
* one or more Uyuni for Retail branch server proxies, or containerized proxy

* one or more Uyuni build hosts
This section covers how to configure your Uyuni for Retail environment, including:

* Prepare POS images
* Prepare system groups
* Configure services for Saltboot

* Synchronize POS images to the branch servers

The very first time you set up the Uyuni for Retail environment, you will need to perform all
configuration steps. You will need to revisit some of these steps later on as you are working with Uyuni
for Retail.

For example, the first time you configure the branch server, you will need to have images prepared for
synchronization. If you are configuring more than one branch server, you can use the same images across
different branch servers.

If you have an existing environment, and need to build new images, you do not need to re-initialize the
branches. You will need to synchronize the images, and can skip setting up the services on the branch
Server.

Usually, POS images are rebuild when updated packages are available, and synchronized to the branch
servers before the update window opens.

4.4.1. Prepare and Build Terminal Images
For information about Uyuni image building, see Administration > Image-management.

Uyuni for Retail POS images are images specifically tailored for Uyuni for Retail environment and
designed to be deployed using PXE booting mechanism.

4.4.1.1. POS Image Templates

As starting point, SUSE provides basic templates at https://github.com/SUSE/manager-build-profiles/tree/
master/OSImage. These templates need to be adapted for specific usecases, for example by including
specific applications, configuration settings, and users.

By default, POS templates do not include a system user. You will not be able to
login as a user to a system that has been installed with a SUSE provided
template. However you can use Salt to manage clients without a system user. You
can use Salt to install a system user after the terminal has been deployed.

4.4.1.2. SLES 11 SP 3 Terminals

SLES 11 reached end of life and is no longer supported and can stop working at
any moment.

POS Terminals based on SUSE Linux Enterprise Server 11 SP 3 can be deployed in much the same way
as other terminals, with a few differences.

* You must use the SLES 11 template

* SLES 11 images need to be activated with the SLES11 SP3 i 586 and SLEPOS 11 SP3
i 586 channels

Ensure that SLES 11 images are built on the SLES 11 build host. Building on the
incorrect build host will cause your build to fail.

o If you are building images for SLES 11 using profiles from an HTTPS git
repository that uses TLS 1.0 or greater, it will fail. SLES 11 does not support
later versions of TLS. You will need to clone the repository locally to use it for

building.

4.4.2. Branch identification and architecture topology

Before you configure the branch server, ensure you have decided on networking topology and you choose
branch id.

For information about the possible network topologies, see Retail > Retail-network-arch.

As abranch i d select any alphanumerical string.

https://github.com/SUSE/manager-build-profiles/tree/master/OSImage
https://github.com/SUSE/manager-build-profiles/tree/master/OSImage

4.4.3. Required System Groups

Uyuni for Retail requires:

* branch system group for every branch server proxy, using br anch i d as its name

* hardware type system group for every used hardware type, using HWM'YPE: prefix in its name

For more information about hardware type groups, see Retail > Retail-deploy-terminals.
Missing mandatory system group will cause terminal bootstrap to fail.

Uyuni for Retail also recognizes two optional groups for better overview:

« TERM NALS
* SERVERS

You can create system groups using the Uyuni Web Ul Navigate to Systems > System Groups and click

For more information about system groups, see Reference > Systems.

During terminal bootstrap terminal automatically joins:

* branch system group based on received branch_i d. This will make branch group formulas
available to the terminal.

* HWType group based on SMBios information received from terminal. This will make Saltboot
partitioning pillar available to the terminal.

* TERM NALS if this group exists.

Uyuni for Retail command line tools create required system groups and branch
group automatically.

In case you plan to use the branch server as a monitoring server with
Prometheus, be aware that Prometheus demands additional hardware resources.

For more information about installing Prometheus, see Administration >
Monitoring.

In case you plan to use the branch server with Ansible software, be aware that
0 Ansible demands additional hardware resources. For more information about

installing Ansible, see Administration > Ansible-integration.

4.4.4. Configure Services for Saltboot

Saltboot technology is used to deploy POS images to the terminals. Saltboot consists of saltboot enabled
initrd (build as part of POS images) and saltboot Salt states.

This section covers general information about generic Saltboot requirements. For configuration examples,
see Retail > Example-configurations.

4.4.4.1. Enable PXE network boot in the terminal network

Saltboot is usually used in network boot environment. For this to work DHCP service for the network
terminal is connected to must have PXE or sometimes called BOOTP support enabled.

Example 1. Example of ISC DHCP server configuration with PXE booting enabled

if substring (option vendor-class-identifier, 0, 10) = "HTTPCient" {
option vendor-class-identifier "HITPC ient";
filenane "<FQDN of branch server proxy>/saltboot/shimefi"”;

el se {
if option arch = 00: 07 {
filename "boot/shimefi";
next -server <|IP address of branch server proxy>;

el se {
filename "boot/pxelinux.0";
next - server <|P address of branch server proxy>;
}
}

Notice two important options, next -server which is set to the branch server IP address and
fil ename set to the boot / pxel i nux. O for BIOS based system and boot / shi m ef i for UEFI
systems with SecureBoot support.

Containerized branch proxy uses different fi | ename then regular branch
Server.

For containerized branch proxy set f i | enamne to the pxel i nux. O for BIOS
based system and gr ub/ shi m ef i for UEFI systems with SecureBoot.
4.4.4.2. Saltboot service discovery

Saltboot requires some information where the Salt master is and from where to download the image.
Saltboot tries multiple discoveries to obtain this information, described below.

For successful terminal deployment, both service discoveries must be successful. Depending on your
architecture, choose what strategy works for you best.

4.4.4.2.1. Salt master discovery

During Saltboot initrd start, integrated Salt client needs to find branch server proxy to connect to. This
discovery is trying following steps:

* MASTER kernel command line option is set, then this is used as Salt master
e resolve sal t CNAME, if successful then resolved value is used as Salt master

e use sal t as a Salt master

Once Salt master is determined, Salt client configuration is generated and started.

Using fully qualified domain name in MASTER or sal t CNAME is important.

If used fully qualified domain name is different from fully qualified domain
name of branch server proxy known to Uyuni, Saltboot may work correctly,
however proxy detection of terminal will not work.

4.4.4.2.2. Download server discovery

Before POS image is downloaded to the terminal, download server discovery is done to find where to
download image from:

» sal t boot _downl oad_ser ver pillar is set for terminal, then its value is used
» sal t boot : downl oad_ser ver pillar is set for terminal, then its value is used

e resolve f t p hostname

Value obtained by download server discovery is then used together with POS image pillar to fetch correct
image from correct location.

4.4.4.3. Terminal partitioning and image selection

Last piece for Saltboot is to provide partitioning for terminal. This is done individually for each hardware

type of terminals. For more information about hardware types, see Retail > Retail-deploy-terminals.

Above mentioned steps are mandatory minimum for successful Saltboot deployment. For configuration
examples, see Retail > Example-configurations.
4.4.5. Synchronize Images to the Branch Server

The OS image you use on the Uyuni server must be synchronized for use to the branch server. You can
do this with the Salt i mage- sync state, part of the | mage Synchroni zati on For nul a.

Procedure: Synchronizing Images to the Branch Server

1. On the Uyuni server, run this command:

salt <branch_server_m nion_id> state.apply inmge-sync

2. The image details will be transferred to / sr v/ sal t boot on the branch server.

You can also set synchronization to run automatically on the branch server. Configure the image
synchronization formula to apply the highstate regularly. For more information about | mage

Synchroni zati on For nmul a, see Specialized-guides > Salt.

Chapter 5. Deploying Terminals

This section covers how to integrate terminals into your Uyuni for Retail environment. You can prepare
the Uyuni for Retail installation for image deployment. Finally, you can deploy terminals using network
boot and other methods.

5.1. Deployment basics

When you have the Uyuni Server and Branch Server set up, you are ready to deploy point-of-service
terminals by following these steps:

1. Create hardware type groups
2. Assign and configure the Saltboot formula for each hardware type group
3. Synchronize images to the branch server

4. Deploy images to the terminals
Each procedure is detailed in this section.

For other methods of booting terminals, including using a USB device, or booting over a wireless

network, see Retail > Retail-deploy-terminals-other.

For Uyuni 4.2 and later, terminals can be either x86-64 or ARM64 architecture. For earlier versions,
terminals must be x86 architecture only.

If you have many terminals, you can handle them with a script. For more information, see Retail >
Retail-mass-config.

Before terminals can be deployed, ensure you have prepared a Saltboot-based operating system image. For
more information about building OS images, see Administration > Image-management.

After you have registered new terminals, always check the Uyuni Web UI to
o ensure your terminals have connected successfully to the branch server. The

terminals must not have directly connected to the Uyuni Server by mistake.

5.1.1. Create A Hardware Type Group

Each terminal requires a specific hardware type, which contains information about the product name and
terminal manufacturer. However, at the beginning, the Uyuni database does not have this information. To
tell Uyuni what image to deploy on each terminal, you can set hardware type groups. After you have
created a new hardware type group, you can apply the Saltboot formula to the group and configure it for
your environment.

Hardware types allow you to group devices according to manufacturer and device name. Then, all devices
of a particular type can be managed as one.

5.1. Deployment basics

Empty profiles can be assigned to a hardware type group either before or after registration. If an empty
profile is not assigned to a hardware type group before registration, it will be assigned to group that best
matches the product information available to it.

For this procedure, you will require the system manufacturer name and product name for your terminal.

Procedure: Creating a Hardware Type Group

1. Determine the hardware type group name. Prefix the name with HMYPE: , followed by the
system manufacturer name and product name, separated by a hyphen. For example:

HWI'YPE: POSVendor - Ter mi nal 1

2. In the Uyuni Web UI, navigate to Systems > System Groups, and click the ([ERSaRENEROURN
button.

3. In the Create System G oup dialog, create a new system group, using the hardware type
group name you determined in step one of this procedure.

Only use colons, hyphens, or underscores in hardware type group names. Spaces
and other non-alphanumeric characters will be removed when the name is

processed.

5.1.2. Assign and Configure the Saltboot Formula for Each Hardware Type Group
Each hardware type group must have the Saltboot formula applied.

Procedure: Assigning the Saltboot Formula
1. Open the details page for your new hardware type group, and navigate to the For mul as tab.
2. Select the Saltboot formula and click ([ISENEN.
3. Navigate to the Formulas > Saltboot tab.

4. Configure the Saltboot formula. For more information about the Saltboot formula, see
Specialized-guides > Salt.
5.1.3. Synchronize Images to the Branch Server

Procedure: Synchronizing Images to the Branch Server

1. On the Uyuni server, run this command:

salt <branch_server_salt_id> state.apply inmage-sync

5.1.3.1. Using a SUSE Linux Enterprise Server11 SP3 32-bit based images

If you have 32-bit machines included in your branch, then you must use a 32-bit boot image as a default

23/81 5.1. Deployment basics | Uyuni 2023.10

boot image.

If a 32-bit boot image is not used as a default boot image, 32-bit terminals will
be unable to boot and operate properly.

Check the available boot images and their architecture from the command line:

salt <branch_server _salt _id> pillar.item boot i nages

Output:

POS | mage_Je(CS6- 6. 0. O:

In this example, the | egacy- 6. 0. 0 boot image is 32-bit.

You can set the default boot image in the | mage Synchr oni zat i on formula on the branch server,
by adding the chosen boot image name to the Def aul t boot i mage field. For more information

about | mage Synchr oni zat i on formula, see Specialized-guides > Salt.

D q |@systemsseectea #| aaamin msuseoa @ @

& proxytflocal ®

5.1.4. Deploy Images to the Terminals
When you have your bootstrap image ready, you can deploy the image to the terminals.

Procedure: Deploying Images to the Terminals
1. Power on your POS terminals.

2. The branch server will bootstrap the terminals according to the data you have provided.

5.1. Deployment basics

5.1.5. Customize the Terminal Image Download Process

You can change the terminal boot process using Salt pillars. Two Salt pillars allow you to change the
protocol and server used to download the image.

* The sal t boot _downl oad_pr ot ocol pillar specifies which protocol should be used to
download the image to the terminal. This overrides the default protocol specified in the image
pillar. Allowed values are htt p, htt ps,ftp,ortftp.

» The sal t boot _downl oad_server pillar specifies which server to use to download the
image. This overrides the default hostname specified in the image pillar.

Example: Changing the Saltboot Image Download Protocol

This example changes the protocol used for all terminals.

Edit the / srv/ pi | | ar/t op. sl s file:

base:

k.

. sal t boot _proto

Editthe / srv/ pi |l | ar/ sal t boot _pr ot o. sl s file:

sal t boot _downl oad_protocol : http
can be http, https, ftp, tftp

Example: Changing the Saltboot Image Download Location

This example changes the download location for all terminals on a specified branch server.

Editthe / srv/ pil |l ar/t op. sl s file:

base:
"mnion_id_prefix:$branch_prefix':
- match: grain
- $branch_prefix

Edit the / srv/ pi | | ar/ $branch_prefi x. sl s file:

sal t boot _downl oad_server: $downl oad_server _fqdn

In this example, the download server must be prepared by the i mage_sync
state before you begin.

25/81 5.1. Deployment basics | Uyuni 2023.10

5.2. Deploy Terminals - Other Methods

If you are not able to boot terminals from the network, you can create a live USB image and deploy
terminals using a removable USB storage device. You can also bootstrap terminals across a wireless
network.

Hardware type groups must be created and images must be synchronized before

continuing. For more information, see Retail > Retail-deploy-terminals.

ensure your terminals have connected successfully to the branch server, and not

o After you have registered new terminals, always check the Uyuni Web Ul to

directly to the Uyuni Server by mistake.

5.2.1. Deploy Terminals with a Removable USB Device

If you do not want to boot terminals from the network, you can create a live USB image and deploy
terminals using a removable USB storage device. This is useful if you cannot boot your terminals from the
network, or if you do not have a local Uyuni for Retail branch server providing network services.

You can prepare a bootable USB device with the image and tools required to deploy a POS terminal using

a remote Uyuni for Retail branch server. You can create the bootable USB device on the branch server
directly, or on the Uyuni for Retail Server.

POS devices booted using the USB device are assigned to the Uyuni for Retail
branch server that created the USB device.

Procedure: Creating a Bootable USB Device

1. On the Uyuni for Retail branch server, at the command prompt, as root, create the POS image.
You need to specify the size of the image, in megabytes.

Ensure you allow at least 300 MB:

salt-call image_sync_usb.create <usb inage name> <size in MB> ’

2. Insert the USB device into the Uyuni for Retail branch server machine, and copy the image to the
new location:

‘ dd bs=1M i f =<usb i nage nane> of =<path to usb devi ce> ’

When you have the image on the USB drive, check that the terminals you want to deploy allow local
booting. You can check this by editing the Saltboot formula in the Uyuni for Retail Web Ul For more

information about the Saltboot formula, see Specialized-guides > Salt.

Procedure: Deploying Images to the Terminals using USB
1. Insert the USB device into the terminal.
2. Power on the POS terminal.

3. Boot from the USB device to begin bootstrapping.

5.2.2. Deploy Terminals over a Wireless Network

For terminals that cannot be connected directly to the physical network, you can deploy them over a
wireless network. Wireless networks do not support PXE booting, so you must perform the initial booting
and initialization of the wireless connection on the terminal using a USB device.

For more information about using USB devices to boot, see Retail > Retail-deploy-terminals-other.

Bootstrapping across a wireless network could expose a security risk if you are
using encrypted OS images. The boot i ni t rd image and the partition that
contains / et ¢/ sal t must be stored unencrypted on the terminal. This allows
Uyuni for Retail to set up the wireless network. If this breaches your security
requirements, you will need to use a separate production network, with network
credentials managed by Salt, so that credentials are not stored on the terminal
unencrypted.

Before you begin, you need to have created a bootable USB device. Ensure that the OS image you use to
create the USB device has the dracut - wi r el ess package included. For more information about

using USB devices to boot, see Retail > Retail-deploy-terminals-other.

When you have created the USB device, you need to provide the wireless credentials to the terminal. You
can do this in a number of ways:

¢ Directly during image build.

* Add it to the i ni t rd file on the branch server.

* During terminal booting, using the kernel command line.

Procedure: Providing Wireless Credentials During Image Build
1. Ensure that the dr acut - wi r el ess package is included in the image template.

2. Set the wireless credentials by creating or editing the et ¢/ sysconfi g/ net wor k/ i fcfg-
w ano file to the image template, with these details:

ALLOW UPDATE_FROM | NI TRD
W RELESS ESSI D=<wi r el ess networ k nanme>
W RELESS WPA PSK=<wi r el ess network password>

If you want to use different credentials for bootstrapping to what is used during normal operation,
you can remove the ALLOW UPDATE_FROM | NI TRD line.

3. Build the image.

4. Prepare a USB device using this image, and boot the terminal. For more information about using
USB devices to boot, see Retail > Retail-deploy-terminals-other.

Procedure: Providing Wireless Credentials with initrd

1. Set the wireless credentials by creating or editing the et ¢/ sysconfi g/ network/ifcfg-
w ano file, with these details:

ALLOW UPDATE_FROM | NI TRD
W RELESS ESSI D=<wi r el ess networ k nanme>
W RELESS WPA PSK=<wi r el ess network password>

2. . Copy the file to i ni t r d on the branch server:

echo ./etc/sysconfig/network/ifcfg-wanO | cpio -H newc -0 | gzip >>
[srv/sal tboot/boot/initrd. gz

3. Check that the terminals you want to deploy allow local booting. You can check this by editing the
Saltboot formula in the Uyuni for Retail Web UL. For more information about the Saltboot

formula, see Specialized-guides > Salt.
Procedure: Providing Wireless Credentials During Terminal Boot
1. Mount the USB device on the terminal, and boot from it.

2. Append these commands to the kernel boot parameters:

W RELESS ESSI D=<wi r el ess_net wor k_nane>
W RELESS WPA PSK=<wi r el ess_net wor k_passwor d>

5.2.2.1. Change Wireless Credentials

After you have set the wireless credentials, you can change them as needed. The way to do this is
different if you use one company-wide network, or if you have each branch server on its own separate
network.

Procedure: Changing Wireless Credentials for Single Network
1. Rebuild the boot image with updated credentials.

2. Recreate the bootable USB device based on the new boot image.

3. Boot terminal from new USB device.

Procedure: Changing Wireless Credentials for Multiple Networks

1. In the /srv/salt/ directory, create a salt state called update-term nal -
credenti al s. sl s, and enter the new wireless network credentials:

[etc/sysconfig/ network/ifcfg-w an0
file. managed:
- contents:
W RELESS ESSI D=<wi r el ess_net wor k_name>
W RELESS WPA PSK=<wi r el ess_net wor k_passwor d>
regenerate initrd
cnd. run:
- nane: 'nkinitrd'

2. Apply the Salt state to the terminal:

salt <term nal _salt_nane> state.apply update-term nal -credential s

If you are using a separate network for the boot phase, the managed file might
need to be renamed, or extended to
[etc/sysconfig/network/initrd-ifcfg-w anO.

5.2.2.2. Use Multiple Wireless Networks

You can configure terminals to use a different set of wireless credentials during the boot process, to what
they use during normal operation.

If you provide wireless credentials using i ni t rd files, you can create two different files, one for use
during boot called i ni trd-ifcfg-w an0, and the other for use during normal operation, called
i fcfg-w anoO.

Alternatively, you can use custom Salt states to manage wireless credentials with sal t boot - hook.

First of all, you need to set the wireless details for normal operation. This will become the default settings.
Then you can specify a second Salt state with the wireless details for use during the boot procedure.

Procedure: Using Different Wireless Credentials for Production Network

1. Write a custom Salt state named / srv/ sal t/ sal t boot _hook. sl s containing the wireless
details for normal operation. This Salt state is applied by Saltboot after the system image is
deployed.

{% set root = salt['environ.get'] (' NEWROOT') %
{{ root }}/etc/sysconfig/network/ifcfg-w an0:
file. managed:
- contents: |
W RELESS ESSI D=<wi r el ess_net wor k_nane>
W RELESS WPA PSK=<wi r el ess_net wor k_passwor d>
- require:
- salthboot: saltboot fstab
- require_in:
- saltboot: boot_system

5.3. Deploy Terminals and Auto-Accept Keys

The boot phase supports only WPA2 PSK wireless configuration. Salt-managed
0 production configuration supports all features supported by all major operating

systems.

5.3. Deploy Terminals and Auto-Accept Keys

You can configure Uyuni to automatically accept the keys of newly deployed terminals. This is achieved
using Salt grains.

Automatically accepting keys is less secure than manually checking and
accepting keys. Only use this method on trusted networks.

There are three different ways you can configure auto-signed grains:

* Configure Saltboot to send automatically signed grains once and then delete them. To do this,
append the Saltboot configuration to an existing i ni t r d. For more information, see retail-deploy-
terminals-auto.pdf.

* Choose to keep the automatically signed grains on the Salt client. To do this, include the
configuration file in the image source before the client image is built. After booting, the auto-
signed grain is stored on the client as a regular Salt grain. For more information, see retail-deploy-
terminals-auto.pdf.

* Configure Saltboot during PXE boot using kernel parameters. For more information, see retail-
deploy-terminals-auto.pdf.

When you have configured Saltboot using one of these methods, you need to configure the Uyuni Server
to accept them. For more information, see retail-deploy-terminals-auto.pdf.

5.3.1. Configure Saltboot to Send Auto-Signed Grain Once

Procedure: Configuring Saltboot to Send Auto-Signed Grain Once
1. On the branch server, create a configuration file called / et ¢/ sal t/ mi ni on. d/ aut osi gn-
grai ns-oneti nme. conf.

2. Edit the new configuration file with these details. You can use any value you like as the auto-sign
key:

create the grain
grains:
aut osi gn_key: <AUTCSI GN_KEY>

send the grain as part of auth request
aut osi gn_gr ai ns:
- autosign_key

3. At the command prompt, add the new configuration file to the existing i ni t r d:

30/81 5.3. Deploy Terminals and Auto-Accept Keys | Uyuni 2023.10

retail-deploy-terminals-auto.pdf#retail.deployterminals.auto.once
retail-deploy-terminals-auto.pdf#retail.deployterminals.auto.once
retail-deploy-terminals-auto.pdf#retail.deployterminals.auto.keep
retail-deploy-terminals-auto.pdf#retail.deployterminals.auto.keep
retail-deploy-terminals-auto.pdf#retail.deployterminals.auto.pxe
retail-deploy-terminals-auto.pdf#retail.deployterminals.auto.pxe
retail-deploy-terminals-auto.pdf#retail.deployterminals.auto.server

5.3. Deploy Terminals and Auto-Accept Keys

echo ./etc/salt/mnion.d/ autosi gn-grains-onetine.conf | /
cpio -Hnew -o | gzip >> /srv/saltboot/boot/initrd. gz

5.3.2. Configure Saltboot to Keep Auto-Signed Grains
Use different procedure for SLE 15 and SLE 11/12.

Procedure: Configuring Saltboot to Keep Auto-Signed Grains (SLE 15)

1. In the location where the image source is built, such as a build host or source repository, create a
configuration file called et ¢/ sal t/ mi ni on. d/ aut osi gn-gr ai ns. conf.

2. Edit the new configuration file with these details. You can use any value you like as the auto-sign
key:

create the grain
grai ns:
aut osi gn_key: <AUTCOSI GN_KEY>

send the grain as part of auth request
aut osi gn_gr ai ns:
- autosign_key

Procedure: Configuring Saltboot to Keep Auto-Signed Grains (SLE 11 and SLE 12)

1. In the location where the image source is built, such as a build host or source repository, create a
configuration file called et ¢/ sal t/ m ni on. d/ aut osi gn- grai ns. conf . This must be
outside of the r oot directory provided by the template. This way you prevent the inclusion of
unwanted files in the i ni t rd.

2. Edit the new configuration file with these details. You can use any value you like as the auto-sign
key:

e

create the grain
grains:
aut osi gn_key: <AUTOCSI GN_KEY>

send the grain as part of auth request
aut osi gn_gr ai ns:
- autosign_key

3. Create a tarball of this directory:

‘ tar -czf autosign-grains.tgz etc]

4. Edit the confi g. xm template file. In the <packages type="i nmage" > element, add:

[<ar chi ve nane="aut osi gn.tgz" bootinclude="true"/>]

31/81 5.3. Deploy Terminals and Auto-Accept Keys | Uyuni 2023.10

5.4. Forced Saltboot image redeployment

5. Save the file and rebuild the image.

5.3.3. Configure Saltboot to Auto-Sign During PXE Boot

Procedure: Configuring Saltboot to Auto-Sign During PXE Boot

1. Configure the PXE formula to specify these kernel parameters during booting:

SALT_AUTOSI GN_GRAI NS=aut osi gn_key: <AUTOSI GN_KEY>

2. PXE boot the Salt client. The formula creates the ./ et ¢/ sal t/ m ni on. d/ aut osi gn-
grai ns-oneti me. conf configuration file and passes ittoi ni trd.

5.3.4. Configure the Server to Auto-Accept

When you have configured Saltboot using one of these methods, you need to configure the server to
accept them. The server stores the autosign keys in a file within the / et c/sal t/ master. d/
directory. You can enable auto-signing by creating an auto-sign file that contains the key you created
when you configured Saltboot.

Procedure: Configuring the Server to Auto-Accept

1. On the Uyuni Server, open the master configuration file in the /et c/ sal t/ master. d/
directory, and add or edit this line:

[autosign_grains_dir: /etc/salt/autosign_grains ’

2. Create a file at / et ¢/ sal t/ aut osi gn_gr ai ns/ aut osi gn_key, that contains the auto-
sign key you specified with Saltboot:

<AUTOSI GN_KEY>]

[For multiple keys, put each one on a new |ine.]

For more information about configuring the server to automatically accept grains, see
https://docs.saltstack.com/en/latest/topics/tutorials/autoaccept_grains.html.

5.4. Forced Saltboot image redeployment

Systems provisioned by Saltboot are usually redeployed or repartitioned automatically when a new image
is available, or Saltboot partitioning changes.

Occasionally, however, it is needed to force Saltboot to redeploy an image or repartition disk, even when
automation would not do so. For these situations, Saltboot offers three ways to force redeployment or
repartitioning:

32/81 5.4. Forced Saltboot image redeployment | Uyuni 2023.10

https://docs.saltstack.com/en/latest/topics/tutorials/autoaccept_grains.html

5.4. Forced Saltboot image redeployment

Force Saltboot redeployment using Salt grains

Force Saltboot redeployment using custom info values

Force Saltboot redeployment using Saltboot API call

* Force Saltboot redeployment by custom pillar

Repartitioning of a terminal removes all data stored on the terminal hard disk,
including any persistent partitions.

5.4.1. Force Saltboot redeployment using Salt grains

Saltboot redeployment grains have no side effects, and do not require any further configuration. The
limitation is that terminal must be accessible by sal t .

Procedure: Forcing Saltboot to redeploy image

1. On the Uyuni Server, as root, apply this Salt state at the command prompt:

salt $terminal _mnion_id state.apply sal tboot. force_redepl oy

2. Restart the terminal to pick up the changes.

Procedure: Forcing a Saltboot to repartition the hard disk

1. On the Uyuni Server, as root, apply this Salt state at the command prompt:

salt $terminal _mnion_id state.apply sal tboot.force_repartition

2. Restart the terminal to pick up the changes.

5.4.2. Force Saltboot redeployment using custom info values

Saltboot custom values remove the limitation on terminal being reachable by sal t , however there are
configuration steps.

Custom info keys and values can be also managed using API or spacecnd command. For more

information, see Reference » Spacecmd.

Procedure: Create custom info key for image redeployment
1. In the Uyuni Web UI, navigate to Systems > Custom System Info.
2. Click Cr eat e Key to create new Cust om | nf o Key.
3. AsKey Label fillin sal t boot _f or ce_r edepl oy.
4. AsDescriptionfilinForce redepl oy Sal tboot inmage.
5. Click Cr eat e Key.

33/81 5.4. Forced Saltboot image redeployment | Uyuni 2023.10

0 Creating sal t boot _force_redepl oy custom key is a one time

operation. When created, it is available for repeated use.

Procedure: Assign custom value for image redeployment

1.

2
3
4
5.
6
7

Navigate to the Over vi ew page of the system you want to redeploy.

. Select tab Cust om | nf o.

. Click on Cr eat e Val ue.

. From the list of available keys click sal t boot _f or ce_r edepl oy.
As Val ue type Tr ue.

. Click Updat e Key.

. Reboot the terminal to pick up the changes.

After terminal finishes booting, Saltboot redeployment custom info setting is
automatically reset to prevent repeated redeployment.

Procedure: Create custom info key for disk repartitioning

1
2
3
4
5

. Navigate to menu::Systems[Custom System Info] page.

. Click Cr eat e Key to create new Cust om | nf o Key.

. As Key Label fillinsal t boot _force_repartition.

. AsDescriptionfillin Force ternminal disk repartition.

. Click Cr eat e Key.

operation. Once created, it is available for repeated use.

0 Creating sal t boot _force_repartition custom key is one time

Procedure: Assign custom value for disk repartitioning

L.

2
3
4
5.
6
7

Navigate to the Over vi ew page of the system you want to redeploy.

. Select tab Cust om | nf o.

. Click on Cr eat e Val ue.

. From the list of available keys click sal t boot _force_repartition.
As Val ue type Tr ue.

. Click Updat e Key.

. Reboot the terminal to pick up the changes.

5.4.3. Force Saltboot redeployment using Saltboot API call

5.4. Forced Saltboot image redeployment

After terminal finishes booting, Saltboot redeployment setting is automatically
reset to prevent repeated redeployment.

An API call system set Pi | | ar can be used to set specific Saltboot options through Salt pillar data.
Uyuni Saltboot integration is using t uni ng- sal t boot pillar category to manage Saltboot tuning,
including forced redeployment or disk repartition. Using this pillar category allows Uyuni to reset Saltboot
flag once the terminal is booted up.

Procedure: Forcing Saltboot to redeploy image using API call using spacecmd command

1. In the console run following the command, and replace $t er m nal _m ni on_i d with the
actual terminal minion id:

spacecnd api -- -A 'S$terminal _mnion_id,tuning-saltboot, {"saltboot":
{"force_redeploynent": "True"}}' systemsetPillar

Procedure: Forcing Saltboot to repartition disk using API call using spacecmd command

1. In the console run the following command, replace $t er mi nal _mi ni on_i d with the actual
terminal minion id:

spacecnd api -- -A '$terminal _mnion_id,tuning-saltboot, {"saltboot":
{"force_repartition": "True"}}" systemsetPillar

Procedure: Check Saltboot tuning options

1. In the console run the following command, and replace $t er mi nal _m ni on_i d with the
actual terminal minion id:

spacecnd api -- -A 'S$term nal _mnion_id,tuning-saltboot'
system getPi |l | ar

o Make sure to use t uni ng- sal t boot as pillar category in the API call.

5.4.4. Force Saltboot redeployment by custom pillar

Pillars specified outside of Uyuni database cannot be reset automatically.
Without manual intervention, the terminal will download a new image on each
reboot.

Procedure: Force a Saltboot to redeploy image using Saltboot pillar

1. Create new file / srv/ sal t/ pill ar/force_redepl oy. sl s with content:

35/81 5.4. Forced Saltboot image redeployment | Uyuni 2023.10

5.5. Terminal Boot Process (Saltboot Diagram)

sal t boot :
force_redepl oy: True

2. Create new file or update existing file named / srv/ sal t/ pi |l | ar/t op. sl s with content:

base:
"$termnal _minion_id:
- force_redepl oy

3. Reboot the terminal to pick up the changes.
4. After the terminal finishes booting, remove modifications made in

/srvlsalt/pillar/top. sl s file.

If your terminal encounters a problem with the file system or the partition table, you might need to
remove the partition table and reformat the terminal.

Procedure: Force Saltboot to repartition disk using Saltboot pillar

1. Create new file / srv/salt/pillar/force_repartition.sls with content:

sal t boot :
force repartition: True

2. Create new file or update existing file named / srv/ sal t/ pi | | ar/t op. sl s with content:

base:
"$termnal _mnion_id:
- force_repartition

3. Reboot the terminal to pick up the changes.

4. After the terminal finishes booting, remove modifications made in
/srv/salt/pillar/top.slsfile

5.5. Terminal Boot Process (Saltboot Diagram)

The Saltboot process involves the Uyuni Server, a terminal running the Saltboot i ni t r d, and the branch
server providing the Saltboot services to the terminal.

This sequence diagram explains how the three components interact with each other to boot a terminal.

36/81 5.5. Terminal Boot Process (Saltboot Diagram) | Uyuni 2023.10

5.5. Terminal Boot Process (Saltboot Diagram)

Retail Terminal USE Manager Branch USE Manager Serve

Terminal boot start

PXE request (DHCP, NBD)

PXE response (DHCP, Saltboot h‘H‘d)

Set 'saltboot_initrd' grain to True

Authentication requests

Minion key is accepted _‘

Minion waits until its
Salt key is accepted

Terminal minion sends minion start event

Typical SUSE Master

H salt minion startup

Hardware and
software evaluation
is skipped when
‘saltboot_initrd' is set

Add terminal to HWTYPE, TERMINALS and Branch groups

Synchronize salt modules

Apply Saltboot state

Partition drives, create RAIDs

Request image file

Provide requested image H

Deploy image, Format partitions, Update fstab

Send 'suse/manager/pxe_update' event

Apply 'pxe_update' state

Generate PXE configuration for Terminal

Verify and boot terminal

Salt minion exits

Set 'saltboot_initrd' grain to False

System boots

Send 'suse/manager/image_deployed' event

Assign channels to Terminal

Request hardware and software refresh

H Provide hardware information and software evaluation

Retail Terminal USE Manager Branch USE Manager Serve

5.5. Terminal Boot Process (Saltboot Diagram) | Uyuni 2023.10

37/81

5.6. Terminal Names

Terminals can be named according to certain parameters, which can make it easier to match the physical
device with its record in the Uyuni Web UL

Naming schemes available are Host name, FQDN, and HWT'y pe. Naming scheme can be selected in the
Branch Net wor k formula. For more information, see Specialized-guides > Salt.

By default, terminals are named according to the HOSt nanme naming scheme with the HWMy pe scheme
as a fallback.

5.6.1. Naming by HMYype

Terminal names that are derived from the hardware type use this format:
Br anchl D. Manuf act ur er - Product Nanme- Ser i al Nunber - Uni quel D
For example:
B002. TOSHI BA- 6140100- 41BA03X- c643

The Br anchl D is the unique identifier for the branch server that the terminal is connected to. You can

configure this value in the Specialized-guides > Salt settings for the branch server. You can disable this
prefix by toggling the Do not prefix salt client 1D with Branch | Dcheckbox in the

Specialized-guides > Salt.

The Manuf act ur er, Product Nane, and Ser i al Nunber are provided by the terminal hardware
BIOS. If the terminal does not provide a serial number, it will be omitted from the terminal name.

The Uni quel Dis the first four characters of a generated machine identification number. Added unique
ID is a requirement for successful terminal deployment. Without unique ID, subsequent terminal
registration will fail.

5.6.2. Naming by Host nane

Terminal names that are derived from the hostname use this format:
Br anchl D. Host nane- Uni quel D

For example:
B002. t erm nal - c643

The Br anchl Dis the unique identifier for the branch server that the terminal is connected to. You can

configure this value in the Specialized-guides > Salt settings for the branch server. You can disable this
prefix by toggling the Do not prefix salt client 1D with Branch | Dcheckbox in the

Specialized-guides > Salt.
The Host nane is the plain hostname (without domain part) of the terminal.

The Uni quel Dis the first four characters of a generated machine identification number. You can disable
this behavior by toggling the Do not append uni que suffix to the salt client ID

checkbox in the Specialized-guides > Salt.

5.6.3. Naming by FQDN

Terminal names that are derived from the Fully Qualified Domain Names (FQDN) use this format:
Br anchl D. FQDN- Uni quel D

For example:
B002. t er mi nal . exanpl e. com c643

The Br anchl D is the unique identifier for the branch server that the terminal is connected to. You can

configure this value in the Specialized-guides > Salt settings for the branch server. You can disable this
prefix by toggling the Do not prefix salt client 1D with Branch | D checkbox in the

Specialized-guides > Salt.
The FQDN is the fully qualified domain name of the terminal.

The Uni quel Dis the first four characters of a generated machine identification number. You can disable
this behavior by toggling the Do not append uni que suffix to the salt client ID

checkbox in the Specialized-guides > Salt.

5.6.4. Assign Hostnames to Terminals

If you want terminal names to be derived from the hostname, you will need to ensure your terminals have
a static hostname. This requires a static IP address to be able to resolve the static hostname.

There are a number of different ways to assign hostnames to terminals. This section describes how to do
this when DNS and DHCP services are managed by the branch server.

Procedure: Assigning IP Address and Hostname with Formulas

1. In the DHCP formula settings, navigate to Hosts with Static | P Address and click
(@AGERREERD). For more information on the DHCP formula, see Specialized-guides > Salt.

2. In the Host nanme field, type the hostname of the branch server.

3. In the | P Addr ess field, type the static IP address for the terminal. Ensure the IP address is

10.
I1.
12.

5.6. Terminal Names

within the range used by the branch server.

In the Har dware Type and Address field, type the hardware type and address in this
format:

et hernet <term nal _MAC addr ess>

OPTIONAL: For multiple terminals, click ([JASEBRINEEIT and fill in the details for each terminal.

Click _ to save the changes.

In the Bind formula settings, navigate to the A records of the appropriate non-reverse zone, and
click ([IASERIEERT). For more information on the bind formula, see Specialized-guides > Salt.

In the Host nane field, type the hostname of the branch server.

In the | P Addr ess field, type the static IP address you assigned to the terminal in the DHCP
formula settings.

OPTIONAL: For multiple terminals, click ([ASEBRINREITY and fill in the details for each terminal.

Click ([[SENERFORFIRA] to save the changes.

Apply the highstate on the branch server to apply the changes.

type instead of the hostname, you will need to delete the previous registration.
When you re-register the terminal, use the new terminal name.

o If the terminal was previously registered using a name based on the hardware

Procedure: Assigning IP Address and Hostname with YAML

1.

N

9

40/ 81

At the command prompt on the branch server, export a YAML configuration file:

[retail_yam --to-yam retail.yan

Open the YAML file and navigate to the end of the branch server section. Add a new
t er m nal s section if it does not already exist.

Add the IP address, MAC address, and hardware type for the terminal, using this format:

$host nane:
I P. <IP_Address>
hwAddr ess: <MAC_Addr ess>
hwt ype: <HWIYPE_Gr oup_nane_w t hout _HWI'YPE: _prefi x>

Import the modified YAML file:

retail _yam --fromyam retail.yan

Apply the highstate on the branch server to apply the changes.

5.6. Terminal Names | Uyuni 2023.10

If the terminal was previously registered using a name based on the hardware
type instead of the hostname, you will need to delete the previous registration.

When you re-register the terminal, use the new terminal name.

For more information about using YAML configuration files, see Retail > Retail-mass-config.

5.7. Offline Use

If the Uyuni Server is offline, you can still perform some operations on the terminals. This is useful if the
connection between the branch server and the Uyuni Server is unstable or has low bandwidth. This
feature uses caching to perform updates.

5.7.1. Offline Terminal Reboot

If the Uyuni Server is offline, and a terminal is rebooted, it will fall back to a previously installed image.
This will occur in these situations:

e If the Saltboot formula has not started within a specified time (default value is 60 seconds).
* If the terminal does not acknowledge that the Saltboot formula has started.

e If the root partition is specified on the kernel command line (handled by the PXE formula), is
mountable (and is not encrypted), and contains / et ¢/ | mageVer si on (which is created by
Kiwi).

You can adjust the timeout value by changing the SALT_TI MEOUT kernel parameter. The parameter is
measured in seconds, and defaults to 60.

SALT_TI MEQUT = 60

For more about kernel parameters, see Specialized-guides > Salt.

5.7.2. Cached Terminal Updates

If the bandwidth between the branch server and the terminal is low, or for optimization of the terminal
update process, POS images can be cached in advance on the terminal. The upgrade can then performed
on the terminals when suitable.

This functionality requires the terminal to have a dedicated service partition. A service partition is a
partition mounted as / Sr v/ sal t boot . This partition must be created before the system partition and
large enough to store a POS image. To ensure that terminals will always have such a partition, use the
Saltboot formula for terminal hardware type to specify the partition details. For more information, see

Specialized-guides > Salt.

When the service partition is set up on the terminal, a POS image can be downloaded in advance by
applying the sal t boot . cache_i mage state:

salt $TERM NALID state. apply sal tboot.cache_i mage

This can be done regularly to ensure that terminals always have an uptodate POS image downloaded.

When the terminal is rebooted and an uptodate POS image is found in the service partition, the terminal
will automatically use this cached image for system redeployment.

5.8. Rate Limiting Terminals

Salt is able to run commands in parallel on a large number of terminals. This can potentially create heavy
load on your infrastructure. You can use rate-limiting parameters to control the load in your environment.

For more information about rate limiting on terminals, see Specialized-guides > Salt.

5.8.1. Troubleshooting

Sometimes when attempting to reboot a terminal after attempting to apply the Saltboot formula, the
terminal will hang at the boot screen. This can be caused by a presence ping timeout value being set at a
value that is too low. You can adjust the presence ping timeout value to fix this problem.

For more information about rate limiting on terminals, see Specialized-guides > Salt.

Chapter 6. Introduction to Retail Formulas
Formulas are pre-written Salt states, that are used to configure your Uyuni for Retail installation.

You can use the Uyuni Web Ul to apply common Uyuni formulas. For the most commonly used

formulas, see Specialized-guides > Salt.

All formulas must be accurately configured for your Uyuni for Retail installation to function correctly. If
you are unsure of the correct formula configuration details, run the r et ai | _branch_i ni t command
before you begin to create the recommended formula configuration. You can then manually edit the
formulas as required.

6.1. Branch Server Formulas

Branch servers are configured using formulas. Formulas can be configured using Uyuni Web UlI, or the
Uyuni XMLRPC APIL To fully configure Uyuni for Retail, these formulas need to be enabled and
configured on the branch server:

* Branch network formula, see Specialized-guides > Salt

* Bind formula, see Specialized-guides > Salt

* DHCPD formula, see Specialized-guides > Salt

* PXE formula, see Specialized-guides > Salt

* TFTP formula, see Specialized-guides > Salt

* VSFTP formula, see Specialized-guides > Salt

Optionally, you can also enable the image synchronization formula. For more information, see

Specialized-guides > Salt.

Badly configured formulas can result in the branch server failing to work as
expected. Due to the generic nature of formulas it is difficult to do overall
o validation. We recommend that you configure the branch server using the Uyuni
for Retail command line utilities, and use individual formula settings for further

tuning if required. For more information, see Retail > Retail-install-setup.

If a formula uses the same name as an existing Salt state, the two names will
collide. This could result in the formula being used instead of the state. Always
check the names of states and formulas to avoid name collisions.

When you have made changes to your formula, ensure you apply the highstate. The highstate propagates
your changes to the appropriate services.

6.2. Partitioning and Image Deployment Formula

6.2. Partitioning and Image Deployment Formula

Use the Saltboot formula to specify disk partitioning, and to select which image should be deployed. For

more information about the Saltboot formula, see Specialized-guides > Salt.

44/ 81 6.2. Partitioning and Image Deployment Formula | Uyuni 2023.10

Chapter 7. Image Pillars
If the built image type is PXE, a Salt pillar is also generated.

Image pillars are stored in the database and Salt subsystem can access details about the generated image.
Details include where the image files are located and provided, image checksums, information needed for
network boot, and more.

The generated pillar is available to all connected clients.

This is an example of image pillar:

"i mages": {
"POS_| mage_JeOS7": {
"7.1.0-1":
"url": "https://ftp/saltboot/imge/ POS | mage_JeOS7. x86_64-7. 1. 0-
1/ PCS | nage_JeOS7. x86_64-7. 1. 0",
"arch": "x86_64",
"hash": "7368c101e96826053c6ef de0588cf 365",
"size": 1548746752,
"sync": {
"url": "https://mnager. exanpl e. com os-i mages/ 1/ POS_| nage_JeQOS7-
7.1.0-1/ POS_|I nage_Je(OS7. x86_64-7. 1. 0",
"hash": "7368c101e96826053c6ef de0588cf 365",
"l ocal _path": "inmage/ POS_| mage JeOS7. x86_64-7.1.0-1"
},
"type": "pxe",
"fstype": "ext3",
"filenane": "POS_|nmage_JeOS7.x86_64-7.1.0",
"inactive": false,
"boot _i nage": "POS_| mage_JeCS7-7.1.0-1"
}
}

oot _i mages": {

"POS_|I mage_JeOS7-7.1.0-1": {
"arch": "x86_64",
"nane": "POS_| mage_JeOS7",

}

"sync": {
"initrd_url": "https:// manager.exanpl e. conf 0s-
i mages/ 1/ POS_| mage_JeOS7-7. 1. 0- 1/ POS_| nage_JeOS7. x86_64-7.1.0.initrd",
"kernel _url": "https:// manager. exanpl e. conf 0s-

i mges/ 1/ POS_| mage_Je0S7- 7. 1. 0- 1/ POS_| mage_Je(OS7. x86_64-7. 1. 0-5. 14. 21-
150400. 24. 55-def aul t . ker nel ",
"l ocal _path": "POS_ | mage_JeOS7.x86_64-7.1.0-1"
P

“initrd": {
“url": "https://ftp/saltboot/boot/POS | mage JeOS7. x86_64-7. 1. 0-
1/ PCS_ | mage_JeOS7. x86_64-7.1.0.initrd",
"hash": "d38b74a373bc6c9def 1f 069a8533d99f ",
"size": 118252253,
"version": "7.1.0",
"filenane": "POS_|Inmage_JeOS7.x86_64-7.1.0.initrd"

}

ernel ": {
"url": "https://ftp/saltboot/boot/POS | mage JeOS7. x86_64-7. 1. 0-
1/ PCS_| mage_Je(OS7. x86_64-7. 1. 0-5. 14. 21- 150400. 24. 55- def aul t . ker nel ",
"hash": "946dac0al9125d78e282af eOe3ebf 0b6"
"size": 11444416
"version": "5.14.21-150400. 24. 55- def aul t"
"filenane": "POS_ | mage_JeOS7.x86_64-7.1.0-5.14. 21- 150400. 24. 55-
defaul t. kernel "

IE
"basenane": "POS_| mage_Je(OS7.x86_64-7.1.0"

Under the | mages section, there is a specific image called POS_| mage_Je(OS7 with a version
7.1.0-1. It provides various details such as the image URL for download, architecture, hash, size,
synchronization information, image type (in this case, PXE), file system type, file name, and an inactive

flag to exclude it from auto-selection. Additionally, it references the corresponding boot image named
POS | mage JeOS7-7.1.0-1.

The boot _i mages section contains information about the boot image POS_| nmage_Je(OS7-

7.1.0-1. It specifies the details about kernel and i ni t r d.

Image pillar can be modified via APIL. This example retrieves the image pillar for a given image ID, and
changes the | nact i ve flag to Tr ue and writes it back.

#!/ usr/ bi n/ env python3
fromxmrpc.client inmport ServerProxy

MANAGER URL = "http:// manager. exanpl e. conf r pc/ api "

MANAGER LOG N = "admi n"
MANAGER PASSWORD = "adm npass”

I MAGE_| D=15

client = ServerProxy(MANAGER URL)
key = client.auth.|ogi n(MANAGER LOGd N, MANAGER PASSWORD)

pillar = client.inmage.getPillar(key, |MAGE_ID)

[(name, version_dict)] = pillar['inmages'].itens()
[(version, image_data)] = version_dict.itens()

i mage_data['inactive'] = True
client.imge.setPillar(key, IMMGE ID, pillar)

client.auth.logout (key)

Chapter 8. Administration

This sections contains notes on administering your Uyuni for Retail installation. For general
administration tasks, see the Uyuni documentation at https://documentation.suse.com/suma/.

8.1. Mass Configuration

Mass configuration is possible with branch servers and terminals.

8.1.1. Branch Server Mass Configuration

Branch servers are configured individually using formulas. If you are working in an environment with
many branch servers, it often helps to configure branch servers automatically with a pre-defined
configuration file, rather than configuring each one individually.

Before working with the mass configuration tool, back up the existing branch
servers configuration.

The mass configuration tool overwrites the existing configuration with data
specified in the provided YAML file.

The mass configuration tool does not support all possible formula configurations.
Always make sure on a small sample that the mass configuration tool can
configure systems as expected.

8.1.1.1. Configure Multiple Branch Servers

Configuring multiple branch servers requires the pyt hon- susemanager - r et ai | package, which is
provided with Uyuni for Retail. Install the pyt hon- susemanager - r et ai | package on the Uyuni
server.

Procedure: Configuring Multiple Branch Servers

1. Create a YAML file describing the infrastructure you intend to install. For an example YAML file,
see retail-mass-config-yaml.pdf.

2. On a clean Uyuni for Retail installation, import the YAML file you have created:

retail _yam --fromyam filenane.yan

Seetheretail _yam --hel p output for additional options.

3. In the Uyuni Web UI, check that your systems are listed correctly. Also check that the formulas
you require are available.

4. Create activation keys for each of your branch servers, register them using bootstrap, and configure

them as proxy servers. For more information, see Retail > Retail-install-unified.

https://documentation.suse.com/suma/
retail-mass-config-yaml.pdf

5. In the St at es tab, click _ to deploy your configuration changes for each
branch server.

If you need to change your configuration, you can edit the YAML file at any time, and use the
retail _yam --fromyam command to upload the new configuration.

Use empty profiles together with activation keys to onboard all the systems of your infrastructure. Use an

activation key to assign the channels listed in Retail > Retail-install-setup.

8.1.2. Terminal Mass Configuration

If you are working in an environment with many terminals, it often helps to configure terminals
automatically with a pre-defined configuration file, rather than configuring each one individually.

You will need to have your infrastructure planned out ahead of time, including the IP addresses,
hostnames, and domain names of branch servers and terminals. You will also require the hardware
(MAC) addresses of each terminal.

The settings specified in the configuration file cannot always be successfully
applied. In cases where there is a conflict, Uyuni will ignore the request in the

0 file. This is especially important when designating hostnames. You should always
check that the details have been applied as expected after using this
configuration method.

8.1.2.1. Configure Multiple Terminals

Procedure: Configuring Multiple Terminals

1. Create a YAML file describing the infrastructure you intend to install, specifying the hardware
address for each terminal. For an example YAML file, see retail-mass-config-yaml.pdf.

2. On a clean Uyuni installation, import the YAML file you have created:

retail _yam --fromyam filenane.yan

Seetheretai | _yam - - hel p output for additional options.

3. In the Uyuni Web UI, check that your systems are listed and displaying correctly, and the formulas
you require are available.

4. Create activation keys for each of your branch servers, connect them using bootstrap, and configure

them as proxy servers. For more information, see Retail > Retail-install-unified.

5. In the St at es tab, click ([[JARPIYERGRSTARE] to deploy your configuration changes for each

branch server.

6. Connect your terminals according to your infrastructure plan.

If you need to change your configuration, you can edit the YAML file at any time, and use the

retail-mass-config-yaml.pdf

retail _yaml --fromyam command to upload the new configuration.

8.1.3. Export Configuration to Mass Configuration File

If you already have a configuration that you would like to export to a YAML file, use:
retail _yam --to-yam filenane.yan

This can be a good way to create a basic mass configuration file. However, it is important to check the file
before using it, because some mandatory configuration entries may be missing.

When you are designing your configuration and creating the YAML file, ensure
the branch server ID matches the fully qualified hostname, and the Salt ID. If
these do not match, the bootstrap script could fail.

8.2. Example YAML File for Mass Configuration

You can use the retail _yam command to import configuration parameters from a manually
prepared YAML file. This section contains a YAML example file with comments.

Listing 1. Example: YAML Mass Terminal Configuration File

br anches:

there are 2 possible setups: with / w thout dedicated NIC
#

with dedicated NI C

branchserver 1. branchl. cz: # salt 1D of branch server

branch_prefix: branchl # optional, default guessed fromsalt id

server _name: branchserverl # optional, default guessed fromsalt id

server _domai n: branchl.cz # optional, default guessed fromsalt id

nic: ethl # nic used for connecting termnals, default
taken fromhw info in SUVA

dedi cated_nic: true # set to true if the termnals are on
separ at e net wor k

salt _cname: branchserverl1. branchl. cz # hostnane of salt master /
broker for term nals, nmandatory

configure firewall: true # nodify firewal |l configuration

branch_ip: 192.168.2.1 # default for dedicated NIC. 192.168.1.1

net mask: 255.255.255.0 # default for dedicated NIC: 255.255.255.0

dyn_r ange: # default for dedicated NIC. 192.168.1.10 -
192. 168. 1. 250

- 192.168.2.10

- 192.168. 2. 250
w thout dedicated NIC
the DHCP formula is not used, DHCP is typically provided by a router
the network paraneters can be autodetected if the machine is already
connected to SUSE Manager
branchserver 2. branch2. cz: # salt 1D of branch server
branch_prefix: branch2 # optional, default guessed fromsalt id
server _nane: branchserver2 # optional, default guessed fromsalt id
server _domai n: branch2.cz # optional, default guessed fromsalt id

salt _cnane: branchserver2. branchl. cz # FQDN of salt master / broker
for term nals, mandatory

branch_ip: 192.168.2.1 # optional, default taken from SUVA data if
the machine is registered

net mask: 255.255.255.0 # optional, default taken from SUVA data if

the machine is registered
excl ude_f or mul as: # optional, do not configure listed fornulas

- “dhcp # wi thout dedi cated NI Cthe dhcp service is
typically provided by a router
hwAddr ess: 11:22: 33: 44:55: 66 # optional, required to connect pre-
configured entry with particul ar machi ne
during onboardi ng

term nal s: # configuration of static term na
entries
host nanmel: # host nane

hwAddr ess: aa: aa: aa: bb: bb: bb # required as unique id of a term na
I P: 192.168.2.50 required for static dhcp and dns entry
sal t boot : optional, alternative 1. configure
term nal -specific pillar data
partitioning:
sal t boot docunentati on
di sk1:
devi ce: /dev/sda
di skl abel : nsdos
partitions:
pl:
flags: swap
format: swap
size_M B: 2000.0

H O HH

partitioning pillar as described in

p2:
i mge: POS | mage_ Je(OS6
nmount poi nt: /

type: DI SK
host name2: # host nane
hwAddr ess: aa: aa: aa: bb: bb: cc # required as unique id of a term na
I P: 192.168. 2. 51 # required for static dhcp and dns entry

hwt ype: | BMCORPORATI ON- 4838910 # optional, alternative 2: assign the
termnal to hwtype group
if neither of hwtype nor salt