
Uyuni 2023.10
Client Configuration Guide
October 31 2023

Table of Contents
Client Configuration Guide Overview 1

1. Supported Clients and Features 2
1.1. Supported Client Systems. 2
1.2. Supported Tools Packages . 3
1.3. Supported SUSE and openSUSE Client Features . 4
1.4. Supported SLE Micro Client Features . 7
1.5. openSUSE Leap Micro Client Features . 10
1.6. Supported Alibaba Cloud Linux Features . 12
1.7. Supported AlmaLinux Features . 14
1.8. Supported Amazon Linux Features . 17
1.9. Supported CentOS Features . 19
1.10. Supported Debian Features. 21
1.11. Supported Oracle Features . 24
1.12. Supported Red Hat Enterprise Linux Features . 26
1.13. Supported Rocky Linux Features . 29
1.14. Supported Ubuntu Features . 31

2. Configuration Basics 35
2.1. Software Channels . 35

2.1.1. Packages Provided by SUSE Package Hub . 35
2.1.2. Packages Provided by AppStream . 36
2.1.3. Packages Provided by EPEL. 36
2.1.4. Unified Installer Updates Channels on SUSE Linux Enterprise Clients 37
2.1.5. Software Repositories . 37
2.1.6. Software Products . 38

2.2. Bootstrap Repository . 39
2.2.1. Prepare to Create a Bootstrap Repository. 39
2.2.2. Options for Automatic Mode . 39
2.2.3. Manually Generate a Bootstrap Repository . 40
2.2.4. Bootstrap and Custom Channels. 41

2.3. Activation Keys . 42
2.3.1. Combining Multiple Activation Keys . 43
2.3.2. Reactivation Keys . 44
2.3.3. Activation Key Best Practices. 45

2.4. GPG Keys . 46
2.4.1. Trust GPG Keys on Clients . 46

3. Client Management Methods 49
3.1. Contact Methods for Salt Clients . 49

3.1.1. Onboarding Details. 49
3.1.2. Push via Salt SSH. 49
3.1.3. Salt Bundle . 52

Contact Methods for Traditional Clients . 55
SUSE Manager Daemon (rhnsd) . 56
Push via SSH . 59

3.2. Migrate traditional clients to Salt clients. 63
3.2.1. Create bootstrap script . 63
3.2.2. Modify bootstrap script . 63

3.2.3. Run bootstrap script . 64
4. Client Registration 66

4.1. Client Registration Methods . 66
4.1.1. Register Clients with the Web UI . 66
4.1.2. Register Clients with a Bootstrap Script . 68
4.1.3. Register on the Command Line (Salt). 72

4.2. SUSE Client Registration . 74
4.2.1. Registering SUSE Linux Enterprise Clients . 74
4.2.2. Registering SLE Micro Clients . 78

4.3. openSUSE Client Registration . 82
4.3.1. Registering openSUSE Leap Clients . 83
4.3.2. Registering openSUSE Leap Micro Clients . 85

4.4. Alibaba Cloud Linux Client Registration . 87
4.4.1. Registering Alibaba Cloud Linux Clients . 87

4.5. AlmaLinux Client Registration . 89
4.5.1. Registering AlmaLinux Clients . 89

4.6. Amazon Linux Client Registration . 92
4.6.1. Registering Amazon Linux Clients . 92

4.7. CentOS Client Registration. 94
4.7.1. Registering CentOS Clients . 95

4.8. Debian Client Registration . 99
4.8.1. Registering Debian Clients . 99

4.9. Oracle Client Registration. 102
4.9.1. Registering Oracle Linux Clients . 103

4.10. Red Hat Client Registration . 105
4.10.1. Registering Red Hat Enterprise Linux Clients with CDN . 106
4.10.2. Registering Red Hat Enterprise Linux Clients with RHUI . 114

4.11. Rocky Linux Client Registration. 119
4.11.1. Registering Rocky Linux Clients . 120

4.12. Ubuntu Client Registration . 122
4.12.1. Registering Ubuntu 20.04 and 22.04 Clients . 122
4.12.2. Registering Ubuntu 18.04 Clients. 126

4.13. Register Clients to a Proxy . 129
4.13.1. Move Clients between Proxies . 129
4.13.2. Move Clients from Proxies to the Server . 130
4.13.3. Register Clients to a Proxy with the Web UI . 130
4.13.4. Registering with a Bootstrap Script (Salt and Traditional) . 132

4.14. Registering clients on a public cloud. 132
4.14.1. Add Products and Synchronize Repositories . 132
4.14.2. Prepare on-demand images. 133
4.14.3. Register clients . 133
4.14.4. Activation keys . 134
4.14.5. Automatic registration of clients created by Terraform. 134

5. Client Upgrades 137
5.1. Client - Major Version Upgrade . 137

5.1.1. Prepare to Migrate . 137
5.1.2. Create an Autoinstallation Profile . 139
5.1.3. Migration . 140

5.2. Upgrade Using the Content Lifecycle Manager . 140

5.2.1. Prepare to Upgrade. 140
5.2.2. Upgrade . 142

5.3. Product Migration . 142
5.3.1. Single System Migration. 143
5.3.2. Product Mass Migration . 144

5.4. Upgrade Uyuni Clients . 147
5.4.1. Prepare to Upgrade. 147
5.4.2. Upgrade . 148

6. Client Deletion 149
6.1. Delete a Client with the Web UI. 149
6.2. Delete a Salt Client on the Command Line (with API Call) . 149
6.3. Delete a Client from the Command Line . 150

6.3.1. Salt Client. 150
7. Client Operations 153

7.1. Package Management . 153
7.1.1. Verify Packages . 153
7.1.2. Compare Packages . 153

7.2. Patch Management . 154
7.2.1. Create Patches . 154
7.2.2. Apply Patches to Clients. 156

7.3. System Locking . 157
7.3.1. System Locks on Traditional Clients . 157
7.3.2. System Locks on Salt Clients . 157
7.3.3. Package Locks . 158

7.4. Configuration Management . 159
7.4.1. Prepare Traditional Clients for Configuration Management . 160
7.4.2. Create Configuration Channels . 160
7.4.3. Add Configuration Files, Directories, or Symbolic Links . 161
7.4.4. Subscribe Clients to Configuration Channels . 162
7.4.5. Compare Configuration Files . 162
7.4.6. Jinja templating on Salt clients . 163
7.4.7. Configuration file macros on traditional clients . 163

7.5. Power Management . 164
7.5.1. Power Management and Cobbler . 165

7.6. Configuration Snapshots. 165
7.6.1. Snapshot Tags. 166
7.6.2. Snapshots on Large Installations. 166

7.7. Custom System Information . 166
7.8. System Set Manager . 167

7.8.1. Change Base Channels in SSM. 169
7.9. System Groups . 169

7.9.1. Create Groups. 170
7.9.2. Add Clients to Groups . 170
7.9.3. Work with Groups . 171

7.10. System Types . 171
7.10.1. Change a Traditional Client to Salt Using the Web UI . 171
7.10.2. Change a Traditional Client to Salt at the Command Prompt 172

8. Operating System Installation 173
8.1. Reinstall Registered Systems. 174

8.2. Install via the Network (PXE Boot) . 175
8.2.1. Prepare the DHCP Server. 176
8.2.2. Synchronize the TFTP Tree with Proxies . 177
8.2.3. GRUB EFI binary names for different architectures. 178

8.3. Install via a CD-ROM or a USB Key . 178
8.3.1. Build an ISO Image With Cobbler . 178
8.3.2. Build a SUSE ISO Image With KIWI. 179
8.3.3. Build a Red Hat ISO Image With Cobbler . 180

8.4. Autoinstallable Distributions. 180
8.4.1. Distribution Based on an ISO Image . 180
8.4.2. Distribution Based on a RPM Package . 180
8.4.3. Declare an Autoinstallable Distribution . 181

8.5. Autoinstallation Profiles . 182
8.5.1. Declare the Profile . 182
8.5.2. AutoYaST Profiles . 183
8.5.3. Kickstart Profiles . 184
8.5.4. Templates Syntax . 185

8.6. Unattended Provisioning. 187
8.6.1. Bare Metal Provisioning . 187
8.6.2. Create a System Record Manually . 188

8.7. Use Your Own GPG Key . 189
8.7.1. Own GPG Key for PXE Boot . 189
8.7.2. Own GPG key in a CD-ROM . 190

9. Virtualization 191
9.1. Manage Virtualized Hosts. 191
9.2. Create Virtual Guests . 191
9.3. Virtualization with Xen and KVM . 192

9.3.1. Host Setup . 193
9.3.2. Autoinstallation . 193
9.3.3. Manage VM Guests . 197

10. Virtual Host Managers 198
10.1. VHM and Amazon Web Services. 198

10.1.1. Create an Amazon EC2 VHM . 198
10.1.2. AWS Permissions for Virtual Host Manager. 199

10.2. VHM and Azure. 200
10.2.1. Prerequisites . 200
10.2.2. Create an Azure VHM . 200
10.2.3. Assigning permissions . 201
10.2.4. Azure UUID. 201

10.3. VHM and Google Compute Engine . 201
10.3.1. Prerequisites . 201
10.3.2. Create a GCE VHM . 202
10.3.3. Assigning Permissions . 202
10.3.4. GCE UUID . 203

10.4. VHM and Kubernetes . 203
10.4.1. Create a Kubernetes VHM . 203
10.4.2. Retrieve Image Runtime Data. 204
10.4.3. Permissions and Certificates . 206

10.5. Virtualization with Nutanix . 207

10.5.1. VHM Setup . 207
10.6. Virtualization with VMWare . 208

10.6.1. VHM Setup . 208
10.6.2. Troubleshooting SSL Errors on VMWare. 209

10.7. Virtualization with Other Third Party Providers. 209
11. GNU Free Documentation License 212

Client Configuration Guide Overview
Updated: 2023-10-31

Registering clients is the first step after installing Uyuni, and most of the time you spend with Uyuni is
spent on maintaining those clients.

Uyuni is compatible with a range of client technologies: you can install traditional or Salt clients, running
SUSE Linux Enterprise or another Linux operating system, with a range of hardware options.

For a complete list of supported clients and features, see Client-configuration › Supported-features.

This guide discusses how to register and configure different clients, both manually and automatically.

1 / 218 | Uyuni 2023.10

Chapter 1. Supported Clients and Features
Uyuni is compatible with a range of client technologies. You can install Salt clients running SUSE Linux
Enterprise or another Linux operating system, with a range of hardware options.

This section contains summary of supported client systems. For a detailed list of features available on each
client, see the following pages.

1.1. Supported Client Systems
Supported operating systems for Salt clients are listed in this table.

The icons in this table indicate:

• clients running this operating system are supported by SUSE

• clients running this operating system are not supported by SUSE

• clients are under consideration, and may or may not be supported at a later date.

Client operating system versions and SP levels must be under general support
(normal or LTSS) to be supported with Uyuni. For details on supported product
versions, see https://www.suse.com/lifecycle.

The operating system running on a client is supported by the organization that
supplies the operating system.

Table 1. Supported Client Systems

Operating System Architecture Salt Clients

SUSE Linux Enterprise 15 x86-64, ppc64le, IBM Z, aarch64

SUSE Linux Enterprise 12 x86-64, ppc64le, IBM Z, aarch64

SUSE Linux Enterprise Server for
SAP 15

x86-64, ppc64le

SUSE Linux Enterprise Server for
SAP 12

x86-64, ppc64le

SLE Micro x86-64, ppc64le, aarch64

openSUSE Leap 15 x86-64, aarch64

Alibaba Cloud Linux 2 x86-64, aarch64

AlmaLinux 9 x86-64, aarch64

AlmaLinux 8 x86-64, aarch64, ppc64le, s390x

1.1. Supported Client Systems

2 / 218 1.1. Supported Client Systems | Uyuni 2023.10

https://www.suse.com/lifecycle

Operating System Architecture Salt Clients

Amazon Linux 2 x86-64, aarch64

CentOS 7 x86-64, ppc64le, aarch64

Debian 12 x86-64

Debian 11 x86-64

Debian 10 x86-64

Oracle Linux 9 x86-64, aarch64

Oracle Linux 8 x86-64, aarch64

Oracle Linux 7 x86-64, aarch64

Red Hat Enterprise Linux 9 x86-64

Red Hat Enterprise Linux 8 x86-64

Red Hat Enterprise Linux 7 x86-64

Rocky Linux 9 x86-64, aarch64

Rocky Linux 8 x86-64, aarch64, ppc64le, s390x

Ubuntu 22.04 amd64

Ubuntu 20.04 amd64

Ubuntu 18.04 amd64

 Debian and Ubuntu list the x86-64 architecture as amd64.

When the distibution reaches end-of-life, it enters grace period of 3 months when the support is
considered deprecated. After that period, the product is considered unsupported. Any support may only
be available on the best-effort basis.

For more information about end-of-life dates, see https://endoflife.software/operating-systems.

1.2. Supported Tools Packages
The spacewalk-utils and spacewalk-utils-extras packages can provide additional
services and features.

Table 2. Spacewalk Utilities

1.2. Supported Tools Packages

3 / 218 1.2. Supported Tools Packages | Uyuni 2023.10

https://endoflife.software/operating-systems

Tool Name Description Supported?

spacewalk-common-
channels

Add channels not provided by
SUSE Customer Center

spacewalk-hostname-
rename

Change the hostname of the
Uyuni Server

spacewalk-clone-by-
date

Clone channels by a specific date

spacewalk-sync-setup Set up ISS master and slave
organization mappings

spacewalk-manage-
channel-lifecycle

Manage channel lifecycles

1.3. Supported SUSE and openSUSE Client Features
This table lists the availability of various features on SUSE and openSUSE clients. This table covers all
variants of the SUSE Linux Enterprise operating system, including SLES, SLED, SUSE Linux Enterprise
Server for SAP, and SUSE Linux Enterprise Server for HPC.

The operating system you run on a client is supported by the organization that
supplies the operating system. SUSE Linux Enterprise is supported by SUSE.
openSUSE is supported by the SUSE community.

The icons in this table indicate:

• the feature is available on both Salt and traditional clients

• the feature is not available

• the feature is under consideration, and may or may not be made available at a later date

• Traditional the feature is supported only on traditional clients

• Salt the feature is supported only on Salt clients.

Table 3. Supported Features on SUSE and openSUSE Operating Systems

Feature SUSE Linux
Enterprise 12

SUSE Linux
Enterprise 15

openSUSE 15

Client

System packages SUSE SUSE openSUSE Community

Registration Salt

Install packages Salt

1.3. Supported SUSE and openSUSE Client Features

4 / 218 1.3. Supported SUSE and openSUSE Client Features | Uyuni 2023.10

Feature SUSE Linux
Enterprise 12

SUSE Linux
Enterprise 15

openSUSE 15

Apply patches Salt

Remote commands Salt

System package states Salt Salt Salt

System custom states Salt Salt Salt

Group custom states Salt Salt Salt

Organization custom
states

Salt Salt Salt

System set manager
(SSM)

 Salt

Product migration Salt

Basic Virtual Guest
Management

 Salt

Advanced Virtual Guest
Management

Salt Salt Salt

Virtual Guest Installation
(AutoYaST), as Host OS

Traditional Traditional

Virtual Guest Installation
(image template), as
Host OS

Salt Salt Salt

Virtual Guest
Management

Salt Salt Salt

System deployment
(PXE/AutoYaST)

System redeployment
(AutoYaST)

 Salt

Contact methods Traditional: OSAD,
RHNSD, SSH-push. Salt:
ZeroMQ, Salt-SSH

Traditional: OSAD,
RHNSD, SSH-push. Salt:
ZeroMQ, Salt-SSH

Salt: ZeroMQ, Salt-SSH

Works with Uyuni Proxy Salt

Action chains Salt

Staging (pre-download
of packages)

 Salt

1.3. Supported SUSE and openSUSE Client Features

5 / 218 1.3. Supported SUSE and openSUSE Client Features | Uyuni 2023.10

Feature SUSE Linux
Enterprise 12

SUSE Linux
Enterprise 15

openSUSE 15

Duplicate package
reporting

 Salt

CVE auditing Salt

SCAP auditing Salt

Package verification Traditional Traditional

Package locking Salt Salt Salt

System locking Traditional Traditional

Maintenance Windows

System snapshot Traditional Traditional

Configuration file
management

 Salt

Package profiles Traditional. Salt: Profiles
supported, Sync not
supported

Traditional. Salt: Profiles
supported, Sync not
supported

Salt: Profiles supported,
Sync not supported

Power management

Monitoring server Salt Salt Salt

Monitored clients Salt Salt Salt

Docker buildhost Salt Salt

Build Docker image with
OS

Salt Salt Salt

Kiwi buildhost Salt

Build Kiwi image with
OS

Salt

Recurring Actions Salt Salt Salt

AppStreams N/A N/A N/A

Yomi

 Virtual Guest Management:

In this table, virtual guest management is split into basic and advanced.

1.3. Supported SUSE and openSUSE Client Features

6 / 218 1.3. Supported SUSE and openSUSE Client Features | Uyuni 2023.10

Basic virtual guest management includes listing VMs, slow refresh, VM lifecycle actions (start, stop,
resume, pause), and modifying VM vCPU and Memory.

Advanced virtual guest management includes all features of Basic virtual guest management plus fast
refresh, VM lifecycle actions (delete, reset, power off), modifying VM disk, network, graphical display,
and graphical display configuration.

1.4. Supported SLE Micro Client Features

The operating system you run on a client is supported by the organization that
supplies the operating system. SLE Micro is supported by SUSE.

The icons in this table indicate:

• the feature is available on both Salt and traditional clients

• the feature is not available

• the feature is under consideration, and may or may not be made available at a later date

• Traditional the feature is supported only on traditional clients

• Salt the feature is supported only on Salt clients.

Table 4. Supported Features on SLE Micro Operating Systems

Feature SLE Micro 5.4 SLE Micro 5.3 SLE Micro 5.2 SLE Micro 5.1

Client Salt Salt Salt Salt

Operating system
packages

Salt Salt Salt Salt

Registration Salt Salt Salt Salt

Install packages Salt Salt Salt Salt

Apply patches
(requires CVE ID)

Salt Salt Salt Salt

Remote commands Salt Salt Salt Salt

System package
states

Salt Salt Salt Salt

System custom
states

Salt Salt Salt Salt

Group custom
states

Salt Salt Salt Salt

1.4. Supported SLE Micro Client Features

7 / 218 1.4. Supported SLE Micro Client Features | Uyuni 2023.10

Feature SLE Micro 5.4 SLE Micro 5.3 SLE Micro 5.2 SLE Micro 5.1

Organization
custom states

Salt Salt Salt Salt

System set manager
(SSM)

Salt Salt Salt Salt

Product migration Salt Salt Salt Salt

Basic Virtual Guest
Management

Salt Salt Salt Salt

Advanced Virtual
Guest Management

Salt Salt Salt Salt

Virtual Guest
Installation
(Kickstart), as Host
OS

Salt Salt Salt Salt

Virtual Guest
Installation (image
template), as Host
OS

Salt Salt Salt Salt

System deployment
(PXE/Kickstart)

Salt Salt Salt Salt

System
redeployment
(Kickstart)

Salt Salt Salt Salt

Contact methods Salt: ZeroMQ Salt: ZeroMQ Salt: ZeroMQ Salt: ZeroMQ

Works with Uyuni
Proxy

Salt Salt Salt Salt

Action chains Salt Salt Salt Salt

Staging (pre-
download of
packages)

Duplicate package
reporting

Salt Salt Salt Salt

CVE auditing
(requires CVE ID)

Salt Salt Salt Salt

SCAP auditing

1.4. Supported SLE Micro Client Features

8 / 218 1.4. Supported SLE Micro Client Features | Uyuni 2023.10

Feature SLE Micro 5.4 SLE Micro 5.3 SLE Micro 5.2 SLE Micro 5.1

Package
verification

Package locking Salt Salt Salt Salt

System locking

Maintenance
Windows

System snapshot

Configuration file
management

Salt Salt Salt Salt

Snapshots and
profiles

Salt: Profiles
supported, Sync not
supported

Salt: Profiles
supported, Sync not
supported

Salt: Profiles
supported, Sync not
supported

Salt: Profiles
supported, Sync not
supported

Power management Salt Salt Salt Salt

Monitoring server

Monitored clients

Salt Salt Salt Salt

Docker buildhost

Build Docker image
with OS

Kiwi buildhost

Build Kiwi image
with OS

Salt Salt Salt Salt

Recurring Actions Salt Salt Salt Salt

AppStreams N/A N/A N/A N/A

Yomi

 Virtual Guest Management:

In this table, virtual guest management is split into basic and advanced.

Basic virtual guest management includes listing VMs, slow refresh, VM lifecycle actions (start, stop,
resume, pause), and modifying VM vCPU and Memory.

Advanced virtual guest management includes all features of Basic virtual guest management plus fast
refresh, VM lifecycle actions (delete, reset, power off), modifying VM disk, network, graphical display,

1.4. Supported SLE Micro Client Features

9 / 218 1.4. Supported SLE Micro Client Features | Uyuni 2023.10

and graphical display configuration.

 On SLE Micro, only the Node exporter and the Blackbox exporter are available.

1.5. openSUSE Leap Micro Client Features

 openSUSE Leap Micro is supported by the SUSE community.

The icons in this table indicate:

• the feature is available on both Salt and traditional clients

• the feature is not available

• the feature is under consideration, and may or may not be made available at a later date

• Traditional the feature is supported only on traditional clients

• Salt the feature is supported only on Salt clients.

Table 5. Supported Features on openSUSE Leap Micro Operating Systems

Feature openSUSE Leap Micro

Client Salt

Operating system packages Salt

Registration Salt

Install packages Salt

Apply patches (requires CVE ID) Salt

Remote commands Salt

System package states Salt

System custom states Salt

Group custom states Salt

Organization custom states Salt

System set manager (SSM) Salt

Product migration Salt

Basic Virtual Guest Management Salt

Advanced Virtual Guest Management Salt

Virtual Guest Installation (Kickstart), as Host OS Salt

1.5. openSUSE Leap Micro Client Features

10 / 218 1.5. openSUSE Leap Micro Client Features | Uyuni 2023.10

Feature openSUSE Leap Micro

Virtual Guest Installation (image template), as Host
OS

Salt

System deployment (PXE/Kickstart) Salt

System redeployment (Kickstart) Salt

Contact methods Salt: ZeroMQ

Works with Uyuni Proxy Salt

Action chains Salt

Staging (pre-download of packages)

Duplicate package reporting Salt

CVE auditing (requires CVE ID) Salt

SCAP auditing

Package verification

Package locking Salt

System locking

Maintenance Windows

System snapshot

Configuration file management Salt

Snapshots and profiles Salt: Profiles supported, Sync not supported

Power management Salt

Monitoring server

Monitored clients Salt

Docker buildhost

Build Docker image with OS

Kiwi buildhost

Build Kiwi image with OS Salt

Recurring Actions Salt

AppStreams N/A

1.5. openSUSE Leap Micro Client Features

11 / 218 1.5. openSUSE Leap Micro Client Features | Uyuni 2023.10

Feature openSUSE Leap Micro

Yomi

 Virtual Guest Management:

In this table, virtual guest management is split into basic and advanced.

Basic virtual guest management includes listing VMs, slow refresh, VM lifecycle actions (start, stop,
resume, pause), and modifying VM vCPU and Memory.

Advanced virtual guest management includes all features of Basic virtual guest management plus fast
refresh, VM lifecycle actions (delete, reset, power off), modifying VM disk, network, graphical display,
and graphical display configuration.

1.6. Supported Alibaba Cloud Linux Features
This table lists the availability of various features on Alibaba Cloud Linux clients.

The operating system you run on a client is supported by the organization that
supplies the operating system. Alibaba Cloud Linux is supported by Alibaba
Cloud.

The icons in this table indicate:

• the feature is available on both Salt and traditional clients

• the feature is not available

• the feature is under consideration, and may or may not be made available at a later date

• Traditional the feature is supported only on traditional clients

• Salt the feature is supported only on Salt clients

Table 6. Supported Features on Alibaba Cloud Linux Operating Systems

Feature Alibaba Cloud Linux 2

Client Salt

Operating system packages Salt

Registration Salt

Install packages Salt

Apply patches (requires CVE ID) Salt

Remote commands Salt

1.6. Supported Alibaba Cloud Linux Features

12 / 218 1.6. Supported Alibaba Cloud Linux Features | Uyuni 2023.10

Feature Alibaba Cloud Linux 2

System package states Salt

System custom states Salt

Group custom states Salt

Organization custom states Salt

System set manager (SSM) Salt

Product migration N/A

Basic Virtual Guest Management

Advanced Virtual Guest Management

Virtual Guest Installation (Kickstart), as Host OS

Virtual Guest Installation (image template), as Host
OS

System deployment (PXE/Kickstart)

System redeployment (Kickstart)

Contact methods Salt: ZeroMQ, Salt-SSH

Works with Uyuni Proxy Salt

Action chains Salt

Staging (pre-download of packages) Salt

Duplicate package reporting Salt

CVE auditing (requires CVE ID) Salt

SCAP auditing Salt

Package verification

Package locking

System locking

Maintenance Windows

System snapshot

Configuration file management Salt

Snapshots and profiles Salt: Profiles supported, Sync not supported

1.6. Supported Alibaba Cloud Linux Features

13 / 218 1.6. Supported Alibaba Cloud Linux Features | Uyuni 2023.10

Feature Alibaba Cloud Linux 2

Power management

Monitoring server

Monitored clients Salt

Docker buildhost Salt

Build Docker image with OS Salt

Kiwi buildhost Salt

Build Kiwi image with OS Salt

Recurring Actions Salt

AppStreams N/A

Yomi N/A

 Virtual Guest Management:

In this table, virtual guest management is split into basic and advanced.

Basic virtual guest management includes listing VMs, slow refresh, VM lifecycle actions (start, stop,
resume, pause), and modifying VM vCPU and Memory.

Advanced virtual guest management includes all features of Basic virtual guest management plus fast
refresh, VM lifecycle actions (delete, reset, power off), modifying VM disk, network, graphical display,
and graphical display configuration.

 The traditional stack is available on Alibaba Cloud Linux but it is unsupported.

1.7. Supported AlmaLinux Features
This table lists the availability of various features on AlmaLinux clients.

The operating system you run on a client is supported by the organization that
supplies the operating system. AlmaLinux is supported by the AlmaLinux
community.

The icons in this table indicate:

• the feature is available on both Salt and traditional clients

• the feature is not available

• the feature is under consideration, and may or may not be made available at a later date

1.7. Supported AlmaLinux Features

14 / 218 1.7. Supported AlmaLinux Features | Uyuni 2023.10

• Traditional the feature is supported only on traditional clients

• Salt the feature is supported only on Salt clients.

Table 7. Supported Features on AlmaLinux Operating Systems

Feature AlmaLinux 9 AlmaLinux 8

Client Salt (plain AlmaLinux) Salt (plain AlmaLinux)

System packages AlmaLinux Community AlmaLinux Community

Registration Salt Salt

Install packages Salt Salt

Apply patches Salt Salt

Remote commands Salt Salt

System package states Salt Salt

System custom states Salt Salt

Group custom states Salt Salt

Organization custom states Salt Salt

System set manager (SSM) Salt Salt

Product migration N/A N/A

Basic Virtual Guest Management

Salt Salt

Advanced Virtual Guest
Management

Salt Salt

Virtual Guest Installation
(Kickstart), as Host OS

Virtual Guest Installation (image
template), as Host OS

Salt Salt

System deployment
(PXE/Kickstart)

Salt Salt

System redeployment (Kickstart) Salt Salt

Contact methods Salt: ZeroMQ, Salt-SSH Salt: ZeroMQ, Salt-SSH

Works with Uyuni Proxy Salt Salt

Action chains Salt Salt

1.7. Supported AlmaLinux Features

15 / 218 1.7. Supported AlmaLinux Features | Uyuni 2023.10

Feature AlmaLinux 9 AlmaLinux 8

Staging (pre-download of
packages)

Salt Salt

Duplicate package reporting Salt Salt

CVE auditing Salt Salt

SCAP auditing Salt Salt

Package verification

Package locking

System locking

Maintenance Windows

System snapshot

Configuration file management Salt Salt

Snapshots and profiles Salt: Profiles supported, Sync not
supported

Salt: Profiles supported, Sync not
supported

Power management Salt Salt

Monitoring server

Monitored clients Salt Salt

Docker buildhost

Build Docker image with OS

Kiwi buildhost

Build Kiwi image with OS

Recurring Actions Salt Salt

AppStreams

Yomi N/A N/A

 Virtual Guest Management:

In this table, virtual guest management is split into basic and advanced.

Basic virtual guest management includes listing VMs, slow refresh, VM lifecycle actions (start, stop,
resume, pause), and modifying VM vCPU and Memory.

Advanced virtual guest management includes all features of Basic virtual guest management plus fast

1.7. Supported AlmaLinux Features

16 / 218 1.7. Supported AlmaLinux Features | Uyuni 2023.10

refresh, VM lifecycle actions (delete, reset, power off), modifying VM disk, network, graphical display,
and graphical display configuration.

1.8. Supported Amazon Linux Features
This table lists the availability of various features on Amazon Linux clients.

The operating system you run on a client is supported by the organization that
supplies the operating system. Amazon Linux is supported by Amazon.

The icons in this table indicate:

• the feature is available on both Salt and traditional clients

• the feature is not available

• the feature is under consideration, and may or may not be made available at a later date

• Traditional the feature is supported only on traditional clients

• Salt the feature is supported only on Salt clients

Table 8. Supported Features on Amazon Linux Operating Systems

Feature Amazon Linux 2

Client Salt

Operating system packages Salt

Registration Salt

Install packages Salt

Apply patches (requires CVE ID) Salt

Remote commands Salt

System package states Salt

System custom states Salt

Group custom states Salt

Organization custom states Salt

System set manager (SSM) Salt

Product migration N/A

Basic Virtual Guest Management

Advanced Virtual Guest Management

1.8. Supported Amazon Linux Features

17 / 218 1.8. Supported Amazon Linux Features | Uyuni 2023.10

Feature Amazon Linux 2

Virtual Guest Installation (Kickstart), as Host OS

Virtual Guest Installation (image template), as Host
OS

System deployment (PXE/Kickstart)

System redeployment (Kickstart)

Contact methods Salt: ZeroMQ, Salt-SSH

Works with Uyuni Proxy Salt

Action chains Salt

Staging (pre-download of packages) Salt

Duplicate package reporting Salt

CVE auditing (requires CVE ID) Salt

SCAP auditing Salt

Package verification

Package locking

System locking

Maintenance Windows

System snapshot

Configuration file management Salt

Snapshots and profiles Salt: Profiles supported, Sync not supported

Power management

Monitoring server

Monitored clients Salt

Docker buildhost Salt

Build Docker image with OS Salt

Kiwi buildhost Salt

Build Kiwi image with OS Salt

Recurring Actions Salt

1.8. Supported Amazon Linux Features

18 / 218 1.8. Supported Amazon Linux Features | Uyuni 2023.10

Feature Amazon Linux 2

AppStreams N/A

Yomi N/A

 Virtual Guest Management:

In this table, virtual guest management is split into basic and advanced.

Basic virtual guest management includes listing VMs, slow refresh, VM lifecycle actions (start, stop,
resume, pause), and modifying VM vCPU and Memory.

Advanced virtual guest management includes all features of Basic virtual guest management plus fast
refresh, VM lifecycle actions (delete, reset, power off), modifying VM disk, network, graphical display,
and graphical display configuration.

 The traditional stack is available on Amazon Linux but it is unsupported.

1.9. Supported CentOS Features
This table lists the availability of various features on CentOS clients.

The operating system you run on a client is supported by the organization that
supplies the operating system. CentOS is supported by the CentOS community.

The icons in this table indicate:

• the feature is available on Salt clients

• the feature is not available

• the feature is under consideration, and may or may not be made available at a later date

• Salt the feature is supported only on Salt clients.

Table 9. Supported Features on CentOS Operating Systems

Feature CentOS 7

Client (plain CentOS)

System packages CentOS Community

Registration

Install packages

Apply patches (requires CVE ID) (third-party service required for errata)

Remote commands

1.9. Supported CentOS Features

19 / 218 1.9. Supported CentOS Features | Uyuni 2023.10

Feature CentOS 7

System package states Salt

System custom states Salt

Group custom states Salt

Organization custom states Salt

System set manager (SSM)

Product migration N/A

Basic Virtual Guest Management

Advanced Virtual Guest Management Salt

Virtual Guest Installation (Kickstart), as Host OS

Virtual Guest Installation (image template), as Host
OS

System deployment (PXE/Kickstart)

System redeployment (Kickstart)

Contact methods Salt: ZeroMQ, Salt-SSH

Works with Uyuni Proxy

Action chains

Staging (pre-download of packages)

Duplicate package reporting

CVE auditing (requires CVE ID)

SCAP auditing

Package verification

Package locking

System locking

Maintenance Windows

System snapshot

Configuration file management

Snapshots and profiles Salt: Profiles supported, Sync not supported

1.9. Supported CentOS Features

20 / 218 1.9. Supported CentOS Features | Uyuni 2023.10

Feature CentOS 7

Power management

Monitoring server

Monitored clients Salt

Docker buildhost

Build Docker image with OS

Kiwi buildhost

Build Kiwi image with OS

Recurring Actions Salt

AppStreams N/A

Yomi N/A

 Virtual Guest Management:

In this table, virtual guest management is split into basic and advanced.

Basic virtual guest management includes listing VMs, slow refresh, VM lifecycle actions (start, stop,
resume, pause), and modifying VM vCPU and Memory.

Advanced virtual guest management includes all features of Basic virtual guest management plus fast
refresh, VM lifecycle actions (delete, reset, power off), modifying VM disk, network, graphical display,
and graphical display configuration.

1.10. Supported Debian Features
This table lists the availability of various features on Debian clients.

The operating system you run on a client is supported by the organization that
supplies the operating system. Debian is supported by the Debian community.

The icons in this table indicate:

• the feature is available on both Salt and traditional clients

• the feature is not available

• the feature is under consideration, and may or may not be made available at a later date

• Traditional the feature is supported only on traditional clients

• Salt the feature is supported only on Salt clients.

1.10. Supported Debian Features

21 / 218 1.10. Supported Debian Features | Uyuni 2023.10

Table 10. Supported Features on Debian Operating Systems

Feature Debian 10 Debian 11 Debian 12

Client

System packages Debian Community Debian Community Debian Community

Registration Salt Salt Salt

Install packages Salt Salt Salt

 Apply patches

Remote commands Salt Salt Salt

System package states Salt Salt Salt

System custom states Salt Salt Salt

Group custom states Salt Salt Salt

Organization custom
states

Salt Salt Salt

System set manager
(SSM)

Salt Salt Salt

Product migration N/A N/A N/A

Basic Virtual Guest
Management

Salt Salt Salt

Advanced Virtual Guest
Management

Salt Salt Salt

Virtual Guest Installation
(Kickstart), as Host OS

Virtual Guest Installation
(image template), as
Host OS

Salt Salt Salt

System deployment
(PXE/Kickstart)

System redeployment
(Kickstart)

Contact methods Salt: ZeroMQ, Salt-SSH Salt: ZeroMQ, Salt-SSH Salt: ZeroMQ, Salt-SSH

Works with Uyuni Proxy Salt Salt Salt

Action chains Salt Salt Salt

1.10. Supported Debian Features

22 / 218 1.10. Supported Debian Features | Uyuni 2023.10

Feature Debian 10 Debian 11 Debian 12

Staging (pre-download
of packages)

Salt Salt Salt

Duplicate package
reporting

Salt Salt Salt

CVE auditing

SCAP auditing

Package verification

Package locking

System locking

Maintenance Windows

System snapshot

Configuration file
management

Salt Salt Salt

Package profiles Salt: Profiles supported,
Sync not supported

Salt: Profiles supported,
Sync not supported

Salt: Profiles supported,
Sync not supported

Power management

Monitoring server

Monitoring clients Salt Salt Salt

Docker buildhost

Build Docker image with
OS

Salt Salt Salt

Kiwi buildhost

Build Kiwi image with
OS

Recurring Actions Salt Salt Salt

AppStreams N/A N/A N/A

Yomi N/A N/A N/A

 Virtual Guest Management:

In this table, virtual guest management is split into basic and advanced.

1.10. Supported Debian Features

23 / 218 1.10. Supported Debian Features | Uyuni 2023.10

Basic virtual guest management includes listing VMs, slow refresh, VM lifecycle actions (start, stop,
resume, pause), and modifying VM vCPU and Memory.

Advanced virtual guest management includes all features of Basic virtual guest management plus fast
refresh, VM lifecycle actions (delete, reset, power off), modifying VM disk, network, graphical display,
and graphical display configuration.

1.11. Supported Oracle Features
This table lists the availability of various features on Oracle Linux clients.

The operating system you run on a client is supported by the organization that
supplies the operating system. Oracle Linux is supported by Oracle.

The icons in this table indicate:

• the feature is available on both Salt and traditional clients

• the feature is not available

• the feature is under consideration, and may or may not be made available at a later date

• Traditional the feature is supported only on traditional clients

• Salt the feature is supported only on Salt clients

Table 11. Supported Features on Oracle Linux Operating Systems

Feature Oracle Linux 7 Oracle Linux 8 Oracle Linux 9

Client Salt Salt

Operating system
packages

 Salt Salt

Registration Salt Salt

Install packages Salt Salt

Apply patches (requires
CVE ID)

 Salt Salt

Remote commands Salt Salt

System package states Salt Salt Salt

System custom states Salt Salt Salt

Group custom states Salt Salt Salt

Organization custom
states

Salt Salt Salt

1.11. Supported Oracle Features

24 / 218 1.11. Supported Oracle Features | Uyuni 2023.10

Feature Oracle Linux 7 Oracle Linux 8 Oracle Linux 9

System set manager
(SSM)

 Salt Salt

Product migration N/A N/A N/A

Basic Virtual Guest
Management

 Salt Salt

Advanced Virtual Guest
Management

Salt Salt Salt

Virtual Guest Installation
(Kickstart), as Host OS

Traditional

Virtual Guest Installation
(image template), as
Host OS

 Salt Salt

System deployment
(PXE/Kickstart)

 Salt Salt

System redeployment
(Kickstart)

 Salt Salt

Contact methods Traditional: OSAD,
RHNSD, SSH-push. Salt:
ZeroMQ, Salt-SSH

Salt: ZeroMQ, Salt-SSH Salt: ZeroMQ, Salt-SSH

Works with Uyuni Proxy Salt Salt

Action chains Salt Salt

Staging (pre-download
of packages)

 Salt Salt

Duplicate package
reporting

 Salt Salt

CVE auditing (requires
CVE ID)

 Salt Salt

SCAP auditing Salt Salt

Package verification Traditional

Package locking

System locking Traditional

Maintenance Windows

1.11. Supported Oracle Features

25 / 218 1.11. Supported Oracle Features | Uyuni 2023.10

Feature Oracle Linux 7 Oracle Linux 8 Oracle Linux 9

System snapshot Traditional

Configuration file
management

 Salt Salt

Snapshots and profiles Traditional. Salt: Profiles
supported, Sync not
supported

Salt: Profiles supported,
Sync not supported

Salt: Profiles supported,
Sync not supported

Power management Salt Salt

Monitoring server

Monitored clients Salt Salt Salt

Docker buildhost

Build Docker image with
OS

Kiwi buildhost

Build Kiwi image with
OS

Recurring Actions Salt Salt Salt

AppStreams N/A

Yomi N/A N/A N/A

 Virtual Guest Management:

In this table, virtual guest management is split into basic and advanced.

Basic virtual guest management includes listing VMs, slow refresh, VM lifecycle actions (start, stop,
resume, pause), and modifying VM vCPU and Memory.

Advanced virtual guest management includes all features of Basic virtual guest management plus fast
refresh, VM lifecycle actions (delete, reset, power off), modifying VM disk, network, graphical display,
and graphical display configuration.

1.12. Supported Red Hat Enterprise Linux Features
This table lists the availability of various features on native Red Hat Enterprise Linux clients.

1.12. Supported Red Hat Enterprise Linux Features

26 / 218 1.12. Supported Red Hat Enterprise Linux Features | Uyuni 2023.10

The operating system you run on a client is supported by the organization that
supplies the operating system. Red Hat Enterprise Linux is supported by Red
Hat.

The icons in this table indicate:

• the feature is available on Salt clients

• the feature is not available

• the feature is under consideration, and may or may not be made available at a later date

• Salt the feature is supported only on Salt clients.

Table 12. Supported Features on Red Hat Enterprise Linux Operating Systems

Feature RHEL 7 RHEL 8 RHEL 9

Client Salt Salt

System packages Red Hat Red Hat Red Hat

Registration Salt Salt

Install packages Salt Salt

Apply patches Salt Salt

Remote commands Salt Salt

System package states Salt Salt Salt

System custom states Salt Salt Salt

Group custom states Salt Salt Salt

Organization custom
states

Salt Salt Salt

System set manager
(SSM)

Salt Salt Salt

Product migration N/A N/A N/A

Basic Virtual Guest
Management

 Salt Salt

Advanced Virtual Guest
Management

Salt Salt Salt

Virtual Guest Installation
(Kickstart), as Host OS

1.12. Supported Red Hat Enterprise Linux Features

27 / 218 1.12. Supported Red Hat Enterprise Linux Features | Uyuni 2023.10

Feature RHEL 7 RHEL 8 RHEL 9

Virtual Guest Installation
(image template), as
Host OS

 Salt Salt

System deployment
(PXE/Kickstart)

 Salt Salt

System redeployment
(Kickstart)

 Salt Salt

Contact methods Salt: ZeroMQ, Salt-SSH Salt: ZeroMQ, Salt-SSH Salt: ZeroMQ, Salt-SSH

Works with Uyuni Proxy Salt Salt

Action chains Salt Salt

Staging (pre-download
of packages)

 Salt Salt

Duplicate package
reporting

 Salt Salt

CVE auditing Salt Salt

SCAP auditing Salt Salt

Package verification

Package locking

System locking

Maintenance Windows

System snapshot

Configuration file
management

 Salt Salt

Snapshots and profiles Salt: Profiles supported,
Sync not supported

Salt: Profiles supported,
Sync not supported

Salt: Profiles supported,
Sync not supported

Power management Salt Salt

Monitoring server

Monitored clients Salt Salt Salt

Docker buildhost

Build Docker image with
OS

1.12. Supported Red Hat Enterprise Linux Features

28 / 218 1.12. Supported Red Hat Enterprise Linux Features | Uyuni 2023.10

Feature RHEL 7 RHEL 8 RHEL 9

Kiwi buildhost

Build Kiwi image with
OS

Recurring Actions Salt Salt Salt

AppStreams N/A

Yomi N/A N/A N/A

 Virtual Guest Management:

In this table, virtual guest management is split into basic and advanced.

Basic virtual guest management includes listing VMs, slow refresh, VM lifecycle actions (start, stop,
resume, pause), and modifying VM vCPU and Memory.

Advanced virtual guest management includes all features of Basic virtual guest management plus fast
refresh, VM lifecycle actions (delete, reset, power off), modifying VM disk, network, graphical display,
and graphical display configuration.

1.13. Supported Rocky Linux Features
This table lists the availability of various features on Rocky Linux clients.

The operating system you run on a client is supported by the organization that
supplies the operating system. Rocky Linux is supported by the Rocky Linux
community.

The icons in this table indicate:

• the feature is available on Salt clients

• the feature is not available

• the feature is under consideration, and may or may not be made available at a later date

• Salt the feature is supported only on Salt clients.

Table 13. Supported Features on Rocky Linux Operating Systems

Feature Rocky Linux 8 Rocky Linux 9

Client Salt (plain Rocky Linux) Salt (plain Rocky Linux)

System packages Rocky Linux Community Rocky Linux Community

Registration Salt Salt

1.13. Supported Rocky Linux Features

29 / 218 1.13. Supported Rocky Linux Features | Uyuni 2023.10

Feature Rocky Linux 8 Rocky Linux 9

Install packages Salt Salt

Apply patches Salt Salt

Remote commands Salt Salt

System package states Salt Salt

System custom states Salt Salt

Group custom states Salt Salt

Organization custom states Salt Salt

System set manager (SSM) Salt Salt

Product migration N/A N/A

Basic Virtual Guest Management

Salt Salt

Advanced Virtual Guest
Management

Salt Salt

Virtual Guest Installation
(Kickstart), as Host OS

Virtual Guest Installation (image
template), as Host OS

Salt Salt

System deployment
(PXE/Kickstart)

Salt Salt

System redeployment (Kickstart) Salt Salt

Contact methods Salt: ZeroMQ, Salt-SSH Salt: ZeroMQ, Salt-SSH

Works with Uyuni Proxy Salt Salt

Action chains Salt Salt

Staging (pre-download of
packages)

Salt Salt

Duplicate package reporting Salt Salt

CVE auditing Salt Salt

SCAP auditing Salt Salt

Package verification

Package locking

1.13. Supported Rocky Linux Features

30 / 218 1.13. Supported Rocky Linux Features | Uyuni 2023.10

Feature Rocky Linux 8 Rocky Linux 9

System locking

Maintenance Windows

System snapshot

Configuration file management Salt Salt

Snapshots and profiles Salt: Profiles supported, Sync not
supported

Salt: Profiles supported, Sync not
supported

Power management Salt Salt

Monitoring server

Monitored clients Salt Salt

Docker buildhost

Build Docker image with OS

Kiwi buildhost

Build Kiwi image with OS

Recurring Actions Salt Salt

AppStreams

Yomi N/A N/A

 Virtual Guest Management:

In this table, virtual guest management is split into basic and advanced.

Basic virtual guest management includes listing VMs, slow refresh, VM lifecycle actions (start, stop,
resume, pause), and modifying VM vCPU and Memory.

Advanced virtual guest management includes all features of Basic virtual guest management plus fast
refresh, VM lifecycle actions (delete, reset, power off), modifying VM disk, network, graphical display,
and graphical display configuration.

1.14. Supported Ubuntu Features
This table lists the availability of various features on Ubuntu clients.

The operating system you run on a client is supported by the organization that
supplies the operating system. Ubuntu is supported by Canonical.

1.14. Supported Ubuntu Features

31 / 218 1.14. Supported Ubuntu Features | Uyuni 2023.10

The icons in this table indicate:

• the feature is available on both Salt and traditional clients

• the feature is not available

• the feature is under consideration, and may or may not be made available at a later date

• Traditional the feature is supported only on traditional clients

• Salt the feature is supported only on Salt clients.

Table 14. Supported Features on Ubuntu Operating Systems

Feature Ubuntu 18.04 Ubuntu 20.04 Ubuntu 22.04

Client

System packages Canonical Canonical Canonical

Registration Salt Salt Salt

Install packages Salt Salt Salt

Apply patches

Remote commands Salt Salt Salt

System package states Salt Salt Salt

System custom states Salt Salt Salt

Group custom states Salt Salt Salt

Organization custom
states

Salt Salt Salt

System set manager
(SSM)

Salt Salt Salt

Product migration N/A N/A N/A

Basic Virtual Guest
Management

Salt Salt Salt

Advanced Virtual Guest
Management

Salt Salt Salt

Virtual Guest Installation
(Kickstart), as Host OS

Virtual Guest Installation
(image template), as
Host OS

Salt Salt Salt

1.14. Supported Ubuntu Features

32 / 218 1.14. Supported Ubuntu Features | Uyuni 2023.10

Feature Ubuntu 18.04 Ubuntu 20.04 Ubuntu 22.04

System deployment
(PXE/Kickstart)

System redeployment
(Kickstart)

Contact methods Salt: ZeroMQ, Salt-SSH Salt: ZeroMQ, Salt-SSH Salt: ZeroMQ, Salt-SSH

Works with Uyuni Proxy Salt Salt Salt

Action chains Salt Salt Salt

Staging (pre-download
of packages)

Salt Salt Salt

Duplicate package
reporting

Salt Salt Salt

CVE auditing

SCAP auditing

Package verification

Package locking

System locking

System snapshot

Configuration file
management

Salt Salt Salt

Package profiles Salt: Profiles supported,
Sync not supported

Salt: Profiles supported,
Sync not supported

Salt: Profiles supported,
Sync not supported

Power management

Monitoring Salt Salt Salt

Docker buildhost

Build Docker image with
OS

Salt Salt Salt

Kiwi buildhost

Build Kiwi image with
OS

Recurring Actions Salt Salt Salt

1.14. Supported Ubuntu Features

33 / 218 1.14. Supported Ubuntu Features | Uyuni 2023.10

Feature Ubuntu 18.04 Ubuntu 20.04 Ubuntu 22.04

AppStreams N/A N/A N/A

Yomi N/A N/A N/A

 Virtual Guest Management:

In this table, virtual guest management is split into basic and advanced.

Basic virtual guest management includes listing VMs, slow refresh, VM lifecycle actions (start, stop,
resume, pause), and modifying VM vCPU and Memory.

Advanced virtual guest management includes all features of Basic virtual guest management plus fast
refresh, VM lifecycle actions (delete, reset, power off), modifying VM disk, network, graphical display,
and graphical display configuration.

1.14. Supported Ubuntu Features

34 / 218 1.14. Supported Ubuntu Features | Uyuni 2023.10

Chapter 2. Configuration Basics
Uyuni requires a number of steps to prepare the environment for clients registration before a wide range
of its operations can be utilized.

This section contains summary of the initial configuration steps that are necessary to support environment
operations following successful Uyuni installation and setting up.

• For more information about installing Uyuni, see Installation-and-upgrade › Install-uyuni.

• For more information about setting up Uyuni, see Installation-and-upgrade › Uyuni-server-
setup.

2.1. Software Channels
Channels are a method of grouping software packages. Software packages are provided by repositories,
and repositories are associated with channels. Subscribing a client to a software channel allows the client
to install and update any of the software associated with it.

In Uyuni, channels are divided into base channels and child channels. Organizing channels in this way
ensures that only compatible packages are installed on each system. A client must be subscribed to only
one base channel, assigned during registration based on the client operating system and architecture. For
paid channels provided by a vendor, you must have an associated subscription.

A base channel consists of packages built for a specific operating system type, version, and architecture.
For example, the SUSE Linux Enterprise Server 15 x86-64 base channel contains only software
compatible with that operating system and architecture.

A child channel is associated with a base channel and provides only packages that are compatible with the
base channel. A system can be subscribed to multiple child channels of its base channel. When a system
has been assigned to a base channel, it is only possible for that system to install the related child channels.
For example, if a system has been assigned to the SUSE Linux Enterprise Server 15 x86_64 base
channel, they can only install or update packages made available through the compatible base channel, or
any of its associated child channels.

In the Uyuni Web UI you can browse your available channels by navigating to Software › Channel List ›
All. You can modify or create new channels by navigating to Software › Manage › Channels.

For more on using channels, including custom channels, see Administration › Channel-management.

2.1.1. Packages Provided by SUSE Package Hub

SUSE Package Hub is an extension to SUSE Linux Enterprise products that provides additional open
source software provided by the openSUSE community.

The packages in SUSE Package Hub are provided by the openSUSE community.
They are not supported by SUSE.

2.1. Software Channels

35 / 218 2.1. Software Channels | Uyuni 2023.10

If you are using SUSE Linux Enterprise operating systems on your clients, you can enable the SUSE
Package Hub extension to access these additional packages. This provides the SUSE Package Hub
channels, which you can subscribe your clients to.

SUSE Package Hub provides a large number of packages, which can take a long time to synchronize and
consume a large amount of disk space. Do not enable SUSE Package Hub unless you require the packages
it provides.

To avoid unintentionally installing or updating unsupported packages, we recommend that you implement
a content lifecycle management strategy that initially denies all SUSE Package Hub packages. You can
then explicitly enable the specific packages you require. For more information about content lifecycle
management, see Administration › Content-lifecycle.

2.1.2. Packages Provided by AppStream

For Red Hat based clients, additional packages are available through AppStream. In most cases, the
AppStream packages are required to ensure that you have all the software you need.

When you are managing AppStream packages in the Uyuni Web UI, you might notice that you see
contradicting suggestions for package updates. This is due to the Uyuni not being able to interpret the
modular metadata correctly. You can use the content lifecycle management (CLM) AppStream filter to
transform AppStream repositories into non-modular repositories for use with some upgrade operations.
For more information about the CLM AppStream filters, see Administration › Content-lifecycle-
examples.

2.1.3. Packages Provided by EPEL

For Red Hat based clients, additional packages are available through EPEL (extra packages for enterprise
Linux). EPEL is an optional package repository that provides additional software.

The packages in EPEL are provided by the Fedora community. They are not
supported by SUSE.

If you are using Red Hat operating systems on your clients, you can enable the EPEL extension to access
these additional packages. This provides the EPEL channels, which you can subscribe your clients to.

EPEL provides a large number of packages, which can take a long time to synchronize and consume a
large amount of disk space. Do not enable the EPEL repositories unless you require the packages it
provides.

To avoid unintentionally installing or updating unsupported packages, we recommended that you
implement a content lifecycle management (CLM) strategy that initially denies all EPEL packages. You
can then explicitly enable the specific packages you require. For more information about content lifecycle
management, see Administration › Content-lifecycle.

2.1. Software Channels

36 / 218 2.1. Software Channels | Uyuni 2023.10

2.1.4. Unified Installer Updates Channels on SUSE Linux Enterprise Clients

This channel is used by the Unified Installer to ensure it is up to date before it installs the operating
system. All SUSE Linux Enterprise products should have access to the installer updates channel during
installation.

For SUSE Linux Enterprise Server clients the installer updates channel is synchronized by default when
you add a product that contains them, and are enabled when you create an autoinstallable distribution with
these product channels.

For all other SUSE Linux Enterprise variants, including SUSE Linux Enterprise for SAP, you must add
the installer updates channel manually. To do this, clone the appropriate SUSE Linux Enterprise Server
installer updates channel below the base channel of these SUSE Linux Enterprise variants. When creating
an autoinstallable distribution for these SUSE Linux Enterprise variants after the channel was cloned, it is
used automatically.

2.1.5. Software Repositories

Repositories are used to collect software packages. When you have access to a software repository, you
can install any of the software that the repository provides. You must have at least one repository
associated with your software channels in Uyuni to assign clients to the channel and install and update
packages on the client.

Most default channels in Uyuni are already associated with the correct repositories. If you are creating
custom channels, you need to associate a repository that you have access to, or that you have created
yourself.

For more information about custom repositories and channels, see Administration › Custom-channels.

2.1.5.1. Local Repository Locations

You can configure local repositories on Salt clients, to provide packages that are not supplied by Uyuni
channels.

In most cases, client systems do not require local repositories. Local repositories
can lead to problems knowing which packages are available on the client. This
can lead to installing unexpected packages.

Local repositories are disabled during onboarding.

For Salt clients, local repositories will be disabled each time a channel state is executed. For example,
when applying the highstate or performing a package action.

If local repositories should stay enabled after onboarding the following pillar must be set for the affected
Salt client:

Edit the /srv/pillar/top.sls file:

2.1. Software Channels

37 / 218 2.1. Software Channels | Uyuni 2023.10

base:
 'minionid':
 - localrepos

Edit the /srv/pillar/localrepos.sls file:

mgr_disable_local_repos: False

After a client has completed onboarding, you can add local repositories to these locations:

Table 15. Local Repository Locations

Client Operating System Local Repository Directory

SUSE Linux Enterprise Server /etc/zypp/repos.d

openSUSE /etc/zypp/repos.d

Red Hat Enterprise Linux and similar derivatives /etc/yum.repos.d/

Ubuntu /etc/apt/sources.list.d/

Debian /etc/apt/sources.list.d/

2.1.6. Software Products

In Uyuni, software is made available in products. Your SUSE subscription allows you to access a range of
different products, which you can browse and select in the Uyuni Web UI by navigating to Admin ›
Setup Wizard › Products.

Products contain any number of software channels. Click the Show product’s channels icon to
see the channels included in the product. When you have added a product and synchronized successfully,
you have access to the channels provided by the product, and can use the packages in the product on your
Uyuni Server and clients.

Procedure: Adding Software Channels

1. In the Uyuni Web UI, navigate to Admin › Setup Wizard › Products.

2. Locate the appropriate products for your client operating system and architecture using the search
bar, and check the appropriate product. This will automatically check all mandatory channels. Also
all recommended channels are checked as long as the include recommended toggle is turned
on. Click the arrow to see the complete list of related products, and ensure that any extra products
you require are checked.

3. Click [Add Products] and wait until the products have finished synchronizing.

For more information, see Installation-and-upgrade › Setup-wizard.

2.1. Software Channels

38 / 218 2.1. Software Channels | Uyuni 2023.10

2.2. Bootstrap Repository
A bootstrap repository contains required packages for registering Salt or traditional clients during
bootstrapping, as well as packages for installing Salt on clients. When products are synchronized,
bootstrap repositories are automatically created and regenerated on the Uyuni Server.

2.2.1. Prepare to Create a Bootstrap Repository

When you select a product for synchronization, the bootstrap repository is automatically created as soon
as all mandatory channels are fully mirrored.

Procedure: Checking Synchronization Progress from the Web UI

1. In the Uyuni Web UI, navigate to Software › Manage › Channels, then click the channel
associated to the repository.

2. Navigate to the Repositories tab, then click Sync and check Sync Status.

Procedure: Checking Synchronization Progress from the Command Prompt

1. At the command prompt on the Uyuni Server, as root, use the tail command to check the
synchronization log file:

tail -f /var/log/rhn/reposync/<channel-label>.log

2. Each child channel generates its own log during the synchronization progress. You need to check
all the base and child channel log files to be sure that the synchronization is complete.

2.2.2. Options for Automatic Mode

You can change how the automated bootstrap repository creation works. This section details the various
settings.

Flush Mode::

Flush Mode

By default, existing repositories are updated only with the latest packages. You can configure it to
always start with an empty repository instead. To enable this behavior, add or edit this value in
/etc/rhn/rhn.conf:

server.susemanager.bootstrap_repo_flush = 1

Automatic Mode::

Automatic Mode

By default, automated regeneration of the bootstrap repositories is enabled. To disable it, add or edit
this value in /etc/rhn/rhn.conf:

2.2. Bootstrap Repository

39 / 218 2.2. Bootstrap Repository | Uyuni 2023.10

server.susemanager.auto_generate_bootstrap_repo = 0

2.2.2.1. Configure Bootstrap Data File

The tool uses a data file with information about which packages are required for each distribution. The
data file is stored at /usr/share/susemanager/mgr_bootstrap_data.py. SUSE updates
this file regularly. If you want to makes changes to this file, do not edit it directly. Instead, create a copy in
the same directory and edit your copy:

cd /usr/share/susemanager/
cp mgr_bootstrap_data.py my_data.py

When you have made your changes, configure Uyuni to use the new file. Add or edit this value in
/etc/rhn/rhn.conf:

server.susemanager.bootstrap_repo_datamodule = my_data

On the next update, the new data from SUSE overwrites the original data file,
not the new one. You need to keep the new file up to date with changes provided
by SUSE.

2.2.3. Manually Generate a Bootstrap Repository

By default, bootstrap repositories are regenerated daily. You can manually create the bootstrap repository
from the command prompt.

Procedure: Generating the Bootstrap Repository for SUSE Linux Enterprise

1. At the command prompt on the Uyuni Server, as root, list the available distributions to create
bootstrap repositories for:

mgr-create-bootstrap-repo -l

2. Create the bootstrap repository, using the appropriate repository name as the product label:

mgr-create-bootstrap-repo -c SLE-version-x86_64

3. Alternatively, use the number shown next to the distribiution name in the list of available
distributions.

The client repository is located in /srv/www/htdocs/pub/repositories/.

If you have mirrored more than one product (for example, SLES and SLES for SAP), or if you use
custom channels, you might need to specify the parent channel to use when creating the bootstrap

2.2. Bootstrap Repository

40 / 218 2.2. Bootstrap Repository | Uyuni 2023.10

repository. This is not required in every situation. For example, some SLES 15 versions have common
code bases, so there is no need to specify a parent channel. Use this procedure only if your environment
requires it.

OPTIONAL Procedure: Specifying a Parent Channel for a Bootstrap Repository

1. Check which parent channels you have available:

mgr-create-bootstrap-repo -c SLE-15-x86_64
Multiple options for parent channel found. Please use option
--with-parent-channel <label> and choose one of:
- sle-product-sles15-pool-x86_64
- sle-product-sles_sap15-pool-x86_64
- sle-product-sled15-pool-x86_64

2. Specify the appropriate parent channel:

mgr-create-bootstrap-repo -c SLE-15-x86_64 --with-parent-channel sle-
product-sled15-pool-x86_64

2.2.3.1. Repositories with Multiple Architectures

If you are creating bootstrap repositories that include multiple different architectures, you need to be
careful that all architectures are updated correctly. For example, the x86-64 and IBM Z architectures for
SLE use the same bootstrap repository URL at
/srv/www/htdocs/pub/repositories/sle/15/2/bootstrap/.

When the flush option is enabled, and you attempt to generate the bootstrap repository for multiple
architectures, only one architecture is generated. To avoid this, use the --no-flush option at the
command prompt when creating additional architectures. For example:

mgr-create-bootstrap-repo -c SLE-15-SP2-x86_64
mgr-create-bootstrap-repo --no-flush -c SLE-15-SP2-s390x

2.2.4. Bootstrap and Custom Channels

If you are using custom channels, you can use the --with-custom-channels option with the
mgr-create-bootstrap-repo command. In this case, you also need to specify the parent channel
to use.

Automatic creation of a bootstrap repository might fail if you are using custom channels. In this case, you
need to create the repository manually.

For more information about custom channels, see Administration › Custom-channels.

2.2. Bootstrap Repository

41 / 218 2.2. Bootstrap Repository | Uyuni 2023.10

2.3. Activation Keys
Activation keys are used with traditional and Salt clients to ensure that your clients have the correct
software entitlements, are connecting to the appropriate channels, and are subscribed to the relevant
groups. Each activation key is bound to an organization, which you can set when you create the key.

In Uyuni, an activation key is a group of configuration settings with a label. You can apply all
configuration settings associated with an activation key by adding its label as a parameter to a bootstrap
script. We recommend you use an activation key label in combination with a bootstrap script. When the
bootstrap script is executed all configuration settings associated with the label are applied to the system
the script is run on.

An activation key can specify:

• Channel assignment

• System types or add-on entitlements

• Contact method

• Configuration files

• Packages to be installed

• System group assignment

Activation keys are used at the time a client is registered, and not used again. After the client has been
registered, the client can be changed in any way, regardless of what the activation key specifies. The
association between the activation key and the client is recorded only for historical purposes.

2.3. Activation Keys

42 / 218 2.3. Activation Keys | Uyuni 2023.10

Procedure: Creating an Activation Key

1. In the Uyuni Web UI, as an administrator, navigate to Systems › Activation Keys.

2. Click the [Create Key] button.

3. On the Activation Key Details page, in the Description field, enter a description of
the activation key.

4. In the Key field, enter a name for the activation key. For example, SLES15-SP4 for SUSE Linux
Enterprise Server 15 SP4.

◦ Do not use commas or double quotes in the Key field for any
SUSE products. However, you must use commas for Red Hat
Products.

◦ All other characters are allowed, but <> (){} (this includes the
space) are removed automatically.

◦ If the field is left empty, a random string is generated.

5. In the Base Channels drop-down box, select the appropriate base software channel, and allow
the relevant child channels to populate. For more information, see reference:admin/setup-
wizard.pdf and Administration › Custom-channels.

6. Select the child channels you need (for example, the mandatory SUSE Manager tools and updates
channels).

7. Check the Add-On System Types check box if you need to enable any of the options.

8. We recommend you leave the Contact Method set to Default.

9. We recommend you leave the Universal Default setting unchecked.

10. Click [Create Activation Key] to create the activation key.

11. Check the Configuration File Deployment check box to enable configuration
management for this key, and click [Update Activation Key] to save this change.

The Configuration File Deployment check box does not
appear until after you have created the activation key. Ensure you go back
and check the box if you need to enable configuration management.

2.3.1. Combining Multiple Activation Keys

You can combine activation keys when executing the bootstrap script on your traditional clients.
Combining keys allows for more control on what is installed on your systems and reduces duplication of
keys for large or complex environments.

Combining activation keys works only on traditional clients. Salt clients do not
support combined activation keys. If you use a combined key with a Salt client,
only the first key is used.

2.3. Activation Keys

43 / 218 2.3. Activation Keys | Uyuni 2023.10

reference:admin/setup-wizard.pdf#vle.webui.admin.wizard.products
reference:admin/setup-wizard.pdf#vle.webui.admin.wizard.products

You can specify multiple activation keys at the command prompt, or in a single autoinstallation profile.

At the command prompt on the Uyuni Server, use the rhnreg_ks command, and separate the key
names with a comma. To specify multiple keys in a Kickstart profile, navigate to Systems ›
Autoinstallation and edit the profile you want to use.

Be careful when combining activation keys, as conflicts between some values could cause client
registration to fail. Check that these values do not have conflicting information before you begin:

• Software packages

• Software child channels

• Configuration channels.

If conflicts are detected, they are handled like this:

• Conflicts in base software channels: registration fails.

• Conflicts in system types: registration fails.

• Conflicts in the enable configuration flag: configuration management is enabled.

• If one key is system-specific: registration fails.

2.3.2. Reactivation Keys

Reactivation keys can be used once only to re-register a client and regain all Uyuni settings. Reactivation
keys are client-specific, and include the system ID, history, groups, and channels.

To create a reactivation key, navigate to Systems, click the client to create a reactivation key for, and
navigate to the Details › Reactivation tab. Click [Generate New Key] to create the reactivation
key. Record the details of the key for later use. Unlike typical activation keys, which are not associated
with a specific system ID, keys created here do not show up on the Systems › Activation Keys page.

For Salt clients, after you have created a reactivation key, you can use it as the management_key grain
in /etc/salt/minion.d/susemanager.conf. For example:

grains:
 susemanager:
 management_key: "re-1-daf44db90c0853edbb5db03f2b37986e"

Restart the salt-minion process to apply the reactivation key.

You can use a reactivation key with a bootstrap script. For more information about bootstrap scripts, see
Client-configuration › Registration-bootstrap.

For traditional clients, after you have created a reactivation key, you can use it with the rhnreg_ks
command line utility. This command re-registers the client and restore its Uyuni settings. On traditional
clients, you can combine reactivation keys with activation keys to aggregate the settings of multiple keys

2.3. Activation Keys

44 / 218 2.3. Activation Keys | Uyuni 2023.10

for a single system profile. For example:

rhnreg_ks --server=<server-url>/XMLRPC \
 --activationkey=<reactivation-key>,<activationkey> \
 --force

If you autoinstall a client with its existing Uyuni profile, the profile uses the
reactivation key to re-register the system and restore its settings. Do not
regenerate, delete, or use this key while a profile-based autoinstallation is in
progress. Doing so causes the autoinstallation to fail.

2.3.3. Activation Key Best Practices
Default Parent Channel

Avoid using the SUSE Manager Default parent channel. This setting forces Uyuni to choose a
parent channel that best corresponds to the installed operating system, which can sometimes lead to
unexpected behavior. Instead, we recommend you create activation keys specific to each distribution and
architecture.

Bootstrapping with Activation Keys

If you are using bootstrap scripts, consider creating an activation key for each script. This helps you align
channel assignments, package installation, system group memberships, and configuration channel
assignments. You also need less manual interaction with your system after registration.

Bootstrapping LTSS clients

If you are boostrapping clients with LTSS subscription, include the LTSS channels during activation key
creation.

Bandwidth Requirements

Using activation keys might result in automatic downloading of software at registration time, which might
not be desirable in environments where bandwidth is constrained.

These options create bandwidth usage:

• Assigning a SUSE Product Pool channel results in the automatic installation of the corresponding
product descriptor package.

• Any package in the Packages section is installed.

• Any Salt state from the Configuration section might trigger downloads depending on its
contents.

Key Label Naming

If you do not enter a human-readable name for your activation keys, the system automatically generates a
number string, which can make it difficult to manage your keys.

Consider a naming scheme for your activation keys to help you keep track of them. Creating names which

2.3. Activation Keys

45 / 218 2.3. Activation Keys | Uyuni 2023.10

are associated with your organization’s infrastructure makes it easier for you when performing more
complex operations.

When creating key labels, consider these tips:

• OS naming (mandatory): Keys should always refer to the OS they provide settings for

• Architecture naming (recommended): Unless your company is running on one architecture only,
for example x86_64, then providing labels with an architecture type is a good idea.

• Server type naming: What is this server being used for?

• Location naming: Where is the server located? Room, building, or department?

• Date naming: Maintenance windows, quarter, etc.

• Custom naming: What naming scheme suits your organizations needs?

Example activation key label names:

sles15-sp4-web_server-room_129-x86_64

sles15-sp4-test_packages-blg_502-room_21-ppc64le

Included Channels

When creating activation keys you also need to keep in mind which software channels are associated with
it. Keys should have a specific base channel assigned to them. Using the default base channel is not
recommended. For more information, see the client operating system you are installing at Client-
configuration › Registration-overview.

2.4. GPG Keys
Clients use GPG keys to check the authenticity of software packages before they are installed. Only
trusted software can be installed on clients.

In most cases, you do not need to adjust the GPG settings to be able to install software on your clients.

RPM packages can be signed directly, while Debian based systems sign only the metadata and use a chain
of checksums to secure the packages. Most RPM based systems use signed metadata in addition to signed
packages.

2.4.1. Trust GPG Keys on Clients

Operating systems either trust their own GPG keys directly or at least ship them installed with the minimal
system. But third party packages signed by a different GPG key need manual handling. The clients can be
successfully bootstrapped without the GPG key being trusted. However, you cannot install new client tool
packages or update them until the keys are trusted.

2.4. GPG Keys

46 / 218 2.4. GPG Keys | Uyuni 2023.10

Salt clients now use GPG key information entered for a software channel to manage the trusted keys.
When a software channel with GPG key information is assigned to a client, the key is trusted when the
channel is refreshed or the first package is installed from this channel.

The GPG key URL parameter in the software channel page can contain multiple key URLs separated by
"whitespace". In case it is a file URL, the GPG key file must be deployed on the client before the
software channel is used.

The GPG keys for the Client Tools Channels of Red Hat based clients are deployed on the client into
/etc/pki/rpm-gpg/ and can be referenced with file URLs.

Only in case a software channel is assigned to the client they will be imported and trusted by the system.

Because Debian based systems sign only metadata, there is no need to specify
extra keys for single channels. If a user configures an own GPG key to sign the
metadata as described in "Use Your Own GPG Key" in Administration ›
Repo-metadata the deployment and trust of that key is executed automatically.

2.4.1.1. User defined GPG keys

Users can define custom GPG keys to be deployed to a client.

By providing some pillar data and providing the GPG key files in the Salt filesystem, they are
automatically deployed to the client.

These keys are deployed into /etc/pki/rpm-gpg/ on RPM based operating systems and to
/usr/share/keyrings/ on Debian systems:

Define the pillar key [literalcustom_gpgkeys for the client you want to deploy the key to and list the
names of the key file.

cat /srv/pillar/mypillar.sls
custom_gpgkeys:
 - my_first_gpg.key
 - my_second_gpgkey.gpg

Additionally in the Salt filesystem create a directory named gpg and store there the GPG key files with
the name specified in the custom_gpgkeys pillar data.

ls -la /srv/salt/gpg/
/srv/salt/gpg/my_first_gpg.key
/srv/salt/gpg/my_second_gpgkey.gpg

The keys are deployed to the client at /etc/pki/rpm-gpg/my_first_gpg.key and
/etc/pki/rpm-gpg/my_second_gpgkey.gpg.

The last step is to add the URL to the GPG key URL field of the software channel. Navigate to Software

2.4. GPG Keys

47 / 218 2.4. GPG Keys | Uyuni 2023.10

› Manage › Channels and select the channel you want to modify. Add to GPG key URL the value
file:///etc/pki/rpm-gpg/my_first_gpg.key.

2.4.1.2. GPG Keys in Bootstrap Scripts

Procedure: Trusting GPG Keys on Clients Using a Bootstrap Script

1. On the Uyuni Server, at the command prompt, check the contents of the
/srv/www/htdocs/pub/ directory. This directory contains all available public keys. Take a
note of the key that applies to the channel assigned to the client you are registering.

2. Open the relevant bootstrap script, locate the ORG_GPG_KEY= parameter and add the required
key. For example:

uyuni-gpg-pubkey-0d20833e.key

You do not need to delete any previously stored keys.

Trusting a GPG key is important for security on clients. It is the task of the
administrator to decide which keys are needed and can be trusted. A software
channel cannot be assigned to a client when the GPG key is not trusted.

2.4. GPG Keys

48 / 218 2.4. GPG Keys | Uyuni 2023.10

file:///etc/pki/rpm-gpg/my_first_gpg.key

Chapter 3. Client Management Methods
There are a number of ways that the Uyuni Server can communicate with clients. Which one you use
depends on the type of client, and your network architecture:

Salt

is the default choice and recommended unless there are specific needs. For more information, see
contact-methods-salt.pdf.

Salt SSH

is useful only if network restrictions make it impossible for clients to establish contact to the server.
This contact method has serious limitations. For more information, see contact-methods-saltssh.pdf.

3.1. Contact Methods for Salt Clients
The Salt contact method is the default choice and recommended unless there are specific needs. For more
information about Salt in general, see Specialized-guides › Salt.

The Salt Contact Method is the best scaling method. All new Uyuni features are supported and it has the
widest variety of supported operating systems. All new operating systems are always supported with this
contact method.

Software updates are generally pushed from the server to the client. Connections are initiated from the
client. This means you must open ports on the server, not on clients. The Salt clients are also known as
Salt minions. Uyuni Server installs a daemon on every client.

If you need to use Salt clients in a disconnected setup you can configure Push via Salt SSH as a contact
method. With this contact method, clients can be located in a firewall-protected zone called a DMZ. For
more information about Push via Salt SSH, see Client-configuration › Contact-methods-saltssh.

3.1.1. Onboarding Details

Salt has its own database to keep the keys for the minions. This needs to be kept in sync with the Uyuni
database. As soon as the key is accepted in Salt, the onboarding process in Uyuni starts. The onboarding
process will look for existing systems in the Uyuni database by searching for the minion_id and the
machine-id. If nothing is found, the new system gets created. In case an entry with the minion_id
or the machine-id is found, that system will be migrated to match the new system. In case there is a
match for both entries, and they are not the same system, the onboarding will be aborted with an error. In
this case the administrator needs to resolve the conflict by removing at least on of the systems.

3.1.2. Push via Salt SSH

Push via Salt SSH is used in environments where Salt clients cannot reach the Uyuni Server directly. In
this environment, clients are located in a firewall-protected zone called a DMZ. No system within the
DMZ is authorized to open a connection to the internal network where the Uyuni Server is located.

3.1. Contact Methods for Salt Clients

49 / 218 3.1. Contact Methods for Salt Clients | Uyuni 2023.10

contact-methods-salt.pdf
contact-methods-saltssh.pdf

Push via Salt SSH is also to use if installing a daemon agent on clients is not possible.

The Push via Salt SSH method has serious limitations. It does not scale well, and
consumes more Server resources and network bandwidth than the plain Salt
method. The Push via Salt SSH method is not at all supported with large setups
(1000 clients and more).

The Push via Salt SSH method creates an encrypted tunnel from the Uyuni Server on the internal network
to the clients located in the DMZ. After all actions such as updates and events are pushed and executed,
the tunnel is closed.

The server uses the Salt SSH to contact the clients at regular intervals, checking in and performing
scheduled actions and events.

This image demonstrates the Push via Salt SSH process path. All items left of the Taskomatic block
represent processes running on the Uyuni client.

To use Push via Salt SSH, you must have the SSH daemon running on the client, and reachable by the
salt-api daemon running on the Uyuni Server. Additionally, the required Python version will be
installed with the salt-bundle on the remote system.

Red Hat Enterprise Linux 5, CentOS 5, and earlier are not supported, as they use
unsupported versions of Python.

Procedure: Registering Clients with Push via Salt SSH

1. In the Uyuni Web UI, navigate to Systems › Bootstrapping and complete the appropriate fields.

2. Select an activation key with the Push via SSH contact method configured. For more information
about activation keys, see Client-configuration › Activation-keys.

3.1. Contact Methods for Salt Clients

50 / 218 3.1. Contact Methods for Salt Clients | Uyuni 2023.10

3. Check the Manage system completely via SSH checkbox.

4. Click [Bootstrap] to begin registration.

5. Confirm that the system has been registered correctly by navigating to Systems › Overview.

3.1.2.1. Available Parameters

When you are configuring Push via Salt SSH, you can modify parameters that are used when a system is
registered, including the host, activation key, and password. The password is used only for bootstrapping,
it is not saved anywhere. All future SSH sessions are authorized via a key/certificate pair. These
parameters are configured in Systems › Bootstrapping.

You can also configure persistent parameters that are used system-wide, including the sudo user. For more
information on configuring the sudo user, see Client-configuration › Contact-methods-pushssh.

3.1.2.2. Action Execution

The Push via Salt SSH feature uses taskomatic to execute scheduled actions using salt-ssh. The
taskomatic job periodically checks for scheduled actions and executes them. Unlike Push via SSH on
traditional clients, the Push via Salt SSH feature executes a complete salt-ssh call based on the
scheduled action.

By default, twenty Salt SSH actions can be executed at a time. You can increase the number of actions
that can be executed in parallel, by adding these lines to your configuration file, and adjusting the value of
parallel_threads upwards. We recommend you keep the number of parallel actions low, to avoid
problems:

taskomatic.com.redhat.rhn.taskomatic.task.SSHMinionActionExecutor.parallel_th
reads = <number>
org.quartz.threadPool.threadCount = <value of parallel_threads + 20>

This adjusts the number of actions that can run in parallel on any one client and the total number of
worker threads used by taskomatic. If actions needs to be run on multiple clients, actions are always
executed sequentially on each client.

If the clients are connected through a proxy, you need to adjust the MaxSessions settings on the proxy.
In this case, set the number of parallel connections to be three times the total number of clients.

3.1.2.3. Future Features

There are some features that are not yet supported on Push via Salt SSH. These features do not work on
Salt SSH clients:

• OpenSCAP auditing

• Beacons, resulting in:

◦ Installing a package on a system using zypper does not invoke the package refresh.

3.1. Contact Methods for Salt Clients

51 / 218 3.1. Contact Methods for Salt Clients | Uyuni 2023.10

◦ Virtual Host functions (for example, a host to guests) does not work if the virtual host
system is Salt SSH-based.

For more information about Salt SSH, see Specialized-guides › Salt and https://docs.saltstack.com/en/
latest/topics/ssh/.

3.1.3. Salt Bundle

3.1.3.1. What is Salt Bundle?

The Salt Bundle is a single binary package containing Salt Minion, Python 3, required Python modules,
and libraries.

The Salt Bundle is shipped with Python 3 and all the requirements for Salt to run. Thus Salt Bundle does
not use the Python version install on the client as system software. The Salt Bundle can be installed on
clients that do not meet the requirements for a given Salt version.

It is also possible to use the Salt Bundle on systems that run a Salt Minion connected to a Salt Master
other than the Uyuni Salt Master.

3.1.3.2. Client Registration with Salt Bundle as a Minion

The registration method with the Salt Bundle is the recommended registration method. This section
explains the advantages and limitations of the current implementation. The Salt Bundle is provided as the
venv-salt-minion that consists of Salt, Python 3, and the Python modules Salt depends on.
Bootstrapping with Web UI is using Salt Bundle as well, so bootstrapping with Web UI is not Python
dependant. Using the Salt Bundle, it is no longer needed that the client provides any Python interpreter or
modules.

If you bootstrap new clients, registration with the Salt Bundle is the default method. You can switch
existing clients to the Salt Bundle method. If you switch, the salt-minion package and its
dependencies will stay installed.

3.1.3.2.1. Using the Salt Bundle with the Salt Minion

The Salt Bundle can be used with the Salt Minion managed by the Salt Master other than Uyuni Server at
the same time. If the Salt Bundle is installed on a client Uyuni Server will manage the configuration files
of the Salt Bundle, the configuration files of salt-minion will not be managed in this case. For more
information, see Salt Bundle configuration.

3.1. Contact Methods for Salt Clients

52 / 218 3.1. Contact Methods for Salt Clients | Uyuni 2023.10

https://docs.saltstack.com/en/latest/topics/ssh/
https://docs.saltstack.com/en/latest/topics/ssh/
client-configuration:registration-cli.pdf#_salt_bundle_configuration

• To bootstrap a client with the Salt Minion managed by the Salt Master
other than Uyuni Server it is recommended to use mgr-bootstrap
--force-bundle when generating the bootstrap script, or to set
FORCE_VENV_SALT_MINION to 1 in the bootstrap script.

• For bootstrapping with Web UI mgr_force_venv_salt_minion
set to true pillar can be specified globally. For more information, see
Specialized-guides › Salt.

3.1.3.2.2. Switching from Salt Minion to Salt Bundle

The Salt state util.mgr_switch_to_venv_minion is available to switch from salt-minion
to venv-salt-minion. It is recommended to switch to venv-salt-minion in two steps to avoid
trouble with shifting processes:

Procedure: Switching with util.mgr_switch_to_venv_minion state to venv-salt-minion

1. Apply util.mgr_switch_to_venv_minion with no pillar specified first. This will result
in the switch to venv-salt-minion with copying configuration files etc. It will not clean up
the original salt-minion configurations and its packages.

salt <minion_id> state.apply util.mgr_switch_to_venv_minion

2. Apply util.mgr_switch_to_venv_minion with mgr_purge_non_venv_salt set
to True to remove salt-minion and with mgr_purge_non_venv_salt_files set to
True to remove all the files related to salt-minion. This second step ensures the first step
was processed, and then removes the old configuration files and the now obsolete salt-minion
package.

salt <minion_id> state.apply util.mgr_switch_to_venv_minion
pillar='{"mgr_purge_non_venv_salt_files": True,
"mgr_purge_non_venv_salt": True}'

In case of running the second step of switching with skipping the first step, state
apply process could fail as it requires stopping the salt-minion which is
used to execute the command on the client side.

On the other hand, it is also possible to avoid installing the Salt Bundle and keep using salt-minion
instead. In this case, specify one of these options:

• Execute mgr-bootstrap with --no-bundle option.

• Set AVOID_VENV_SALT_MINION to 1 in the generated bootstrap script.

• For bootstrap state set the mgr_avoid_venv_salt_minion pillar to True.

3.1. Contact Methods for Salt Clients

53 / 218 3.1. Contact Methods for Salt Clients | Uyuni 2023.10

3.1.3.3. Salt SSH with the Salt Bundle

The Salt Bundle is also used when performing Salt SSH actions to clients.

A shell script deploys the Salt Bundle onto the target system without installing venv-salt-minion
before any Salt command is executed. Since the Salt Bundle contains the whole Salt code base, no
salt-thin is deployed. Salt SSH (including bootstrapping using the Web UI) uses the Python 3
interpreter within the bundle. The target system does not need to have any other Python interpreter
installed.

The Python 3 deployed with the Bundle is used to handle Salt SSH session on the client, so Salt SSH
(including bootstrapping with Web UI) is not dependant on Python installed on the system.

Using salt-thin can be enabled as a fallback method, but it requires Python 3 to be installed on the
client. This method is not recommended nor supported and exists for development purposes only. Set
web.ssh_use_salt_thin to true in the /etc/rhn/rhn.conf configuration file.

• The bootstrap repository must be created before bootstrapping the client
with Web UI. Salt SSH is using the Salt Bundle taken from the bootstrap
repository based on the detected target operating system. For more
information, see client-configuration:bootstrap-repository.pdf.

• Salt SSH is using /var/tmp to deploy Salt Bundle to and execute Salt
commands on the client with the bundled Python. Therefore you must not
mount /var/tmp with the noexec option. It is not possible to
bootstrap the clients, which have /var/tmp mounted with noexec
option, with the Web UI because the bootstrap process is using Salt SSH
to reach a client.

3.1.3.4. Extend Salt Bundle with Python packages using pip

The Salt Bundle includes pip to make it possible to extend the functionality of the bundled Salt Minion
with extra Python packages.

By default, salt <minion_id> pip.install <package-name> installs the Python package
specified by <package_name> into /var/lib/venv-salt-minion/local.

If needed, the path /var/lib/venv-salt-minion/local can be
overridden by setting the VENV_PIP_TARGET environment variable for the
venv-salt-minion.service. It is recommended to use a systemd drop-
in configuration file for the service. It could be done with the configuration file
/etc/systemd/system/venv-salt-minion.service.d/10-

pip-destination.conf:

[Service]
Environment=VENV_PIP_TARGET=/new/path/local/venv-salt-
minion/pip

3.1. Contact Methods for Salt Clients

54 / 218 3.1. Contact Methods for Salt Clients | Uyuni 2023.10

client-configuration:bootstrap-repository.pdf#_prepare_to_create_a_bootstrap_repository

The Python packages installed through pip are not changing on updating the
Salt Bundle. To ensure that such packages are available and functional after an
update, it is recommended to install them with a Salt state that is applied after
Salt Bundle updates.

Contact Methods for Traditional Clients
Traditional clients can communicate with the Uyuni Server using a range of methods.

The lightweight Uyuni daemon (rhnsd) runs on traditional client systems. The daemon periodically
connects with Uyuni to check for new updates and notifications.

The rhnsd method has serious limitations. It does not scale as well as Salt.
Newer operating systems are not supported and will not be added in the future.

For more information, see Client-configuration › Contact-methods-rhnsd.

Traditional with OSAD

is the same as traditional but allows the server to push updates to clients. OSAD is an enhancement to
rhnsd OSAD allows traditional clients to execute scheduled actions immediately. It does not apply
to Salt clients.

Traditional SSH Push

is same as traditional but allows the server to push updates to clients, using the SSH protocol as a
transport layer.

Push via SSH is used in environments where clients cannot reach the Uyuni Server directly. In this
environment, clients are located in a firewall-protected zone called a DMZ. No system within the DMZ is
authorized to open a connection to the internal network, including the Uyuni Server.

Traditional SSH Push with Tunnel

The same as SSH Push, but tunnels HTTP/HTTPS traffic (for package download) via SSH.

With SUSE Manager 2023.10 release, traditional clients have been deprecated.
The release following SUSE Manager 2023.10 will not support traditional clients
and traditional proxies, and it is planned for the year 2023. We encourage all
new deployments to use Salt clients and Salt proxies exclusively, and to migrate
existing traditional clients and proxies to Salt.

Be aware that when migrating from traditional clients to Salt minions you do not
have to delete the registered clients before. You can just register them as Salt
minions and Salt will do the necessary steps with the traditional client. If you
already deleted the traditional client and the registration as Salt minion is not
possible anymore, see Administration › Troubleshooting.

Contact Methods for Traditional Clients

55 / 218 Contact Methods for Traditional Clients | Uyuni 2023.10

SUSE Manager Daemon (rhnsd)

The Uyuni daemon (rhnsd) runs on traditional client systems and periodically connects with Uyuni to
check for new updates and notifications. It does not apply to Salt clients.

Start rhnsd

A systemd timer (rhnsd.timer) is used and controlled by rhnsd.service.

By default, rhnsd checks every four hours for new actions. This means it can take some time for clients
to execute scheduled actions.

To check for updates, rhnsd runs the external mgr_check program located in /usr/sbin/. This is
a small application that establishes the network connection to Uyuni. The Uyuni daemon does not listen
on any network ports or talk to the network directly. All network activity is performed by the
mgr_check utility.

This figure provides an overview of the default rhnsd process path. All items left of the Python
XMLRPC server block represent processes running on the Uyuni client.

Configure rhnsd

On SUSE Linux Enterprise 12 and later, the default time interval is set in
/etc/systemd/system/timers.target.wants/rhnsd.timer, in this section:

[Timer]
OnCalendar=00/4:00
RandomizedDelaySec=30min

Contact Methods for Traditional Clients

56 / 218 Contact Methods for Traditional Clients | Uyuni 2023.10

You can create an overriding drop-in file for rhnsd.timer using systemctl:

systemctl edit rhnsd.timer

For example, if you want configure a two hour time interval:

[Timer]
OnCalendar=00/2:00

The file is saved as /etc/systemd/system/rhnsd.timer.d/override.conf.

For more information about systemd timers, see the systemd.timer and systemctl manpages.

OSAD

OSAD is an alternative contact method between Uyuni and traditional clients. By default, Uyuni uses
rhnsd, which contacts the server every four hours to execute scheduled actions. OSAD allows
traditional clients to execute scheduled actions immediately.

Use OSAD in addition to rhnsd. If you disable rhnsd your client is shown as
not checking in after 24 hours.

OSAD has several distinct components:

• The osa-dispatcher service runs on the server, and uses database checks to determine if
clients need to be pinged, or if actions need to be executed.

• The osad service runs on the client. It responds to pings from osa-dispatcher and runs
mgr_check to execute actions when directed to do so.

• The jabberd service is a daemon that uses the XMPP protocol for communication between the
client and the server. The jabberd service also handles authentication.

• The mgr_check tool runs on the client to execute actions. It is triggered by communication from
the osa-dispatcher service.

The osa-dispatcher periodically runs a query to check when clients last showed network activity. If
it finds a client that has not shown activity recently, it uses jabberd to ping all osad instances running
on all clients registered with your Uyuni server. The osad instances respond to the ping using
jabberd, which is running in the background on the server. When the osa-dispatcher receives
the response, it marks the client as online. If the osa-dispatcher fails to receive a response within a
certain period of time, it marks the client as offline.

When you schedule actions on an OSAD-enabled system, the task is carried out immediately. The osa-
dispatcher periodically checks clients for actions that need to be executed. If an outstanding action is
found, it uses jabberd to execute mgr_check on the client, which then executes the action.

OSAD clients use the fully qualified domain name (FQDN) of the server to communicate with the osa-

Contact Methods for Traditional Clients

57 / 218 Contact Methods for Traditional Clients | Uyuni 2023.10

dispatcher service.

SSL is required for osad communication. If SSL certificates are not available, the daemon on your client
systems fails to connect. Make sure your firewall rules are set to allow the required ports. For more
information, see Installation-and-upgrade › Ports.

Procedure: Enabling OSAD

1. At the command prompt on the Uyuni Server, as root, start the osa-dispatcher service:

systemctl start osa-dispatcher

2. On each client, install the mgr-osad package from the Tools child channel. The mgr-osad
package should be installed on clients only. If you install the mgr-osad package on your Uyuni
Server, it conflicts with the osa-dispatcher package.

3. On each client, as root, start the osad service:

systemctl start osad

Because osad and osa-dispatcher are run as services, you can use standard commands to
manage them, including stop, restart, and status.

Each OSAD component is configured using local configuration files. We recommend you keep the default
configuration parameters for all OSAD components.

Component Location Path to Configuration File

osa-dispatcher Server /etc/rhn/rhn.conf

Section: OSA
configuration

osad Client /etc/sysconfig/rhn/osa
d.conf

osad log file Client /var/log/osad

jabberd log file Both /var/log/messages

Troubleshooting OSAD

If your OSAD clients cannot connect to the server, or if the jabberd service takes a lot of time
responding to port 5552, it could be because you have exceeded the open file count.

Every client needs one always-open TCP connection to the server, which consumes a single file handler. If
the number of file handlers currently open exceeds the maximum number of files that jabberd is
allowed to use, jabberd queues the requests, and refuses connections.

To resolve this issue, you can increase the file limits for jabberd by editing the

Contact Methods for Traditional Clients

58 / 218 Contact Methods for Traditional Clients | Uyuni 2023.10

/etc/security/limits.conf configuration file and adding these lines:

jabber soft nofile 5100
jabber hard nofile 6000

Calculate the limits required for your environment by adding 100 to the number of clients for the soft
limit, and 1000 to the current number of clients for the hard limit.

In the example above, we have assumed 500 current clients, so the soft limit is 5100, and the hard limit is
6000.

You also need to update the max_fds parameter in the /etc/jabberd/c2s.xml file with your
chosen hard limit:

<max_fds>6000</max_fds>

Push via SSH

Push via SSH is used in environments where traditional clients cannot reach the Uyuni Server directly. In
this environment, clients are located in a firewall-protected zone called a DMZ. No system within the
DMZ is authorized to open a connection to the internal network, including the Uyuni Server.

The Push via SSH method creates an encrypted tunnel from the Uyuni Server on the internal network to
the clients located on the DMZ. After all actions and events are executed, the tunnel is closed.

The server uses SSH to contact the clients at regular intervals, checking in and performing scheduled
actions and events.

This contact method works for traditional clients only. For Salt clients, use Push via Salt SSH.

Re-installing systems using the provisioning model is not currently supported on
clients managed with Push via SSH.

This image demonstrates the push via SSH process path. All items left of the Taskomatic block
represent processes running on the Uyuni client.

Contact Methods for Traditional Clients

59 / 218 Contact Methods for Traditional Clients | Uyuni 2023.10

For tunneling connections via SSH, two available port numbers are required, one for tunneling HTTP and
the second for tunneling via HTTPS (HTTP is only necessary during the registration process). The port
numbers used by default are 1232 and 1233. To overwrite these, you can add two custom port numbers
greater than 1024 to /etc/rhn/rhn.conf:

ssh_push_port_http = high_port_1
ssh_push_port_https = high_port_2

If you would like your clients to be contacted using their hostnames instead of an IP address, set this
option:

ssh_push_use_hostname = true

It is also possible to adjust the number of threads to use for opening client connections in parallel. By
default two parallel threads are used. Set taskomatic.ssh_push_workers in
/etc/rhn/rhn.conf:

taskomatic.ssh_push_workers = number

For security reasons, you might want to use sudo with SSH, to access the system as an unprivileged user
instead of as root.

Procedure: Configuring Unprivileged SSH Access

1. Ensure you have the latest spacewalk-taskomatic and spacewalk-certs-tools
packages installed on the Uyuni Server.

2. On each client system, create an appropriate unprivileged user.

Contact Methods for Traditional Clients

60 / 218 Contact Methods for Traditional Clients | Uyuni 2023.10

3. On each client system, open the /etc/sudoers file and comment out these lines:

#Defaults targetpw # ask for the password of the target user i.e. root
#ALL ALL=(ALL) ALL # WARNING! Only use this together with 'Defaults
targetpw'!

4. On each client system, in the User privilege specification section, add these lines:

<user> ALL=(ALL) NOPASSWD:/usr/sbin/mgr_check
<user> ALL=(ALL) NOPASSWD:/home/<user>/enable.sh
<user> ALL=(ALL) NOPASSWD:/home/<user>/bootstrap.sh

5. On each client system, in the /home/<user>/.bashrc file, add these lines:

PATH=$PATH:/usr/sbin
export PATH

6. On the Uyuni Server, in the /etc/rhn/rhn.conf configuration file, add or amend this line to
include the unprivileged username:

ssh_push_sudo_user = <user>

Because clients are in the DMZ and cannot reach the server, you need to use the mgr-ssh-push-
init tool to register them with the Uyuni Server.

To use the tool, you need the client hostname or IP address, and the path to a valid bootstrap script on the
Uyuni Server. For more information about bootstrapping, see Client-configuration › Registration-
bootstrap.

The bootstrap script needs to have an activation key associated with it that is configured for Push via
SSH. For more information on activation keys, see Client-configuration › Activation-keys.

Before you begin, you need to ensure that you have specified which ports to use for SSH tunneling. If you
have registered clients before changing the port numbers, they need to be registered again.

Clients that are managed with Push via SSH cannot reach the server directly.
When you use the mgr-ssh-push-init tool, the rhnsd daemon is
disabled.

Procedure: Registering Clients with Push via SSH

1. At the command prompt on the Uyuni Server, as root, execute this command:

mgr-ssh-push-init --client <client> --register \
/srv/www/htdocs/pub/bootstrap/bootstrap_script --tunnel

Contact Methods for Traditional Clients

61 / 218 Contact Methods for Traditional Clients | Uyuni 2023.10

OPTIONAL: You can remove the --tunnel option, if you do not want to use tunneling.

2. OPTIONAL: When you have defined ssh_push_sudo_user, you can allow use of the root
password by adding the --notty option.

3. Verify that the SSH connection is active:

ssh -i /root/.ssh/id_susemanager -R <high_port>:<susemanager>:443 \
<client> zypper ref

Example: API Access to Push via SSH

You can use the API to manage which contact method to use. This example Python code sets the contact
method to ssh-push.

Valid values are:

• default (pull)

• ssh-push

• ssh-push-tunnel

client = xmlrpclib.Server(SUMA_HOST + "/rpc/api", verbose=0)
key = client.auth.login(SUMA_LOGIN, SUMA_PASSWORD)
client.system.setDetails(key, 1000012345, {'contact_method' : 'ssh-push'})

If you have a client that has already been registered, and you want to migrate it to use Push via SSH,
some extra steps are required. You can use the mgr-ssh-push-init tool to set up your client.

Procedure: Migrating Registered Systems to Push via SSH

1. At the command prompt on the Uyuni Server, as root, set up the client:

mgr-ssh-push-init --client <client> \
/srv/www/htdocs/pub/bootstrap/bootstrap_script --tunnel

2. Using the Uyuni Web UI, change the client’s contact method to ssh-push or ssh-push-
tunnel.

3. OPTIONAL: If you need to edit an existing activation key, you can do so with this command:

client.activationkey.setDetails(key, '1-mykey', {'contact_method' :
'ssh-push'})

You can also use Push via SSH for clients that connect using a proxy. Ensure your proxy is updated before
you begin.

Procedure: Registering Clients with Push via SSH to a Proxy

Contact Methods for Traditional Clients

62 / 218 Contact Methods for Traditional Clients | Uyuni 2023.10

1. At the command prompt on the Uyuni Proxy, as root, set up the client:

mgr-ssh-push-init --client <client> \
/srv/www/htdocs/pub/bootstrap/bootstrap_script --tunnel

2. At the command prompt on the Uyuni Server, copy the SSH key to the proxy:

mgr-ssh-push-init --client <proxy>

3.2. Migrate traditional clients to Salt clients
To migrate a system from a traditional client to a Salt, user can create the Salt bootstrap script and re-
register the client system with it.

This could be done with three procedures: * create a bootstrap script, * modify the bootstrap script, and *
run the bootstrap script to register the client.

3.2.1. Create bootstrap script

First you create a bootstrap script with the Web UI as a template.

Procedure: Creating a bootstrap script

1. In the Uyuni Web UI, navigate to Admin › Manager Configuration › Bootstrap Script.

2. In the SUSE Manager Configuration - Bootstrap dialog, verify that the
Bootstrap using Salt checkbox is checked.

3. The required fields are pre-populated with values derived from previous installation steps. For
details on each setting, see Reference › Admin.

4. Click [Update] to create the script.

5. The bootstrap script is generated and stored on the server in the
/srv/www/htdocs/pub/bootstrap directory. Alternatively, you can access the bootstrap
script over HTTPS. Replace <example.com> with the host name of your Uyuni Server:

https://<example.com>/pub/bootstrap/bootstrap.sh

3.2.2. Modify bootstrap script

In the next step, you modify the bootstrap script as needed. It is important that you set your activation
key. Navigate to Home › Overview. In the Tasks box, click Manage Activation Keys. All keys
created for channels are listed on this page. Enter the full name of the key you wish to use in the bootstrap
script exactly as presented in the key field. For more information about activation keys, see Client-
configuration › Activation-keys.

3.2. Migrate traditional clients to Salt clients

63 / 218 3.2. Migrate traditional clients to Salt clients | Uyuni 2023.10

Procedure: Modifying a bootstrap script

1. On your Uyuni Server, as root at the command line change to the bootstrap directory with:

cd /srv/www/htdocs/pub/bootstrap/

2. Create a copy of the template bootstrap script for use with each of your clients.

cp bootstrap.sh bootstrap-migrate-to-salt.sh

3. Open bootstrap-migrate-to-salt.sh for modification. Scroll down until you can see
the text shown below. If exit 1 exists in the file, comment it out by typing a hash or pound sign
(#) at the beginning of the line. This activates the script. Enter the name of the key for this script in
the ACTIVATION_KEYS= field:

echo "Enable this script: comment (with #'s) this block (or, at least
just"
echo "the exit below)"
echo
#exit 1

can be edited, but probably correct (unless created during initial
install):
NOTE: ACTIVATION_KEYS *must* be used to bootstrap a client machine.
ACTIVATION_KEYS=1-migrate-salt
ORG_GPG_KEY=

4. When you have finished, save the file.

By default, the bootstrap script will try to install venv-salt-minion for
Salt clients if it is available in the bootstrap repository, or salt-minion if
there is no Salt bundle in the bootstrap repository. It is posible to avoid installing
Salt bundle and keep using salt-minion if you need it.

For more information, see Client-configuration › Contact-methods-
saltbundle.

3.2.3. Run bootstrap script

As the final step, run the bootstrap script to migrate and register clients.

Procedure: Running the bootstrap script

1. On the Uyuni Server, log in as root. At the command prompt, change to the bootstrap directory:

cd /srv/www/htdocs/pub/bootstrap/

2. Run the following command to execute the bootstrap script on the client. Replace EXAMPLE.COM

3.2. Migrate traditional clients to Salt clients

64 / 218 3.2. Migrate traditional clients to Salt clients | Uyuni 2023.10

with the hostname of your client:

cat bootstrap-migrate-to-salt.sh | ssh root@EXAMPLE.COM /bin/bash

3. Alternatively, on the client, run the command:

curl -Sks https://server_hostname/pub/bootstrap/bootstrap-migrate-to-
salt.sh | /bin/bash

The script downloads the required dependencies.

4. When the script has finished running, you can check that your client is registered correctly by
opening the Uyuni Web UI and navigating to Systems › Overview to ensure the new client is
listed.

5. In case of trouble with registering the new Salt client, open the Uyuni Web UI and navigate to Salt
› Keys to accept the client key.

When new packages or updates are installed on the client using Uyuni, any end
user license agreements (EULAs) are automatically accepted. To review a
package EULA, open the package detail page in the Web UI.

For more information about using bootstrap scripts, see Client-configuration › Registration-bootstrap.

3.2. Migrate traditional clients to Salt clients

65 / 218 3.2. Migrate traditional clients to Salt clients | Uyuni 2023.10

Chapter 4. Client Registration
There are several ways to register clients to your Uyuni Server. This section covers the various available
methods. It also contains information specific to the operating system you intend to run on the client.

Before you begin, check that:

• The client has the date and time synchronized correctly with the Uyuni Server before registration.

• You have created an activation key. For more information about creating activation keys, see
Client-configuration › Activation-keys.

Do not register the Uyuni Server to itself. The Uyuni Server must be managed
individually or by using another separate Uyuni Server. For more information
about using multiple servers, see Specialized-guides › Large-deployments.

4.1. Client Registration Methods
There are several ways to register clients to your Uyuni Server.

• For Salt clients, we recommend that you register clients using the Uyuni Web UI. For more
information, see Client-configuration › Registration-webui.

• If you want more control over the process, have to register many clients, or are registering
traditional clients, we recommend that you create a bootstrap script. For more information, see
Client-configuration › Registration-bootstrap.

• For Salt clients and even more control over the process, executing single commands on the
command line can be useful. For more information, see Client-configuration › Registration-cli.

The client must have the date and time synchronized correctly with the Uyuni Server before registration.

You must create an activation key first, to use bootstrap script or command line method. For more
information about creating activation keys, see Client-configuration › Activation-keys.

Do not register the Uyuni Server to itself. The Uyuni Server must be managed
individually or by using another separate Uyuni Server. For more information
about using multiple servers, see Specialized-guides › Large-deployments.

4.1.1. Register Clients with the Web UI

Registering clients with the Uyuni Web UI works for Salt clients only.

If you are bootstrapping Salt clients using the Web UI, it is using Specialized-guides › Salt to execute the
bootstrap process on the client. Salt SSH uses the Salt Bundle and its included Python interpreter.
Therefore, no other Python interpreter needs to be installed on the client.

4.1. Client Registration Methods

66 / 218 4.1. Client Registration Methods | Uyuni 2023.10

As Salt Bundle is shipped with the bootstrap repository, the repository must be
created before starting the bootstrap process for the client. A shell script detects
the operating system on the client and deploys the Salt Bundle from the
appropriate bootstrap repository, using the same logic as the bootstrap script. For
more information, see Prepare to Create a Bootstrap Repository.

Do not register the Uyuni Server to itself. The Uyuni Server must be managed
individually or by using another separate Uyuni Server. For more information
about using multiple servers, see Specialized-guides › Large-deployments.

Procedure: Registering Clients with the Web UI

1. In the Uyuni Web UI, navigate to Systems › Bootstrapping.

2. In the Host field, type the fully qualified domain name (FQDN) of the client to be bootstrapped.

3. In the SSH Port field, type the SSH port number to use to connect and bootstrap the client. By
default, the SSH port is 22.

4. In the User field, type the username to log in to the client. By default, the username is root.

5. To bootstrap the client with SSH, in the Authentication field, check SSH Private Key,
and upload the SSH private key to use to log in to the client. If your SSH private key requires a
passphrase, type it into the SSH Private Key Passphrase field, or leave it blank for no
passphrase.

6. To bootstrap the client with a password, in the Authentication field, check Password, and
type the password to log in to the client.

7. In the Activation Key field, select the activation key that is associated with the software
channel you want to use to bootstrap the client. For more information, see Client-configuration ›
Activation-keys.

8. OPTIONAL: In the Proxy field, select the proxy to register the client to.

9. By default, the Disable SSH Strict Key Host Checking checkbox is selected. This
allows the bootstrap process to automatically accept SSH host keys without requiring you to
manually authenticate.

10. OPTIONAL: Check the Manage System Completely via SSH checkbox. If you check
this option, the client is configured to use SSH for its connection to the server, and no other
connection method is configured.

11. Click [Bootstrap] to begin registration.

When the bootstrap process has completed, your client is listed at Systems › System List.

SSH private keys are stored only for the duration of the bootstrapping process.
They are deleted from the Uyuni Server as soon as bootstrapping is complete.

4.1. Client Registration Methods

67 / 218 4.1. Client Registration Methods | Uyuni 2023.10

client-configuration:bootstrap-repository.pdf#_prepare_to_create_a_bootstrap_repository

When new packages or updates are installed on the client using Uyuni, any end
user license agreements (EULAs) are automatically accepted. To review a
package EULA, open the package details page in the Web UI.

4.1.1.1. Handling of Locally assigned Repositories

Having repositories assigned directly to clients not served by Uyuni is not a common use case. It can
cause trouble. Therfore bootstrapping via Salt disables all local repositories at the beginning of the
bootstrap process.

Later, during every use of the channel state, for example when executing a Highstate or a package
installation, all locally assigned repositories are disabled again.

All software packages which are used on the clients should come from channels served by Uyuni. For
more information about creating a custom channel, see Custom Channels at Administration ›
Custom-channels.

4.1.2. Register Clients with a Bootstrap Script

Registering clients with a bootstrap script gives you control over parameters, and can help if you have to
register a large number of clients at once. This method works for both Salt and traditional clients.

To register clients using a bootstrap script, we recommend you create a template bootstrap script to begin,
which can then be copied and modified. The bootstrap script you create is executed on the client when it
is registered, and ensures all the necessary packages are deployed to the client. There are some parameters
contained in the bootstrap script, which ensure the client system can be assigned to its base channel,
including activation keys and GPG keys.

It is important that you check the repository information carefully, to ensure it matches the base channel
repository. If the repository information does not match exactly, the bootstrap script cannot download the
correct packages.

All clients need a bootstrap repository. It is automatically created and
regenerated on the Uyuni Server when products are synchronized. A bootstrap
repository includes packages for installing Salt on clients, and for registering Salt
or traditional clients.

For more information about creating a bootstrap repository, see Client-
configuration › Bootstrap-repository.

GPG Keys and Uyuni Client Tools

The GPG key used by Uyuni Client Tools is not trusted by default. When you
create your bootstrap script, add a path to the file containing the public key
fingerprint with the ORG_GPG_KEY parameter.

4.1. Client Registration Methods

68 / 218 4.1. Client Registration Methods | Uyuni 2023.10

openSUSE Leap 15 and SLE 15 use Python 3 by default. Bootstrap scripts based
on Python 2 must be re-created for openSUSE Leap 15 and SLE 15 systems. If
you register openSUSE Leap 15 or SLE 15 systems using Python 2, the
bootstrap script fails.

4.1.2.1. Create a Bootstrap Script with mgr-bootstrap

The mgr-bootstrap command generates custom bootstrap scripts. A bootstrap script is used by
Uyuni client systems for simplifying their initial registration and configuration.

The arguments --activation-keys and --script, are the only mandatory arguments. On the
Uyuni Server, as root at the command line execute it with the mandatory arguments. Replace
<ACTIVATION_KEYS and <EDITED_NAME> with your values:

mgr-bootstrap --activation-key=<ACTIVATION_KEYS> --script=bootstrap-<EDITED
NAME>.sh

The mgr-bootstrap command offers several other options, including the ability to set a specific
hostname, set specific GPG keys, and set the registration method (traditional, salt-minion, or salt-bundle).

For more information, see the mgr-bootstrap man page, or run mgr-bootstrap --help.

4.1.2.2. Create a Bootstrap Script from Web UI

You can use the Uyuni Web UI to create an editable bootstrap script.

Procedure: Creating a Bootstrap Script

1. In the Uyuni Web UI, navigate to Admin › Manager Configuration › Bootstrap Script.

2. In the SUSE Manager Configuration - Bootstrap dialog, uncheck the
Bootstrap using Salt checkbox if you are installing a traditional client. For Salt clients,
leave it checked.

3. The required fields are pre-populated with values derived from previous installation steps. For
details on each setting, see Reference › Admin.

4. Click [Update] to create the script.

5. The bootstrap script is generated and stored on the server in the
/srv/www/htdocs/pub/bootstrap directory. Alternatively, you can access the bootstrap
script over HTTPS. Replace <example.com> with the host name of your Uyuni Server:

https://<example.com>/pub/bootstrap/bootstrap.sh

4.1. Client Registration Methods

69 / 218 4.1. Client Registration Methods | Uyuni 2023.10

Do not disable SSL in your bootstrap script. Ensure that Enable SSL is
checked in the Web UI, or that the setting USING_SSL=1 exists in the
bootstrap script. If you disable SSL, the registration process requires custom SSL
certificates.

For more information about custom certificates, see Administration › Ssl-certs.

4.1.2.3. Edit a Bootstrap Script

You can copy and modify the template bootstrap script you created to customize it. A minimal
requirement when modifying a bootstrap script for use with Uyuni is the inclusion of an activation key.
Most packages are signed with GPG, so you also need to have trusted GPG keys on your system to install
them.

In this procedure, you need to know the exact name of your activation keys. Navigate to Home ›
Overview and, in the Tasks box, click Manage Activation Keys. All keys created for channels
are listed on this page. You must enter the full name of the key you wish to use in the bootstrap script
exactly as presented in the key field. For more information about activation keys, see Client-
configuration › Activation-keys.

Procedure: Modifying a Bootstrap Script

1. On your Uyuni Server, as root at the command line change to the bootstrap directory with:

cd /srv/www/htdocs/pub/bootstrap/

2. Create and rename two copies of the template bootstrap script for use with each of your clients.

cp bootstrap.sh bootstrap-sles12.sh
cp bootstrap.sh bootstrap-sles15.sh

3. Open bootstrap-sles15.sh for modification. Scroll down until you can see the text shown
below. If exit 1 exists in the file, comment it out by typing a hash or pound sign (#) at the
beginning of the line. This activates the script. Enter the name of the key for this script in the
ACTIVATION_KEYS= field:

echo "Enable this script: comment (with #'s) this block (or, at least
just"
echo "the exit below)"
echo
#exit 1

can be edited, but probably correct (unless created during initial
install):
NOTE: ACTIVATION_KEYS *must* be used to bootstrap a client machine.
ACTIVATION_KEYS=1-sles15
ORG_GPG_KEY=

4.1. Client Registration Methods

70 / 218 4.1. Client Registration Methods | Uyuni 2023.10

4. When you have finished, save the file, and repeat this procedure for the second bootstrap script.

By default, bootstrap script will try to install venv-salt-minion for Salt
clients if it’s available in the bootstrap repository and salt-minion if there is
no Salt bundle in the bootstrap repository. It is posible to avoid installing Salt
bundle and keep using salt-minion if you need it for some reason.

For more information, see Client-configuration › Contact-methods-
saltbundle.

4.1.2.4. Connect Clients

When you have finished creating your script, you can use it to register clients.

Procedure: Running the Bootstrap Script

1. On the Uyuni Server, log in as root. At the command prompt, and change to the bootstrap
directory:

cd /srv/www/htdocs/pub/bootstrap/

2. Run this command to execute the bootstrap script on the client; replace EXAMPLE.COM with the
host name of your client:

cat bootstrap-sles15.sh | ssh root@EXAMPLE.COM /bin/bash

3. Alternatively, on the client, run this command:

curl -Sks https://server_hostname/pub/bootstrap/bootstrap-sles15.sh |
/bin/bash

To avoid problems, make sure the bootstrap script is executed using
bash.

This script downloads the required dependencies located in the repositories directory you created
earlier.

4. When the script has finished running, you can check that your client is registered correctly by
opening the Uyuni Web UI and navigating to Systems › Overview to ensure the new client is
listed.

5. If you used the script to register the Salt client, open the Uyuni Web UI and navigate to Salt ›
Keys to accept the client key.

4.1. Client Registration Methods

71 / 218 4.1. Client Registration Methods | Uyuni 2023.10

When new packages or updates are installed on the client using Uyuni, any end
user license agreements (EULAs) are automatically accepted. To review a
package EULA, open the package detail page in the Web UI.

4.1.3. Register on the Command Line (Salt)

4.1.3.1. Manual Salt client registration

In most cases, Salt clients are registered accurately with the default bootstrap methods. However, you can
use Salt to register the client to the Uyuni Server manually by editing the Salt minion file on the client,
and providing the fully qualified domain name (FQDN) of the server. This method uses ports 4505 and
4506 inbound to the server. This method requires no configuration on the Uyuni Server aside from
ensuring that these ports are open.

Registering on the command line is also possible with traditional clients, but it
requires more steps. It is not covered here. Use the bootstrap script procedure to
register traditional clients. For more information, see registration-bootstrap.pdf.

This procedure requires that you have installed the venv-salt-minion (Salt bundle) or the salt-
minion package on the Salt client before registration. Both use configuration files in different locations
and filenames remain the same. The systemd service filename is different.

Bootstrapping this way will only work if you use the salt-minion being part
of the client tools channels or of an official SUSE distributions.

4.1.3.1.1. Salt Bundle configuration

Salt Bundle (venv-salt-minion)

• /etc/venv-salt-minion/

• /etc/venv-salt-minion/minion

• /etc/venv-salt-minion/minion.d/NAME.conf

• systemd service file: venv-salt-minion.service

For more information about the Salt bundle, see Client-configuration › Contact-methods-saltbundle.

Procedure: Registering Clients with Salt Bundle Configuration File

1. On the Salt client, open the minion configuration file. The configuration file is either located at:

/etc/venv-salt-minion/minion

or:

4.1. Client Registration Methods

72 / 218 4.1. Client Registration Methods | Uyuni 2023.10

registration-bootstrap.pdf

/etc/venv-salt-minion/minion.d/NAME.conf

2. In the file add or edit the FQDN of the Uyuni Server or Proxy, and the activation key if any. Also
add the other configuration parameters listed below.

master: SERVER.EXAMPLE.COM

grains:
 susemanager:
 activation_key: "<Activation_Key_Name>"

server_id_use_crc: adler32
enable_legacy_startup_events: False
enable_fqdns_grains: False

3. Restart the venv-salt-minion service:

systemctl restart venv-salt-minion

4. On the Uyuni Server, accept the new client key; replace <client> with the name of your client:

salt-key -a '<client>'

4.1.3.1.2. Salt Minion configuration

Salt Minion (salt-minion)

• /etc/salt/

• /etc/salt/minion

• /etc/salt/minion.d/NAME.conf

• systemd service file: salt-minion.service

Procedure: Registering Clients with Salt Minion Configuration File

1. On the Salt client, open the minion configuration file. The configuration file is either located at:

/etc/salt/minion

or:

/etc/salt/minion.d/NAME.conf

2. In the file add or edit the FQDN of the Uyuni Server or Proxy, and the activation key if any. Also
add the other configuration parameters listed below.

4.1. Client Registration Methods

73 / 218 4.1. Client Registration Methods | Uyuni 2023.10

master: SERVER.EXAMPLE.COM

grains:
 susemanager:
 activation_key: "<Activation_Key_Name>"

server_id_use_crc: adler32
enable_legacy_startup_events: False
enable_fqdns_grains: False

3. Restart the salt-minion service:

systemctl restart salt-minion

4. On the Uyuni Server, accept the new client key; replace <client> with the name of your client:

salt-key -a '<client>'

For more information about the Salt minion configuration file, see https://docs.saltstack.com/en/latest/ref/
configuration/minion.html.

4.2. SUSE Client Registration
You can register SUSE Linux Enterprise clients to your Uyuni Server.

The method and details varies depending on the operating system of the client.

Before you start, ensure that the client has the date and time synchronized correctly with the Uyuni
Server.

You must also have created an activation key. For more information about creating activation keys, see
Client-configuration › Activation-keys.

Do not register a Uyuni Server to itself. The Uyuni Server must be managed
individually or by using another separate Uyuni Server. For more information
about using multiple servers, see Specialized-guides › Large-deployments.

4.2.1. Registering SUSE Linux Enterprise Clients

This section contains information about registering clients running these SUSE Linux Enterprise operating
systems:

• SUSE Linux Enterprise Server 15 SP1

• SUSE Linux Enterprise Server 15 SP2

• SUSE Linux Enterprise Server 15 SP3

4.2. SUSE Client Registration

74 / 218 4.2. SUSE Client Registration | Uyuni 2023.10

https://docs.saltstack.com/en/latest/ref/configuration/minion.html
https://docs.saltstack.com/en/latest/ref/configuration/minion.html

• SUSE Linux Enterprise Server 15 SP4

• SUSE Linux Enterprise Server 15 SP5

Use the instructions in this chapter for preparing all SUSE Linux Enterprise products, including:

• SUSE Linux Enterprise Server for SAP

• SUSE Linux Enterprise Desktop

• SUSE Linux Enterprise

• SUSE Linux Enterprise Real Time

You can also use these instructions for older SUSE Linux Enterprise versions and service packs.

4.2.1.1. Add Software Channels

In the following section, descriptions often default to the x86_64 architecture.
Replace it with other architectures if appropriate.

Before you register SUSE Linux Enterprise clients to your Uyuni Server, you need to add the required
software channels, and synchronize them.

The products you need for this procedure are:

Table 16. SLE Products - WebUI

OS Version Product Name

SUSE Linux Enterprise Server 12 SP5 SUSE Linux Enterprise Server 12 SP5 x86_64

SUSE Linux Enterprise Server 15 SP1 SUSE Linux Enterprise Server 15 SP1 x86_64

SUSE Linux Enterprise Server 15 SP2 SUSE Linux Enterprise Server 15 SP2 x86_64

SUSE Linux Enterprise Server 15 SP3 SUSE Linux Enterprise Server 15 SP3 x86_64

SUSE Linux Enterprise Server 15 SP4 SUSE Linux Enterprise Server 15 SP4 x86_64

SUSE Linux Enterprise Server 15 SP5 SUSE Linux Enterprise Server 15 SP5 x86_64

Procedure: Adding Software Channels

1. In the Uyuni Web UI, navigate to Admin › Setup Wizard › Products.

2. Locate the appropriate products for your client operating system and architecture using the search
bar, and check the appropriate product. This will automatically check all mandatory channels. Also
all recommended channels are checked as long as the include recommended toggle is turned
on. Click the arrow to see the complete list of related products, and ensure that any extra products
you require are checked.

3. Click [Add Products] and wait until the products have finished synchronizing.

4.2. SUSE Client Registration

75 / 218 4.2. SUSE Client Registration | Uyuni 2023.10

Alternatively, you can add channels at the command prompt. The channels you need for this procedure
are:

Table 17. SLE Products - CLI

OS Version Base Channel

SUSE Linux Enterprise Server 12 SP5 sle-product-sles12-sp5-pool-x86_64

SUSE Linux Enterprise Server 15 SP1 sle-product-sles15-sp1-pool-x86_64

SUSE Linux Enterprise Server 15 SP2 sle-product-sles15-sp2-pool-x86_64

SUSE Linux Enterprise Server 15 SP3 sle-product-sles15-sp3-pool-x86_64

SUSE Linux Enterprise Server 15 SP4 sle-product-sles15-sp4-pool-x86_64

SUSE Linux Enterprise Server 15 SP5 sle-product-sles15-sp5-pool-x86_64

To find channel names of older products, at the command prompt on the Uyuni Server, as root, use the
mgr-sync command:

mgr-sync list --help

Then specify the argument you are interested in. For example, channels:

mgr-sync list channels [-c]

Procedure: Adding Software Channels at the Command Prompt

1. At the command prompt on the Uyuni Server, as root, use the mgr-sync command to add the
appropriate channels:

mgr-sync add channel <channel_label_1>
mgr-sync add channel <channel_label_2>
mgr-sync add channel <channel_label_n>

2. Synchronization starts automatically. If you want to synchronize the channels manually, use:

mgr-sync sync --with-children <channel_name>

3. Ensure the synchronization is complete before continuing.

To add the client tools, add these channels from the command prompt:

Table 18. SUSE Linux Enterprise Channels - CLI

4.2. SUSE Client Registration

76 / 218 4.2. SUSE Client Registration | Uyuni 2023.10

OS Version Client Channel

SUSE Linux Enterprise Server 12 SP5 sles12-sp5-uyuni-client

SUSE Linux Enterprise Server 15 SP1 sles15-sp1-uyuni-client

SUSE Linux Enterprise Server 15 SP2 sles15-sp2-uyuni-client

SUSE Linux Enterprise Server 15 SP3 sles15-sp3-uyuni-client

SUSE Linux Enterprise Server 15 SP4 sles15-sp4-uyuni-client

SUSE Linux Enterprise Server 15 SP5 sles15-sp5-uyuni-client

Procedure: Adding Software Channels at the Command Prompt

1. At the command prompt on the Uyuni Server, as root, use the spacewalk-common-
channels command to add the appropriate channels:

spacewalk-common-channels \
<base_channel_label> \
<child_channel_label_1> \
<child_channel_label_2> \
... <child_channel_label_n>

2. If automatic synchronization is turned off, synchronize the channels:

spacewalk-repo-sync -p <base_channel_label>

3. Ensure the synchronization is complete before continuing.

4.2.1.2. Check Synchronization Status

Procedure: Checking Synchronization Progress from the Web UI

1. In the Uyuni Web UI, navigate to Software › Manage › Channels, then click the channel
associated to the repository.

2. Navigate to the Repositories tab, then click Sync and check Sync Status.

Procedure: Checking Synchronization Progress from the Command Prompt

1. At the command prompt on the Uyuni Server, as root, use the tail command to check the
synchronization log file:

tail -f /var/log/rhn/reposync/<channel-label>.log

2. Each child channel generates its own log during the synchronization progress. You need to check
all the base and child channel log files to be sure that the synchronization is complete.

4.2. SUSE Client Registration

77 / 218 4.2. SUSE Client Registration | Uyuni 2023.10

administration:custom-channels.pdf#_custom_channel_synchronization

SUSE Linux Enterprise channels can be very large. Synchronization can
sometimes take several hours.

4.2.1.3. Manage GPG Keys

Clients use GPG keys to check the authenticity of software packages before they are installed. Only
trusted software can be installed on clients.

Trusting a GPG key is important for security on clients. It is the task of the
administrator to decide which keys are needed and can be trusted. Because a
software channel cannot be used when the GPG key is not trusted, the decision
of assigning a channel to a client depends on the decision of trusting the key.

For more information about GPG keys, see Client-configuration › Gpg-keys.

Use the same GPG key for both SUSE Linux Enterprise Server 15 and SUSE
Linux Enterprise Server 12 clients. The correct key is called sle12-gpg-
pubkey-39db7c82.key.

4.2.1.4. Register Clients

To register your clients, you need a bootstrap repository. By default, bootstrap repositories are
automatically created, and regenerated daily for all synchronized products. You can manually create the
bootstrap repository from the command prompt, using this command:

mgr-create-bootstrap-repo

For more information on registering your clients, see Client-configuration › Registration-overview.

4.2.2. Registering SLE Micro Clients

This section contains information about registering clients running these SLE Micro operating systems:

• SLE Micro 5.1, 5.2, 5.3 and 5.4 x86-64

• SLE Micro 5.1, 5.2, 5.3 and 5.4 ARM64

• SLE Micro 5.1, 5.2, 5.3 and 5.4 IBM Z (s390x)

The SLE Micro is an ultra-reliable, lightweight operating system purpose built for edge computing. It
leverages the enterprise hardened security and compliance components of SUSE Linux Enterprise and
merges them with a modern, immutable, developer-friendly OS platform.

The SLE Micro uses transactional updates. Transactional updates are atomic (all updates are applied only
if all updates succeed) and support rollbacks. They do not affect a running system as no changes are
activated until after the system is rebooted. This information is displayed in the Systems › Details ›

4.2. SUSE Client Registration

78 / 218 4.2. SUSE Client Registration | Uyuni 2023.10

Overview subtab.

For more information on transactional updates and rebooting, see https://documentation.suse.com/sles/
html/SLES-all/cha-transactional-updates.html.

4.2.2.1. Add Software Channels

Before you register SLE Micro clients to your Uyuni Server, you need to add the required software
channels, and synchronize them.

In the following section, descriptions often default to the x86_64 architecture.
Replace it with other architectures if appropriate.

The products you need for this procedure are:

Table 19. SLE Micro Products - WebUI

OS Version Product Name

SLE Micro 5.4 x86-64 SUSE Linux Enterprise Micro 5.4 x86_64

SLE Micro 5.4 ARM64 SUSE Linux Enterprise Micro 5.4 aarch64

SLE Micro 5.4 s390x SUSE Linux Enterprise Micro 5.4 s390x

SLE Micro 5.3 x86-64 SUSE Linux Enterprise Micro 5.3 x86_64

SLE Micro 5.3 ARM64 SUSE Linux Enterprise Micro 5.3 aarch64

SLE Micro 5.3 s390x SUSE Linux Enterprise Micro 5.3 s390x

SLE Micro 5.2 x86-64 SUSE Linux Enterprise Micro 5.2 x86_64

SLE Micro 5.2 ARM64 SUSE Linux Enterprise Micro 5.2 aarch64

SLE Micro 5.2 s390x SUSE Linux Enterprise Micro 5.2 s390x

SLE Micro 5.1 x86-64 SUSE Linux Enterprise Micro 5.1 x86_64

SLE Micro 5.1 ARM64 SUSE Linux Enterprise Micro 5.1 aarch64

SLE Micro 5.1 s390x SUSE Linux Enterprise Micro 5.1 s390x

Procedure: Adding Software Channels

1. In the Uyuni Web UI, navigate to Admin › Setup Wizard › Products.

2. Locate the appropriate products for your client operating system and architecture using the search
bar, and check the appropriate product. This will automatically check all mandatory channels. Also
all recommended channels are checked as long as the include recommended toggle is turned
on. Click the arrow to see the complete list of related products, and ensure that any extra products
you require are checked.

4.2. SUSE Client Registration

79 / 218 4.2. SUSE Client Registration | Uyuni 2023.10

https://documentation.suse.com/sles/html/SLES-all/cha-transactional-updates.html
https://documentation.suse.com/sles/html/SLES-all/cha-transactional-updates.html

3. Click [Add Products] and wait until the products have finished synchronizing.

Alternatively, you can add channels at the command prompt. The channels you need for this procedure
are:

Table 20. SLE Micro Products - CLI

OS Version Base Channel Updates Channel

SLE Micro 5.4 x86-64 sle-micro-5.4-pool-x86_64 sle-micro-5.4-updates-x86_64

SLE Micro 5.4 ARM64 sle-micro-5.4-pool-arm64 sle-micro-5.4-updates-arm64

SLE Micro 5.4 IBM Z (s390x) sle-micro-5.4-pool-s390x sle-micro-5.4-updates-s390x

SLE Micro 5.3 x86-64 sle-micro-5.3-pool-x86_64 sle-micro-5.3-updates-x86_64

SLE Micro 5.3 ARM64 sle-micro-5.3-pool-arm64 sle-micro-5.3-updates-arm64

SLE Micro 5.3 IBM Z (s390x) sle-micro-5.3-pool-s390x sle-micro-5.3-updates-s390x

SLE Micro 5.2 x86-64 suse-microos-5.2-pool-x86_64 suse-microos-5.2-updates-x86_64

SLE Micro 5.2 ARM64 suse-microos-5.2-pool-aarch64 suse-microos-5.2-updates-
aarch64

SLE Micro 5.2 IBM Z (s390x) suse-microos-5.2-pool-s390x suse-microos-5.2-updates-s390x

SLE Micro 5.1 x86-64 suse-microos-5.1-pool-x86_64 suse-microos-5.1-updates-x86_64

SLE Micro 5.1 ARM64 suse-microos-5.1-pool-aarch64 suse-microos-5.1-updates-
aarch64

SLE Micro 5.1 IBM Z (s390x) suse-microos-5.1-pool-s390x suse-microos-5.1-updates-s390x

Procedure: Adding Software Channels at the Command Prompt

1. At the command prompt on the Uyuni Server, as root, use the mgr-sync command to add the
appropriate channels:

mgr-sync add channel <channel_label_1>
mgr-sync add channel <channel_label_2>
mgr-sync add channel <channel_label_n>

2. Synchronization starts automatically. If you want to synchronize the channels manually, use:

mgr-sync sync --with-children <channel_name>

3. Ensure the synchronization is complete before continuing.

To add the client tools, add these channels from the command prompt:

4.2. SUSE Client Registration

80 / 218 4.2. SUSE Client Registration | Uyuni 2023.10

Table 21. SLE Micro Channels - CLI

OS Version Client Channel

SLE Micro 5.4 sle-micro-5.4-uyuni-client

SLE Micro 5.3 suse-micro-5.3-uyuni-client

SLE Micro 5.2 suse-microos-5.2-uyuni-client

SLE Micro 5.1 sle-microos-5.1-uyuni-client

Procedure: Adding Software Channels at the Command Prompt

1. At the command prompt on the Uyuni Server, as root, use the spacewalk-common-
channels command to add the appropriate channels:

spacewalk-common-channels \
<base_channel_label> \
<child_channel_label_1> \
<child_channel_label_2> \
... <child_channel_label_n>

2. If automatic synchronization is turned off, synchronize the channels:

spacewalk-repo-sync -p <base_channel_label>

3. Ensure the synchronization is complete before continuing.

4.2.2.2. Check Synchronization Status

Procedure: Checking Synchronization Progress from the Web UI

1. In the Uyuni Web UI, navigate to Software › Manage › Channels, then click the channel
associated to the repository.

2. Navigate to the Repositories tab, then click Sync and check Sync Status.

Procedure: Checking Synchronization Progress from the Command Prompt

1. At the command prompt on the Uyuni Server, as root, use the tail command to check the
synchronization log file:

tail -f /var/log/rhn/reposync/<channel-label>.log

2. Each child channel generates its own log during the synchronization progress. You need to check
all the base and child channel log files to be sure that the synchronization is complete.

4.2.2.3. Register Clients

4.2. SUSE Client Registration

81 / 218 4.2. SUSE Client Registration | Uyuni 2023.10

administration:custom-channels.pdf#_custom_channel_synchronization

SLE Micro clients require a reboot after registering. Although a reboot is
automatically scheduled after registration is completed, it is respecting the default
reboot manager maintenance window. This window may be several hours after
the client is registered. It is advisable to manually reboot the client after the
registration script finishes, to speed up the registration and to see the system
appear in the system list.

To register your clients, you need a bootstrap repository. By default, bootstrap repositories are
automatically created, and regenerated daily for all synchronized products. You can manually create the
bootstrap repository from the command prompt, using this command:

mgr-create-bootstrap-repo

For more information on registering your clients, see Client-configuration › Registration-overview.

4.2.2.4. Reboot SLE Micro

SLE Micro is a transactional system. Transactional updates in general support several reboot methods. It
is recommended to use systemd for rebooting in systems managed by Uyuni. Using other methods can
lead to undesired behavior.

When bootstrapping a transactional system on Uyuni, systemd will be configured as the reboot method
(REBOOT_METHOD), if the system is in its default configuration. Such a configuration allows Uyuni to
control the reboot action, and rebooting can be performed immediately or scheduled with Uyuni as
wanted.

4.2.2.4.1. Background Information

By default, the reboot method during client installation is set to auto. With the auto boot method,
rebootmgrd will be used to reboot the system according to the configured policies if the service is
running. Policies can be to reboot instantly or during a maintenance window. For more information, see
the rebootmgrd(8) man page. Otherwise if rebootmgrd is not running, Uyuni will call
systemctl reboot.

 Using any method different from systemd may cause undesired behavior.

4.3. openSUSE Client Registration
You can register openSUSE and openSUSE Leap Micro clients to your Uyuni Server. The method and
details varies depending on the operating system of the client.

Before you start, ensure that the client has the date and time synchronized correctly with the Uyuni
Server.

You must also have created an activation key. For more information about creating activation keys, see

4.3. openSUSE Client Registration

82 / 218 4.3. openSUSE Client Registration | Uyuni 2023.10

Client-configuration › Activation-keys.

Do not register a Uyuni Server to itself. The Uyuni Server must be managed
individually or by using another separate Uyuni Server. For more information
about using multiple servers, see Specialized-guides › Large-deployments.

4.3.1. Registering openSUSE Leap Clients

This section contains information about registering Salt clients running openSUSE operating systems.
Uyuni supports openSUSE Leap 15 clients using Salt. Traditional clients are not supported.

Bootstrapping is supported for starting openSUSE clients and performing initial state runs such as setting
repositories and performing profile updates.

4.3.1.1. Add Software Channels

Before you register openSUSE clients to your Uyuni Server, you need to add the required software
channels, and synchronize them.

The architectures currently supported are: x86_64 and aarch64. For full list of supported products
and architectures, see Client-configuration › Supported-features.

In the following section, descriptions often default to the x86_64 architecture.
Replace it with other architectures if appropriate.

For example, when working with x86_64 architecture, you need this product:

Table 22. openSUSE Channels - CLI

OS Version openSUSE Leap 15.5 openSUSE Leap 15.4

Base Channel opensuse_leap15_5 opensuse_leap15_4

Client Channel opensuse_leap15_5-uyuni-client opensuse_leap15_4-uyuni-client

Updates Channel opensuse_leap15_5-updates opensuse_leap15_4-updates

Non-OSS Channel opensuse_leap15_5-non-oss opensuse_leap15_4-non-oss

Non-OSS Updates Channel opensuse_leap15_5-non-oss-
updates

opensuse_leap15_4-non-oss-
updates

Backports Updates Channel opensuse_leap15_5-backports-
updates

opensuse_leap15_4-backports-
updates

SLE Updates Channel opensuse_leap15_5-sle-updates opensuse_leap15_4-sle-updates

Procedure: Adding Software Channels at the Command Prompt

4.3. openSUSE Client Registration

83 / 218 4.3. openSUSE Client Registration | Uyuni 2023.10

1. At the command prompt on the Uyuni Server, as root, use the spacewalk-common-
channels command to add the appropriate channels:

spacewalk-common-channels \
<base_channel_label> \
<child_channel_label_1> \
<child_channel_label_2> \
... <child_channel_label_n>

2. If automatic synchronization is turned off, synchronize the channels:

spacewalk-repo-sync -p <base_channel_label>

3. Ensure the synchronization is complete before continuing.

4.3.1.2. Check Synchronization Status

Procedure: Checking Synchronization Progress from the Web UI

1. In the Uyuni Web UI, navigate to Software › Manage › Channels, then click the channel
associated to the repository.

2. Navigate to the Repositories tab, then click Sync and check Sync Status.

Procedure: Checking Synchronization Progress from the Command Prompt

1. At the command prompt on the Uyuni Server, as root, use the tail command to check the
synchronization log file:

tail -f /var/log/rhn/reposync/<channel-label>.log

2. Each child channel generates its own log during the synchronization progress. You need to check
all the base and child channel log files to be sure that the synchronization is complete.

openSUSE channels can be very large. Synchronization can sometimes take
several hours.

4.3.1.3. Manage GPG Keys

Clients use GPG keys to check the authenticity of software packages before they are installed. Only
trusted software can be installed on clients.

Trusting a GPG key is important for security on clients. It is the task of the
administrator to decide which keys are needed and can be trusted. Because a
software channel cannot be used when the GPG key is not trusted, the decision
of assigning a channel to a client depends on the decision of trusting the key.

4.3. openSUSE Client Registration

84 / 218 4.3. openSUSE Client Registration | Uyuni 2023.10

administration:custom-channels.pdf#_custom_channel_synchronization

For more information about GPG keys, see Client-configuration › Gpg-keys.

4.3.1.4. Register Clients

To register your clients, you need a bootstrap repository. By default, bootstrap repositories are
automatically created, and regenerated daily for all synchronized products. You can manually create the
bootstrap repository from the command prompt, using this command:

mgr-create-bootstrap-repo

For more information on registering your clients, see Client-configuration › Registration-overview.

4.3.2. Registering openSUSE Leap Micro Clients

This section contains information about registering clients running these openSUSE Leap Micro operating
systems:

• openSUSE Leap Micro 5.3 x86-64

• openSUSE Leap Micro 5.3 ARM64

The openSUSE Leap Micro is an ultra-reliable, lightweight operating system purpose built for edge
computing. It leverages the enterprise hardened security and compliance components of SUSE Linux
Enterprise and merges them with a modern, immutable, developer-friendly OS platform.

The openSUSE Leap Micro uses transactional updates. Transactional updates are atomic (all updates are
applied only if all updates succeed) and support rollbacks. They do not affect the running system because
no changes are activated until the system is rebooted. This information is displayed in the Systems ›
Details › Overview subtab.

For more information on transactional updates and rebooting, see https://documentation.suse.com/sles/
html/SLES-all/cha-transactional-updates.html.

Table 23. openSUSE Channels - CLI

OS Version openSUSE Leap Micro 5.3

Base Channel opensuse_micro5_3

Client Channel opensuse_micro5_3-sle-updates

SLE Updates Channel opensuse_micro5_3-uyuni-client

Procedure: Adding Software Channels at the Command Prompt

1. At the command prompt on the Uyuni Server, as root, use the spacewalk-common-
channels command to add the appropriate channels:

4.3. openSUSE Client Registration

85 / 218 4.3. openSUSE Client Registration | Uyuni 2023.10

https://documentation.suse.com/sles/html/SLES-all/cha-transactional-updates.html
https://documentation.suse.com/sles/html/SLES-all/cha-transactional-updates.html

spacewalk-common-channels \
<base_channel_label> \
<child_channel_label_1> \
<child_channel_label_2> \
... <child_channel_label_n>

2. If automatic synchronization is turned off, synchronize the channels:

spacewalk-repo-sync -p <base_channel_label>

3. Ensure the synchronization is complete before continuing.

4.3.2.1. Check Synchronization Status

Procedure: Checking Synchronization Progress from the Web UI

1. In the Uyuni Web UI, navigate to Software › Manage › Channels, then click the channel
associated to the repository.

2. Navigate to the Repositories tab, then click Sync and check Sync Status.

Procedure: Checking Synchronization Progress from the Command Prompt

1. At the command prompt on the Uyuni Server, as root, use the tail command to check the
synchronization log file:

tail -f /var/log/rhn/reposync/<channel-label>.log

2. Each child channel generates its own log during the synchronization progress. You need to check
all the base and child channel log files to be sure that the synchronization is complete.

openSUSE Leap Micro channels can be very large. Synchronization can
sometimes take several hours.

4.3.2.2. Register Clients

openSUSE Leap Micro clients require reboot after registering. Reboot is
automatically scheduled after registration is completed, but it is respecting the
default reboot manager maintenance window. This window may be several hours
after the client is registered. To speed up openSUSE Leap Micro registration,
manually reboot the client after the registration script finishes.

To register your clients, you need a bootstrap repository. By default, bootstrap repositories are
automatically created, and regenerated daily for all synchronized products. You can manually create the
bootstrap repository from the command prompt, using this command:

4.3. openSUSE Client Registration

86 / 218 4.3. openSUSE Client Registration | Uyuni 2023.10

administration:custom-channels.pdf#_custom_channel_synchronization

mgr-create-bootstrap-repo

For more information on registering your clients, see Client-configuration › Registration-overview.

4.4. Alibaba Cloud Linux Client Registration
You can register Alibaba Cloud Linux clients to your Uyuni Server. The method and details vary
depending on the operating system of the client.

Before you start, ensure that the client has the date and time synchronized correctly with the Uyuni
Server.

You must also have created an activation key. For more information about creating activation keys, see
Client-configuration › Activation-keys.

4.4.1. Registering Alibaba Cloud Linux Clients

This section contains information about registering traditional and Salt clients running Alibaba Cloud
Linux operating systems.

The traditional stack is available on Alibaba Cloud Linux 2 but it is not supported. Alibaba Cloud Linux 2
clients are only supported as Salt clients.

Some Alibaba Cloud Linux 2 instances will need two tries to register
successfully.

4.4.1.1. Add Software Channels

Before you register Alibaba Cloud Linux clients to your Uyuni Server, you need to add the required
software channels, and synchronize them.

In the following section, descriptions often default to the x86_64 architecture.
Replace it with other architectures if appropriate.

The channels you need for this procedure are:

Table 24. Alibaba Cloud Linux Channels - CLI

OS Version Core Channel Updates Channel Client Channel

Alibaba Cloud Linux 2 alibaba-2 alibaba-2-updates alibaba-2-uyuni-client

Procedure: Adding Software Channels at the Command Prompt

1. At the command prompt on the Uyuni Server, as root, use the spacewalk-common-
channels command to add the appropriate channels:

4.4. Alibaba Cloud Linux Client Registration

87 / 218 4.4. Alibaba Cloud Linux Client Registration | Uyuni 2023.10

spacewalk-common-channels \
<base_channel_label> \
<child_channel_label_1> \
<child_channel_label_2> \
... <child_channel_label_n>

2. If automatic synchronization is turned off, synchronize the channels:

spacewalk-repo-sync -p <base_channel_label>

3. Ensure the synchronization is complete before continuing.

The client tools channel provided by spacewalk-common-channels is
sourced from Uyuni and not from SUSE.

4.4.1.2. Check Synchronization Status

Procedure: Checking Synchronization Progress from the Web UI

1. In the Uyuni Web UI, navigate to Software › Manage › Channels, then click the channel
associated to the repository.

2. Navigate to the Repositories tab, then click Sync and check Sync Status.

Procedure: Checking Synchronization Progress from the Command Prompt

1. At the command prompt on the Uyuni Server, as root, use the tail command to check the
synchronization log file:

tail -f /var/log/rhn/reposync/<channel-label>.log

2. Each child channel generates its own log during the synchronization progress. You need to check
all the base and child channel log files to be sure that the synchronization is complete.

4.4.1.3. Create an Activation Key

You need to create an activation key that is associated with your Alibaba Cloud Linux channels.

For more information on activation keys, see Client-configuration › Activation-keys.

4.4.1.4. Register Clients

To register your clients, you need a bootstrap repository. By default, bootstrap repositories are
automatically created, and regenerated daily for all synchronized products. You can manually create the
bootstrap repository from the command prompt, using this command:

mgr-create-bootstrap-repo

4.4. Alibaba Cloud Linux Client Registration

88 / 218 4.4. Alibaba Cloud Linux Client Registration | Uyuni 2023.10

administration:custom-channels.pdf#_custom_channel_synchronization

For more information on registering your clients, see Client-configuration › Registration-overview.

Some Alibaba Cloud Linux 2 instances will fail to register on the first try.

This is due to a to a known bug in the Alibaba Cloud Linux 2 image.

The python-urlgrabber3 package is provided both as a Python pip package and an RPM package,
which can cause a conflict on the first attempt to register.

If your instance is based on one of the affected image versions, the client should register correctly on the
second registration attempt.

4.5. AlmaLinux Client Registration
You can register AlmaLinux clients to your Uyuni Server. The method and details vary depending on the
operating system of the client.

Before you start, ensure that the client has the date and time synchronized correctly with the Uyuni
Server.

You must also have created an activation key. For more information about creating activation keys, see
Client-configuration › Activation-keys.

4.5.1. Registering AlmaLinux Clients

This section contains information about registering Salt clients running AlmaLinux operating systems.

Traditional clients are not available on AlmaLinux. AlmaLinux clients are only supported as Salt clients.

When created at AWS, AlmaLinux instances always have the same machine-
id id at /etc/machine-id. Make sure you regenerate the machine-id
after the instance is created. For more information, see Administration ›
Troubleshooting.

4.5.1.1. Add Software Channels

Registering AlmaLinux clients to Uyuni is tested with the default SELinux
configuration of enforcing with a targeted policy. You do not need to
disable SELinux to register AlmaLinux clients to Uyuni.

Before you can register AlmaLinux clients to your Uyuni Server, you need to add the required software
channels, and synchronize them.

The architectures currently supported are: x86_64 and aarch64, on version 9 additionally ppc64le
and s390x. For full list of supported products and architectures, see Client-configuration › Supported-
features.

4.5. AlmaLinux Client Registration

89 / 218 4.5. AlmaLinux Client Registration | Uyuni 2023.10

In the following section, descriptions often default to the x86_64 architecture.
Replace it with other architectures if appropriate.

The channels you need for this procedure are:

Table 25. AlmaLinux Channels - CLI

OS Version Base Channel Client Channel AppStream Channel

AlmaLinux 9 almalinux9 almalinux9-uyuni-client almalinux9-appstream

AlmaLinux 8 almalinux8 almalinux8-uyuni-client almalinux8-appstream

Procedure: Adding Software Channels at the Command Prompt

1. At the command prompt on the Uyuni Server, as root, use the spacewalk-common-
channels command to add the appropriate channels. Ensure you specify the correct
architecture:

spacewalk-common-channels \
-a <architecture> \
<base_channel_name> \
<child_channel_name_1> \
<child_channel_name_2> \
... <child_channel_name_n>

2. If automatic synchronization is turned off, synchronize the channels:

spacewalk-repo-sync -p <base_channel_label>

3. Ensure the synchronization is complete before continuing.

The client tools channel provided by spacewalk-common-channels is
sourced from Uyuni and not from SUSE.

For AlmaLinux 9 and AlmaLinux 8 clients, add both the Base and AppStream
channels. You require packages from both channels. If you do not add both
channels, you cannot create the bootstrap repository, due to missing packages.

If you are using modular channels, you must enable the Python 3.6 module stream on the AlmaLinux 8
client. If you do not provide Python 3.6, the installation of the spacecmd package will fail.

4.5. AlmaLinux Client Registration

90 / 218 4.5. AlmaLinux Client Registration | Uyuni 2023.10

administration:custom-channels.pdf#_custom_channel_synchronization

You might notice some disparity in the number of packages available in the
AppStream channel between upstream and the Uyuni channel. You might also
see different numbers if you compare the same channel added at a different
point in time. This is due to the way that AlmaLinux manages their repositories.
AlmaLinux removes older version of packages when a new version is released,
while Uyuni keeps all of them, regardless of age.

The AppStream repository provides modular packages. This results in the Uyuni
Web UI showing incorrect package information. You cannot perform package
operations such as installing or upgrading directly from modular repositories
using the Web UI or API.

Alternatively, you can use Salt states to manage modular packages on Salt clients,
or use the dnf command on the client. For more information about CLM, see
Administration › Content-lifecycle.

4.5.1.2. Check Synchronization Status

Procedure: Checking Synchronization Progress from the Web UI

1. In the Uyuni Web UI, navigate to Software › Manage › Channels, then click the channel
associated to the repository.

2. Navigate to the Repositories tab, then click Sync and check Sync Status.

Procedure: Checking Synchronization Progress from the Command Prompt

1. At the command prompt on the Uyuni Server, as root, use the tail command to check the
synchronization log file:

tail -f /var/log/rhn/reposync/<channel-label>.log

2. Each child channel generates its own log during the synchronization progress. You need to check
all the base and child channel log files to be sure that the synchronization is complete.

4.5.1.3. Create an Activation Key

You need to create an activation key that is associated with your AlmaLinux channels.

For more information on activation keys, see Client-configuration › Activation-keys.

4.5.1.4. Manage GPG Keys

Clients use GPG keys to check the authenticity of software packages before they are installed. Only
trusted software can be installed on clients.

4.5. AlmaLinux Client Registration

91 / 218 4.5. AlmaLinux Client Registration | Uyuni 2023.10

Trusting a GPG key is important for security on clients. It is the task of the
adminstrator to decide which keys are needed and can be trusted. Because a
software channel cannot be used when the GPG key is not trusted, the decision
of assigning a channel to a client depends on the decision of trusting the key.

For more information about GPG keys, see Client-configuration › Gpg-keys.

4.5.1.5. Register Clients

To register your clients, you need a bootstrap repository. By default, bootstrap repositories are
automatically created, and regenerated daily for all synchronized products. You can manually create the
bootstrap repository from the command prompt, using this command:

mgr-create-bootstrap-repo

For more information on registering your clients, see Client-configuration › Registration-overview.

4.5.1.6. Manage Errata

When you update AlmaLinux clients, the packages include metadata about the updates.

4.6. Amazon Linux Client Registration
You can register Amazon Linux clients to your Uyuni Server. The method and details vary depending on
the operating system of the client.

Before you start, ensure that the client has the date and time synchronized correctly with the Uyuni
Server.

You must also have created an activation key. For more information about creating activation keys, see
Client-configuration › Activation-keys.

4.6.1. Registering Amazon Linux Clients

This section contains information about registering traditional and Salt clients running Amazon Linux
operating systems.

Traditional clients are not available on Amazon Linux 2. Amazon Linux 2 clients are only supported as
Salt clients.

When created at AWS, Amazon Linux instances always have the same
machine-id id at /etc/machine-id. Make sure you regenerate the
machine-id after the instance is created. For more information, see
Administration › Troubleshooting.

4.6. Amazon Linux Client Registration

92 / 218 4.6. Amazon Linux Client Registration | Uyuni 2023.10

4.6.1.1. Add Software Channels

Before you register Amazon Linux clients to your Uyuni Server, you need to add the required software
channels, and synchronize them.

The architectures currently supported are: x86_64 and aarch64. For full list of supported products
and architectures, see Client-configuration › Supported-features.

In the following section, descriptions often default to the x86_64 architecture.
Replace it with other architectures if appropriate.

The channels you need for this procedure are:

Table 26. Amazon Linux Channels - CLI

OS Version Core Channel Client Channel

Amazon Linux 2 amazonlinux2-core amazonlinux2-uyuni-client

Make sure you also add and sync amazonlinux2-extra-docker channel
if you plan to use Docker at your Amazon Linux instances.

Procedure: Adding Software Channels at the Command Prompt

1. At the command prompt on the Uyuni Server, as root, use the spacewalk-common-
channels command to add the appropriate channels:

spacewalk-common-channels \
<base_channel_label> \
<child_channel_label_1> \
<child_channel_label_2> \
... <child_channel_label_n>

2. If automatic synchronization is turned off, synchronize the channels:

spacewalk-repo-sync -p <base_channel_label>

3. Ensure the synchronization is complete before continuing.

The client tools channel provided by spacewalk-common-channels is
sourced from Uyuni and not from SUSE.

4.6.1.2. Check Synchronization Status

Procedure: Checking Synchronization Progress from the Web UI

1. In the Uyuni Web UI, navigate to Software › Manage › Channels, then click the channel
associated to the repository.

4.6. Amazon Linux Client Registration

93 / 218 4.6. Amazon Linux Client Registration | Uyuni 2023.10

administration:custom-channels.pdf#_custom_channel_synchronization

2. Navigate to the Repositories tab, then click Sync and check Sync Status.

Procedure: Checking Synchronization Progress from the Command Prompt

1. At the command prompt on the Uyuni Server, as root, use the tail command to check the
synchronization log file:

tail -f /var/log/rhn/reposync/<channel-label>.log

2. Each child channel generates its own log during the synchronization progress. You need to check
all the base and child channel log files to be sure that the synchronization is complete.

4.6.1.3. Create an Activation Key

You need to create an activation key that is associated with your Amazon Linux channels.

For more information on activation keys, see Client-configuration › Activation-keys.

4.6.1.4. Manage GPG Keys

Clients use GPG keys to check the authenticity of software packages before they are installed. Only
trusted software can be installed on clients.

Trusting a GPG key is important for security on clients. It is the task of the
administrator to decide which keys are needed and can be trusted. Because a
software channel cannot be used when the GPG key is not trusted, the decision
of assigning a channel to a client depends on the decision of trusting the key.

For more information about GPG keys, see Client-configuration › Gpg-keys.

4.6.1.5. Register Clients

To register your clients, you need a bootstrap repository. By default, bootstrap repositories are
automatically created, and regenerated daily for all synchronized products. You can manually create the
bootstrap repository from the command prompt, using this command:

mgr-create-bootstrap-repo

For more information on registering your clients, see Client-configuration › Registration-overview.

4.7. CentOS Client Registration
You can register CentOS clients to your Uyuni Server. The method and details varies depending on the
operating system of the client.

Before you start, ensure that the client has the date and time synchronized correctly with the Uyuni

4.7. CentOS Client Registration

94 / 218 4.7. CentOS Client Registration | Uyuni 2023.10

Server.

You must also have created an activation key. For more information about creating activation keys, see
Client-configuration › Activation-keys.

4.7.1. Registering CentOS Clients

This section contains information about registering Salt clients running CentOS operating systems.

You are responsible for arranging access to CentOS base media repositories and
CentOS installation media, as well as connecting Uyuni Server to the CentOS
content delivery network.

Registering CentOS clients to Uyuni is tested with the default SELinux
configuration of enforcing with a targeted policy. You do not need to
disable SELinux to register CentOS clients to Uyuni.

4.7.1.1. Add Software Channels

Before you can register CentOS clients to your Uyuni Server, you need to add the required software
channels, and synchronize them.

The architectures currently supported are: x86_64 and aarch64. For full list of supported products
and architectures, see Client-configuration › Supported-features.

In the following section, descriptions often default to the x86_64 architecture.
Replace it with other architectures if appropriate.

The channels you need for this procedure are:

Table 27. CentOS Channels - CLI

OS Version Base Channel Client Channel Updates/Appstream
Channel

CentOS 7 centos7 centos7-uyuni-client centos7-updates

Procedure: Adding Software Channels at the Command Prompt

1. At the command prompt on the Uyuni Server, as root, use the spacewalk-common-
channels command to add the appropriate channels. Ensure you specify the correct
architecture:

4.7. CentOS Client Registration

95 / 218 4.7. CentOS Client Registration | Uyuni 2023.10

spacewalk-common-channels \
-a <architecture> \
<base_channel_name> \
<child_channel_name_1> \
<child_channel_name_2> \
... <child_channel_name_n>

2. If automatic synchronization is turned off, synchronize the channels:

spacewalk-repo-sync -p <base_channel_label>

3. Ensure the synchronization is complete before continuing.

The client tools channel provided by spacewalk-common-channels is
sourced from Uyuni and not from SUSE.

If you are using modular channels, you must enable the Python 3.6 module stream on the client. If you do
not provide Python 3.6, the installation of the spacecmd package will fail.

You might notice some disparity in the number of packages available in the
AppStream channel between upstream and the Uyuni channel. You might also
see different numbers if you compare the same channel added at a different
point in time. This is due to the way that CentOS manages their repositories.
CentOS removes older version of packages when a new version is released, while
Uyuni keeps all of them, regardless of age.

The AppStream repository provides modular packages. This results in the Uyuni
Web UI showing incorrect package information. You cannot perform package
operations such as installing or upgrading directly from modular repositories
using the Web UI or API.

Alternatively, you can use Salt states to manage modular packages on Salt clients,
or use the dnf command on the client. For more information about CLM, see
Administration › Content-lifecycle.

4.7.1.2. Check Synchronization Status

Procedure: Checking Synchronization Progress from the Web UI

1. In the Uyuni Web UI, navigate to Software › Manage › Channels, then click the channel
associated to the repository.

2. Navigate to the Repositories tab, then click Sync and check Sync Status.

Procedure: Checking Synchronization Progress from the Command Prompt

1. At the command prompt on the Uyuni Server, as root, use the tail command to check the
synchronization log file:

4.7. CentOS Client Registration

96 / 218 4.7. CentOS Client Registration | Uyuni 2023.10

administration:custom-channels.pdf#_custom_channel_synchronization

tail -f /var/log/rhn/reposync/<channel-label>.log

2. Each child channel generates its own log during the synchronization progress. You need to check
all the base and child channel log files to be sure that the synchronization is complete.

4.7.1.3. Create an Activation Key

You need to create an activation key that is associated with your CentOS channels.

For more information on activation keys, see Client-configuration › Activation-keys.

4.7.1.4. Manage GPG Keys

Clients use GPG keys to check the authenticity of software packages before they are installed. Only
trusted software can be installed on clients.

Trusting a GPG key is important for security on clients. It is the task of the
administrator to decide which keys are needed and can be trusted. Because a
software channel cannot be used when the GPG key is not trusted, the decision
of assigning a channel to a client depends on the decision of trusting the key.

For more information about GPG keys, see Client-configuration › Gpg-keys.

4.7.1.5. Register Clients

To register your clients, you need a bootstrap repository. By default, bootstrap repositories are
automatically created, and regenerated daily for all synchronized products. You can manually create the
bootstrap repository from the command prompt, using this command:

mgr-create-bootstrap-repo

For more information on registering your clients, see Client-configuration › Registration-overview.

4.7.1.6. Manage Errata

When you update CentOS clients, the packages do not include metadata about the updates. You can use a
third-party errata service to obtain this information.

4.7. CentOS Client Registration

97 / 218 4.7. CentOS Client Registration | Uyuni 2023.10

The authors of CEFS provide patches or errata on a best-effort basis, in the hope
they are useful but with no guarantees of correctness or currency. This could
mean that the patch dates could be incorrect, and in at least one case, the
published data was shown to be more than a month old. For more information
on these cases, see https://github.com/stevemeier/cefs/issues/28#issuecomment-
656579382 and https://github.com/stevemeier/cefs/issues/28#issuecomment-
656573607.

Any problems or delays with the patch data might result in unreliable patch
information being imported to your Uyuni Server. This would cause reports,
audits, CVE updates, or other patch-related information to also be incorrect.
Please consider alternatives to using this service, such as independently verifying
patch data, or choosing a different operating system, depending on your security-
related requirements and certifications criteria.

Procedure: Installing an Errata Service

1. On the Uyuni Server, from the command prompt, as root, add the sle-module-
development-tools module:

SUSEConnect --product sle-module-development-tools/15.2/x86_64

2. Install errata service dependencies:

zypper in perl-Text-Unidecode

3. Add or edit this line in /etc/rhn/rhn.conf:

java.allow_adding_patches_via_api = centos7-updates-x86_64,centos7-
x86_64,centos7-extras-x86_64

4. Restart Tomcat:

systemctl restart tomcat

5. Create a file for your errata script:

touch /usr/local/bin/cent-errata.sh

6. Edit the new file to include this script, editing the repository details as required. This script fetches
the errata details from an external errata service, unpacks it, and publishes the details:

4.7. CentOS Client Registration

98 / 218 4.7. CentOS Client Registration | Uyuni 2023.10

https://github.com/stevemeier/cefs/issues/28#issuecomment-656579382
https://github.com/stevemeier/cefs/issues/28#issuecomment-656579382
https://github.com/stevemeier/cefs/issues/28#issuecomment-656573607
https://github.com/stevemeier/cefs/issues/28#issuecomment-656573607

#!/bin/bash
mkdir -p /usr/local/centos
cd /usr/local/centos
rm *.xml
wget -c http://cefs.steve-meier.de/errata.latest.xml
#wget -c https://www.redhat.com/security/data/oval/com.redhat.rhsa-
all.xml
wget -c https://www.redhat.com/security/data/oval/com.redhat.rhsa-
RHEL7.xml.bz2
bzip2 -d com.redhat.rhsa-RHEL7.xml.bz2
wget -c http://cefs.steve-meier.de/errata-import.tar
tar xvf errata-import.tar
chmod +x /usr/local/centos/errata-import.pl
export SPACEWALK_USER='<adminname>';export SPACEWALK_PASS='<password>'
/usr/local/centos/errata-import.pl --server '<servername>' \
--errata /usr/local/centos/errata.latest.xml \
--include-channels=centos7-updates-x86_64,centos7-x86_64,centos7-extras
-x86_64 \
--publish --rhsa-oval /usr/local/centos/com.redhat.rhsa-RHEL7.xml

7. Set up a cron job to run the script daily:

ln -s /usr/local/bin/cent-errata.sh /etc/cron.daily

For more information on this tool, see https://cefs.steve-meier.de/.

4.8. Debian Client Registration
You can register Debian clients to your Uyuni Server. The method and details varies depending on the
operating system of the client.

Before you start, ensure that the client has the date and time synchronized correctly with the Uyuni
Server.

You must also have created an activation key. For more information about creating activation keys, see
Client-configuration › Activation-keys.

4.8.1. Registering Debian Clients

This section contains information about registering Salt clients running Debian operating systems.

Debian is supported for Salt clients only. Traditional clients are not supported.

Bootstrapping can be used with Debian clients for performing initial state runs, and for profile updates.

4.8.1.1. Prepare to Register

Some preparation is required before you can register Debian clients to the Uyuni Server:

• Ensure DNS is correctly configured and provides an entry for the client. Alternatively, you can
configure the /etc/hosts files on both the Uyuni Server and the client with the appropriate

4.8. Debian Client Registration

99 / 218 4.8. Debian Client Registration | Uyuni 2023.10

https://cefs.steve-meier.de/

entries.

• The client must have the date and time synchronized with the Uyuni Server before registration.

4.8.1.2. Add Software Channels

Before you can register Debian clients to your Uyuni Server, you need to add the required software
channels, and synchronize them.

In the following section, descriptions often default to the x86_64 architecture.
Replace it with other architectures if appropriate.

The channels you need for this procedure are:

Table 28. Debian Channels - CLI

OS Version Base Channel Client Channel Updates Channel Security Channel

Debian 10 debian-10-pool-
amd64-uyuni

debian-10-amd64-
uyuni-client

debian-10-amd64-
main-updates-uyuni

debian-10-amd64-
main-security-uyuni

Debian 11 debian-11-pool-
amd64-uyuni

debian-11-amd64-
uyuni-client

debian-11-amd64-
main-updates-uyuni

debian-11-amd64-
main-security-uyuni

Debian 12 debian-12-pool-
amd64-uyuni

debian-12-amd64-
uyuni-client

debian-12-amd64-
main-updates-uyuni

debian-12-amd64-
main-security-uyuni

Procedure: Adding Software Channels at the Command Prompt

1. At the command prompt on the Uyuni Server, as root, use the spacewalk-common-
channels command to add the appropriate channels:

spacewalk-common-channels \
<base_channel_label> \
<child_channel_label_1> \
<child_channel_label_2> \
... <child_channel_label_n>

2. If automatic synchronization is turned off, synchronize the channels:

spacewalk-repo-sync -p <base_channel_label>

3. Ensure the synchronization is complete before continuing.

4.8.1.3. Check Synchronization Status

Procedure: Checking Synchronization Progress from the Web UI

1. In the Uyuni Web UI, navigate to Software › Manage › Channels, then click the channel
associated to the repository.

4.8. Debian Client Registration

100 / 218 4.8. Debian Client Registration | Uyuni 2023.10

administration:custom-channels.pdf#_custom_channel_synchronization

2. Navigate to the Repositories tab, then click Sync and check Sync Status.

Procedure: Checking Synchronization Progress from the Command Prompt

1. At the command prompt on the Uyuni Server, as root, use the tail command to check the
synchronization log file:

tail -f /var/log/rhn/reposync/<channel-label>.log

2. Each child channel generates its own log during the synchronization progress. You need to check
all the base and child channel log files to be sure that the synchronization is complete.

Debian channels can be very large. Synchronization can sometimes take several
hours.

4.8.1.4. Manage GPG Keys

Clients use GPG keys to check the authenticity of software packages before they are installed. Only
trusted software can be installed on clients.

Trusting a GPG key is important for security on clients. It is the task of the
administrator to decide which keys are needed and can be trusted. Because a
software channel cannot be used when the GPG key is not trusted, the decision
of assigning a channel to a client depends on the decision of trusting the key.

For more information about GPG keys, see Client-configuration › Gpg-keys.

 Debian clients can require multiple GPG keys to be installed.

When synchronizing third-party Debian repositories, you will need to import the appropriate GPG key on
the server. If the GPG key is missing, synchronization will fail.

For Debian repositories, only the metadata is signed. Therefore importing a GPG key for the software
channel is not needed. Packages will not be re-signed by Uyuni.

To see which GPG keys are already imported to Uyuni Server, run the following command:

sudo gpg --homedir /var/lib/spacewalk/gpgdir --list-keys

To import a new GPG key, use the --import parameter:

sudo gpg --homedir /var/lib/spacewalk/gpgdir --import <filename>.gpg

4.8. Debian Client Registration

101 / 218 4.8. Debian Client Registration | Uyuni 2023.10

4.8.1.5. Root Access

The root user on Debian is disabled by default for SSH access.

To be able to onboard using a regular user, you need to edit the sudoers file.

Procedure: Granting Root User Access

1. On the client, edit the sudoers file:

sudo visudo

Grant sudo access to the user by adding this line at the end of the sudoers file. Replace
<user> with the name of the user that is bootstrapping the client in the Web UI:

<user> ALL=NOPASSWD: /usr/bin/python, /usr/bin/python2,
/usr/bin/python3, /var/tmp/venv-salt-minion/bin/python

This procedure grants root access without requiring a password, which is
required for registering the client. When the client is successfully installed it runs
with root privileges, so the access is no longer required. We recommend that you
remove the line from the sudoers file after the client has been successfully
installed.

4.8.1.6. Register Clients

To register your clients, you need a bootstrap repository. By default, bootstrap repositories are
automatically created, and regenerated daily for all synchronized products. You can manually create the
bootstrap repository from the command prompt, using this command:

mgr-create-bootstrap-repo

For more information on registering your clients, see Client-configuration › Registration-overview.

4.9. Oracle Client Registration
You can register Oracle Linux clients to your Uyuni Server. The method and details varies depending on
the operating system of the client.

Before you start, ensure that the client has the date and time synchronized correctly with the Uyuni
Server.

You must also have created an activation key. For more information about creating activation keys, see
Client-configuration › Activation-keys.

4.9. Oracle Client Registration

102 / 218 4.9. Oracle Client Registration | Uyuni 2023.10

4.9.1. Registering Oracle Linux Clients

This section contains information about registering traditional and Salt clients running Oracle Linux
operating systems.

Traditional clients are not available on Oracle Linux 9 and 8. Oracle Linux 9 and Oracle Linux 8 clients
are only supported as Salt clients.

Direct synchronizing Unbreakable Linux Network (ULN) repositories with
Uyuni are not currently supported. An Oracle Local Distribution for ULN must
be used. For more information about setting up a local ULN mirror, see the
Oracle documentation provided at https://docs.oracle.com/en/operating-systems/
oracle-linux/software-management/sfw-mgmt-
UseSoftwareDistributionMirrors.html#local-uln-mirror.

4.9.1.1. Add Software Channels

Before you register Oracle Linux clients to your Uyuni Server, you need to add the required software
channels, and synchronize them.

The architectures currently supported are: x86_64 and aarch64. For full list of supported products
and architectures, see Client-configuration › Supported-features.

In the following section, descriptions often default to the x86_64 architecture.
Replace it with other architectures if appropriate.

The channels you need for this procedure are:

Table 29. Oracle Channels - CLI

OS Version Base Channel Client Channel Updates Channel

Oracle Linux 9 oraclelinux9 oraclelinux9-uyuni-client oraclelinux9-appstream

Oracle Linux 8 oraclelinux8 oraclelinux8-uyuni-client oraclelinux8-appstream

Oracle Linux 7 oraclelinux7 oraclelinux7-uyuni-client -

Procedure: Adding Software Channels at the Command Prompt

1. At the command prompt on the Uyuni Server, as root, use the spacewalk-common-
channels command to add the appropriate channels:

spacewalk-common-channels \
<base_channel_label> \
<child_channel_label_1> \
<child_channel_label_2> \
... <child_channel_label_n>

4.9. Oracle Client Registration

103 / 218 4.9. Oracle Client Registration | Uyuni 2023.10

https://docs.oracle.com/en/operating-systems/oracle-linux/software-management/sfw-mgmt-UseSoftwareDistributionMirrors.html#local-uln-mirror
https://docs.oracle.com/en/operating-systems/oracle-linux/software-management/sfw-mgmt-UseSoftwareDistributionMirrors.html#local-uln-mirror
https://docs.oracle.com/en/operating-systems/oracle-linux/software-management/sfw-mgmt-UseSoftwareDistributionMirrors.html#local-uln-mirror

2. If automatic synchronization is turned off, synchronize the channels:

spacewalk-repo-sync -p <base_channel_label>

3. Ensure the synchronization is complete before continuing.

The client tools channel provided by spacewalk-common-channels is
sourced from Uyuni and not from SUSE.

For Oracle Linux 9 and Oracle Linux 8 clients, add both the Base and
AppStream channels. You require packages from both channels. If you do not
add both channels, you cannot create the bootstrap repository, due to missing
packages.

If you are using modular channels, you must enable the Python 3.6 module stream on the client. If you do
not provide Python 3.6, the installation of the spacecmd package will fail.

The AppStream repository provides modular packages. This results in the Uyuni
Web UI showing incorrect package information. You cannot perform package
operations such as installing or upgrading directly from modular repositories
using the Web UI or API.

Alternatively, you can use Salt states to manage modular packages on Salt clients,
or use the dnf command on the client. For more information about CLM, see
Administration › Content-lifecycle.

4.9.1.2. Check Synchronization Status

Procedure: Checking Synchronization Progress from the Web UI

1. In the Uyuni Web UI, navigate to Software › Manage › Channels, then click the channel
associated to the repository.

2. Navigate to the Repositories tab, then click Sync and check Sync Status.

Procedure: Checking Synchronization Progress from the Command Prompt

1. At the command prompt on the Uyuni Server, as root, use the tail command to check the
synchronization log file:

tail -f /var/log/rhn/reposync/<channel-label>.log

2. Each child channel generates its own log during the synchronization progress. You need to check
all the base and child channel log files to be sure that the synchronization is complete.

4.9. Oracle Client Registration

104 / 218 4.9. Oracle Client Registration | Uyuni 2023.10

administration:custom-channels.pdf#_custom_channel_synchronization

4.9.1.3. Create an Activation Key

You need to create an activation key that is associated with your Oracle Linux channels.

For more information on activation keys, see Client-configuration › Activation-keys.

4.9.1.4. Manage GPG Keys

Clients use GPG keys to check the authenticity of software packages before they are installed. Only
trusted software can be installed on clients.

Trusting a GPG key is important for security on clients. It is the task of the
administrator to decide which keys are needed and can be trusted. Because a
software channel cannot be used when the GPG key is not trusted, the decision
of assigning a channel to a client depends on the decision of trusting the key.

For more information about GPG keys, see Client-configuration › Gpg-keys.

For Oracle Linux 9 and Oracle Linux 8 clients use

ol8-gpg-pubkey-82562EA9AD986DA3.key

For Oracle Linux 7 clients use

ol67-gpg-pubkey-72F97B74EC551F0A3.key

4.9.1.5. Register Clients

To register your clients, you need a bootstrap repository. By default, bootstrap repositories are
automatically created, and regenerated daily for all synchronized products. You can manually create the
bootstrap repository from the command prompt, using this command:

mgr-create-bootstrap-repo

For more information on registering your clients, see Client-configuration › Registration-overview.

4.10. Red Hat Client Registration
You can register Red Hat Enterprise Linux clients to your Uyuni Server using either the Red Hat content
delivery network (CDN), or Red Hat update infrastructure (RHUI). The method and details varies
depending on the operating system of the client.

Before you start, ensure that the client has the date and time synchronized correctly with the Uyuni
Server.

4.10. Red Hat Client Registration

105 / 218 4.10. Red Hat Client Registration | Uyuni 2023.10

You must also have created an activation key. For more information about creating activation keys, see
Client-configuration › Activation-keys.

4.10.1. Registering Red Hat Enterprise Linux Clients with CDN

This section contains information about using the Red Hat content delivery network (CDN) to register
Salt clients running Red Hat Enterprise Linux operating systems.

For information about using Red Hat update infrastructure (RHUI) instead, see Client-configuration ›
Clients-rh-rhui.

You are responsible for arranging access to Red Hat base media repositories and
RHEL installation media, as well as connecting Uyuni Server to the Red Hat
content delivery network. You must obtain support from Red Hat for all your
RHEL systems. If you do not do this, you might be violating your terms with
Red Hat.

4.10.1.1. Import Entitlements and Certificates

Red Hat clients require a Red Hat certificate authority (CA) and entitlement certificate, and an entitlement
key.

Entitlement certificates are embedded with expiration dates, which match the length of the support
subscription. To avoid disruption, you need to repeat this process at the end of every support subscription
period.

Red Hat supplies a subscription manager tool to manage subscription assignments. It runs locally to track
installed products and subscriptions. Clients must be registered with the subscription manager to obtain
certificates.

Red Hat clients use a URL to replicate repositories. The URL changes depending on where the Red Hat
client is registered.

Red Hat clients can be registered in three different ways:

• Red Hat content delivery network (CDN) at redhat.com

• Red Hat Satellite Server

• Red Hat update infrastructure (RHUI) in the cloud

This guide covers clients registered to Red Hat CDN. You must have at least one system registered to the
CDN, with an authorized subscription for repository content.

For information about using Red Hat update infrastructure (RHUI) instead, see Client-configuration ›
Clients-rh-rhui.

4.10. Red Hat Client Registration

106 / 218 4.10. Red Hat Client Registration | Uyuni 2023.10

Satellite certificates for client systems require a Satellite server and subscription.
Clients using Satellite certificates are not supported with Uyuni Server.

Entitlement certificates are embedded with expiration dates, which match the
length of the support subscription. To avoid disruption, you need to repeat this
process at the end of every support subscription period.

Red Hat supplies the subscription-manager tool to manage subscription assignments. It runs locally on the
client system to track installed products and subscriptions. Register to redhat.com with subscription-
manager, then follow this procedure to obtain certificates.

Procedure: Registering Clients to Subscription Manager

1. On the client system, at the command prompt, register with the subscription manager tool:

subscription-manager register

Enter your Red Hat Portal username and password when prompted.

2. Run command:

subscription-manager activate

3. Copy your entitlement certificate and key from the client system, to a location that the Uyuni
Server can access:

cp /etc/pki/entitlement/ /<example>/entitlement/

Your entitlement certificate and key both have a file extension of .pem.
The key also has key in the filename.

4. Copy the Red Hat CA Certificate file from the client system, to the same web location as the
entitlement certificate and key:

cp /etc/rhsm/ca/redhat-uep.pem /<example>/entitlement

To manage repositories on your Red Hat client, you need to import the CA and entitlement certificates to
the Uyuni Server. This requires that you perform the import procedure three times, to create three entries:
one each for the entitlement certificate, the entitlement key, and the Red Hat certificate.

Procedure: Importing Certificates to the Server

1. On the Uyuni Server Web UI, navigate to Systems › Autoinstallation › GPG and SSL Keys.

4.10. Red Hat Client Registration

107 / 218 4.10. Red Hat Client Registration | Uyuni 2023.10

2. Click [Create Stored Key/Cert] and set these parameters for the entitlement certificate:

◦ In the Description field, type Entitlement-Cert-date.

◦ In the Type field, select SSL.

◦ In the Select file to upload field, browse to the location where you saved the
entitlement certificate, and select the .pem certificate file.

3. Click [Create Key] .

4. Click [Create Stored Key/Cert] and set these parameters for the entitlement key:

◦ In the Description field, type Entitlement-key-date.

◦ In the Type field, select SSL.

◦ In the Select file to upload field, browse to the location where you saved the
entitlement key, and select the .pem key file.

5. Click [Create Key] .

6. Click [Create Stored Key/Cert] and set these parameters for the Red Hat certificate:

◦ In the Description field, type redhat-uep.

◦ In the Type field, select SSL.

◦ In the Select file to upload field, browse to the location where you saved the
Red Hat certificate, and select the certificate file.

7. Click [Create Key] .

4.10.1.2. Add Software Channels

Before you register Red Hat clients to your Uyuni Server, you need to add the required software channels,
and synchronize them.

In the following section, descriptions often default to the x86_64 architecture.
Replace it with other architectures if appropriate.

The channels you need for this procedure are:

Table 30. Red Hat Channels - CLI

OS Version Base Channel Client Channel Tools Channel

Red Hat 7 rhel7-pool-uyuni-x86_64 - rhel7-uyuni-client-
x86_64

Red Hat 8 rhel8-pool-uyuni-x86_64 - rhel8-uyuni-client-
x86_64

Red Hat 9 rhel9-pool-uyuni-x86_64 - rhel9-uyuni-client-
x86_64

Procedure: Adding Software Channels at the Command Prompt

4.10. Red Hat Client Registration

108 / 218 4.10. Red Hat Client Registration | Uyuni 2023.10

1. At the command prompt on the Uyuni Server, as root, use the spacewalk-common-
channels command to add the appropriate channels:

spacewalk-common-channels \
<base_channel_label> \
<child_channel_label_1> \
<child_channel_label_2> \
... <child_channel_label_n>

2. If automatic synchronization is turned off, synchronize the channels:

spacewalk-repo-sync -p <base_channel_label>

3. Ensure the synchronization is complete before continuing.

The client tools channel provided by spacewalk-common-channels is
sourced from Uyuni and not from SUSE.

The AppStream repository provides modular packages. This results in the Uyuni
Web UI showing incorrect package information. You cannot perform package
operations such as installing or upgrading directly from modular repositories
using the Web UI or API.

Alternatively, you can use Salt states to manage modular packages on Salt clients,
or use the dnf command on the client. For more information about CLM, see
Administration › Content-lifecycle.

4.10.1.3. Prepare Custom Repositories and Channels

To mirror the software from the Red Hat CDN, you need to create custom channels and repositories in
Uyuni that are linked to the CDN by a URL. You must have entitlements to these products in your Red
Hat Portal for this to work correctly. You can use the subscription manager tool to get the URLs of the
repositories you want to mirror:

subscription-manager repos

You can use these repository URLs to create custom repositories. This allows you to mirror only the
content you need to manage your clients.

You can only create custom versions of Red Hat repositories if you have the
correct entitlements in your Red Hat Portal.

The details you need for this procedure are:

Table 31. Red Hat Custom Repository Settings

4.10. Red Hat Client Registration

109 / 218 4.10. Red Hat Client Registration | Uyuni 2023.10

administration:custom-channels.pdf#_custom_channel_synchronization

Option Setting

Repository URL The content URL provided by Red Hat CDN

Has Signed Metadata? Uncheck all Red Hat Enterprise repositories

SSL CA Certificate redhat-uep

SSL Client Certificate Entitlement-Cert-date

SSL Client Key Entitlement-Key-date

Procedure: Creating Custom Repositories

1. On the Uyuni Server Web UI, navigate to Software › Manage › Repositories.

2. Click [Create Repository] and set the appropriate parameters for the repository.

3. Click [Create Repository] .

4. Repeat for all repositories you need to create.

The channels you need for this procedure are:

Table 32. Red Hat Custom Channels

OS Version Base Channel

Red Hat 7 rhel7-pool-uyuni-x86_64

Red Hat 8 rhel8-pool-uyuni-x86_64

Red Hat 9 rhel9-pool-uyuni-x86_64

Procedure: Creating Custom Channels

1. On the Uyuni Server Web UI, navigate to Software › Manage › Channels.

2. Click [Create Channel] and set the appropriate parameters for the channels.

3. In the Parent Channel field, select the appropriate base channel.

4. Click [Create Channel] .

5. Repeat for all channels you need to create. There should be one custom channel for each custom
repository.

You can check that you have created all the appropriate channels and repositories, by navigating to
Software › Channel List › All.

For Red Hat 8 clients, add both the Base and AppStream channels. You require
packages from both channels. If you do not add both channels, you cannot create
the bootstrap repository, due to missing packages.

If you are using modular channels, you must enable the Python 3.6 module stream on the client. If you do

4.10. Red Hat Client Registration

110 / 218 4.10. Red Hat Client Registration | Uyuni 2023.10

not provide Python 3.6, the installation of the spacecmd package will fail.

When you have created all the channels, you can associate them with the repositories you created:

Procedure: Associating Channels with Repositories

1. On the Uyuni Server Web UI, navigate to Software › Manage › Channels, and click the channel
to associate.

2. Navigate to the Repositories tab, and check the repository to associate with this channel.

3. Click [Update Repositories] to associate the channel and the repository.

4. Repeat for all channels and repositories you need to associate.

5. OPTIONAL: Navigate to the Sync tab to set a recurring schedule for synchronization of this
repository.

6. Click [Sync Now] to begin synchronization immediately.

4.10.1.4. Check Synchronization Status

Procedure: Checking Synchronization Progress from the Web UI

1. In the Uyuni Web UI, navigate to Software › Manage › Channels, then click the channel
associated to the repository.

2. Navigate to the Repositories tab, then click Sync and check Sync Status.

Procedure: Checking Synchronization Progress from the Command Prompt

1. At the command prompt on the Uyuni Server, as root, use the tail command to check the
synchronization log file:

tail -f /var/log/rhn/reposync/<channel-label>.log

2. Each child channel generates its own log during the synchronization progress. You need to check
all the base and child channel log files to be sure that the synchronization is complete.

Red Hat Enterprise Linux channels can be very large. Synchronization can
sometimes take several hours.

Procedure: OPTIONAL: Creating a Salt State to Deploy Configuration Files

1. On the Uyuni Server Web UI, navigate to Configuration › Channels.

2. Click [Create State Channel] .

◦ In the Name field, type subscription-manager: disable yum plugins.

◦ In the Label field, type subscription-manager-disable-yum-plugins.

◦ In the Description field, type subscription-manager: disable yum

plugins.

◦ In the SLS Contents field, leave it empty.

4.10. Red Hat Client Registration

111 / 218 4.10. Red Hat Client Registration | Uyuni 2023.10

3. Click [Create Config Channel]

4. Click [Create Configuration File]

◦ In the Filename/Path field type /etc/yum/pluginconf.d/subscription-
manager.conf.

◦ In the File Contents field type:

[main]
enabled=0

5. Click [Create Configuration File]

6. Take note of the value of the field Salt Filesystem Path`.

7. Click on the name of the Configuration Channel.

8. Click on View/Edit 'init.sls' File

◦ In the File Contents field, type:

configure_subscription-manager-disable-yum-plugins:
 cmd.run:
 - name: subscription-manager config
--rhsm.auto_enable_yum_plugins=0
 - watch:
 - file: /etc/yum/pluginconf.d/subscription-manager.conf
 file.managed:
 - name: /etc/yum/pluginconf.d/subscription-manager.conf
 - source: salt:///etc/yum/pluginconf.d/subscription-
manager.conf

9. Click [Update Configuration File] .

The Creating a Salt State to Deploy Configuration

Files procedure is optional.

Procedure: Creating a System Group for Red Hat Enterprise Linux Clients

1. On the Uyuni Server Web UI, navigate to Systems › System Groups.

2. Click [Create Group] .

◦ In the Name field, type rhel-systems.

◦ In the Description field, type All RHEL systems.

3. Click [Create Group] .

4. Click States tab.

5. Click Configuration Channels tab.

6. Type subscription-manager: disable yum plugins at the search box.

7. Click [Search] to see the state.

4.10. Red Hat Client Registration

112 / 218 4.10. Red Hat Client Registration | Uyuni 2023.10

8. Click the checkbox for the state at the Assign column.

9. Click [Save changes] .

10. Click [Confirm] .

If you already have RHEL systems added to Uyuni, assign them to the new system group, and then apply
the highstate.

Procedure: Adding the System Group to Activation Keys

You need to modify the activation keys you used for RHEL systems to include the system group created
above.

1. On the Uyuni Server Web UI, navigate to Systems › Activation Keys.

2. For each the Activation Keys you used for RHEL systems, click on it and:

3. Navigate to the Groups tab, and the Join subtab.

4. Check Select rhel-systems.

5. Click [Join Selected Groups] .

4.10.1.5. Manage GPG Keys

Clients use GPG keys to check the authenticity of software packages before they are installed. Only
trusted software can be installed on clients.

Trusting a GPG key is important for security on clients. It is the task of the
administrator to decide which keys are needed and can be trusted. Because a
software channel cannot be used when the GPG key is not trusted, the decision
of assigning a channel to a client depends on the decision of trusting the key.

For more information about GPG keys, see Client-configuration › Gpg-keys.

For the Red Hat custom channels, if you want to check the Enable GPG
Check field, you need to populate the GPG Key URL field. You can use the
file URL of the GPG key stored in the directory /etc/pki/rpm-gpg of the
Red Hat minion.

Example: file:///etc/pki/rpm-gpg/RPM-GPG-KEY-redhat-
release

For the complete list of the Red Hat product signing keys, see
https://access.redhat.com/security/team/key.

4.10.1.6. Register Clients

To register your clients, you need a bootstrap repository. By default, bootstrap repositories are
automatically created, and regenerated daily for all synchronized products. You can manually create the

4.10. Red Hat Client Registration

113 / 218 4.10. Red Hat Client Registration | Uyuni 2023.10

file:///etc/pki/rpm-gpg/RPM-GPG-KEY-redhat-release
file:///etc/pki/rpm-gpg/RPM-GPG-KEY-redhat-release
https://access.redhat.com/security/team/key

bootstrap repository from the command prompt, using this command:

mgr-create-bootstrap-repo

For more information on registering your clients, see Client-configuration › Registration-overview.

4.10.2. Registering Red Hat Enterprise Linux Clients with RHUI

This section contains information about using Red Hat update infrastructure (RHUI) to register Salt
clients running Red Hat Enterprise Linux operating systems.

If you are running your clients in a public cloud, such as Amazon EC2, use this method.

It is possible to use RHUI in conjunction with the Red Hat content delivery network (CDN) to manage
your Red Hat Enterprise Linux subscriptions. For information about using Red Hat CDN, see Client-
configuration › Clients-rh-cdn.

You are responsible for connecting Uyuni Server to the Red Hat update
infrastructure. All clients that get updates using this RHUI certificate need to be
correctly licensed, please check with your cloud provider and the Red Hat terms
of service for more information.

When Red Hat Enterprise Linux clients registered with RHUI are switched off,
Red Hat might declare the certificate invalid. In this case, you need to turn the
client on again, or get a new RHUI certificate.

4.10.2.1. Import Entitlements and Certificates

In the past it was required to import the certificates and entitlement data manual into Uyuni Server. We
automated this task now by using the same mechanism as for SUSE PAYG instances. See also
Installation-and-upgrade › Connect-payg.

This guide covers clients registered to Red Hat update infrastructure (RHUI). You must have at least one
system registered to RHUI, with an authorized subscription for repository content.

For information about using Red Hat content delivery network (CDN) instead, see Client-configuration ›
Clients-rh-cdn.

Satellite certificates for client systems require a Satellite server and subscription.
Clients using Satellite certificates are not supported with Uyuni Server.

4.10. Red Hat Client Registration

114 / 218 4.10. Red Hat Client Registration | Uyuni 2023.10

The PAYG connection regular checks with the client to get the latest
authentication data. It is important that the client stays running and is regular
updated. If this does not happen, repository synchronization will fail with
authentication errors at some point in time.

 Update any Red Hat 7 instance before connecting it.

A Red Hat 9 instance needs to be configured with the crypto policy LEGACY to
be able to connect it. Execute sudo update-crypto-policies --set
LEGACY to configure it accordingly.

4.10.2.2. Connecting to Red Hat update infrastructure

Procedure: Connecting new Red Hat instance

1. In the Uyuni Web UI, navigate to Admin › Setup Wizard › PAYG, and click [Add PAYG] .

2. Start with the page section PAYG connection Description.

3. In the Description field, add the description.

4. Move to the page section Instance SSH connection data.

5. In the Host field, enter the instance DNS or IP address to connect from Uyuni.

6. In the SSH Port field, enter the port number or use default value 22.

7. In the User field, enter the username as specified in the cloud.

8. In the Password field, enter the password.

9. In the SSH Private Key field, enter the instance key.

10. In the SSH Private Key Passphrase field, enter the key passphrase.

 Authentication keys must always be in PEM format.

If you are not connecting directly to the instance, but via SSH bastion, proceed with Procedure: Adding
SSH bastion connection data.

Otherwise, continue with Procedure: Finishing Red Hat connecting.

Procedure: Adding SSH bastion connection data

1. Navigate to the page section Bastion SSH connection data.

2. In the Host field, enter the bastion hostname.

3. In the SSH Port field, enter the bastion port number.

4. In the User field, enter the bastion username.

5. In the Password field, enter the bastion password.

6. In the SSH Private Key field, enter the bastion key.

4.10. Red Hat Client Registration

115 / 218 4.10. Red Hat Client Registration | Uyuni 2023.10

7. In the SSH Private Key Passphrase field, enter the bastion key passphrase.

Complete the setup with Procedure: Finishing Red Hat connecting.

Procedure: Finishing Red Hat connecting

1. To complete adding new Red Hat connection data, click [Create] .

2. Return to PAYG connection data Details page. The updated connection status is displayed on
the top section named Information.

3. Connection status is shown in Admin > Setup Wizard > Pay-as-you-go screen, too.

4. If the authentication data for the instance is correct, the column Status shows Credentials
successfully updated.

If invalid data is entered at any point, the newly created instance is shown in
Admin > Setup Wizard > PAYG, with column Status displaying an
error message.

As soon as the authentication data is available on the server, repositories were added for all available
repositories on the connected instance. The repositories can be seen in Software > Manage >
Repositories

A Red Hat connection will create custom repositories which are owned by
organization 1 by default. If a different organization should own the
autogenerated repositories, configure java.rhui_default_org_id in
/etc/rhn/rhn.conf

This only defines and updates the repositories. If you want to use a repository for a managed client, you
need to specify a Software Channel and connect the repositories to it.

4.10.2.3. Add Software Channels

Before you register Red Hat clients to your Uyuni Server, you need to add the required software channels,
and synchronize them.

In the following section, descriptions often default to the x86_64 architecture.
Replace it with other architectures if appropriate.

The channels you need for this procedure are:

Table 33. Red Hat Channels - CLI

OS Version Base Channel Client Channel Tools Channel

Red Hat 7 rhel7-pool-uyuni-x86_64 - rhel7-uyuni-client-
x86_64

4.10. Red Hat Client Registration

116 / 218 4.10. Red Hat Client Registration | Uyuni 2023.10

OS Version Base Channel Client Channel Tools Channel

Red Hat 8 rhel8-pool-uyuni-x86_64 - rhel8-uyuni-client-
x86_64

Red Hat 9 rhel9-pool-uyuni-x86_64 - rhel9-uyuni-client-
x86_64

Procedure: Adding Software Channels at the Command Prompt

1. At the command prompt on the Uyuni Server, as root, use the spacewalk-common-
channels command to add the appropriate channels:

spacewalk-common-channels \
<base_channel_label> \
<child_channel_label_1> \
<child_channel_label_2> \
... <child_channel_label_n>

2. If automatic synchronization is turned off, synchronize the channels:

spacewalk-repo-sync -p <base_channel_label>

3. Ensure the synchronization is complete before continuing.

The client tools channel provided by spacewalk-common-channels is
sourced from Uyuni and not from SUSE.

The AppStream repository provides modular packages. This results in the Uyuni
Web UI showing incorrect package information. You cannot perform package
operations such as installing or upgrading directly from modular repositories
using the Web UI or API.

Alternatively, you can use Salt states to manage modular packages on Salt clients,
or use the dnf command on the client. For more information about CLM, see
Administration › Content-lifecycle.

4.10.2.4. Prepare Custom Channels

To mirror the software from RHUI, you need to create custom channels in Uyuni that are linked to
autogenerated repositories.

The channels you need for this procedure are:

Table 34. Red Hat Custom Channels

4.10. Red Hat Client Registration

117 / 218 4.10. Red Hat Client Registration | Uyuni 2023.10

administration:custom-channels.pdf#_custom_channel_synchronization

OS Version Base Channel

Red Hat 7 rhel7-pool-uyuni-x86_64

Red Hat 8 rhel8-pool-uyuni-x86_64

Red Hat 9 rhel9-pool-uyuni-x86_64

Procedure: Creating Custom Channels

1. On the Uyuni Server Web UI, navigate to Software › Manage › Channels.

2. Click [Create Channel] and set the appropriate parameters for the channels.

3. In the Parent Channel field, select the appropriate base channel.

4. Click [Create Channel] .

5. Repeat for all channels you need to create. There should be one custom channel for each custom
repository.

You can check that you have created all the appropriate channels and repositories, by navigating to
Software › Channel List › All.

For Red Hat 8 clients, add both the Base and AppStream channels. You require
packages from both channels. If you do not add both channels, you cannot create
the bootstrap repository, due to missing packages.

When you have created all the channels, you can associate them with the repositories you created:

Procedure: Associating Channels with Repositories

1. On the Uyuni Server Web UI, navigate to Software › Manage › Channels, and click the channel
to associate.

2. Navigate to the Repositories tab, and check the repository to associate with this channel.

3. Click [Update Repositories] to associate the channel and the repository.

4. Repeat for all channels and repositories you need to associate.

5. OPTIONAL: Navigate to the Sync tab to set a recurring schedule for synchronization of this
repository.

6. Click [Sync Now] to begin synchronization immediately.

4.10.2.5. Check Synchronization Status

Procedure: Checking Synchronization Progress from the Web UI

1. In the Uyuni Web UI, navigate to Software › Manage › Channels, then click the channel
associated to the repository.

2. Navigate to the Repositories tab, then click Sync and check Sync Status.

Procedure: Checking Synchronization Progress from the Command Prompt

4.10. Red Hat Client Registration

118 / 218 4.10. Red Hat Client Registration | Uyuni 2023.10

1. At the command prompt on the Uyuni Server, as root, use the tail command to check the
synchronization log file:

tail -f /var/log/rhn/reposync/<channel-label>.log

2. Each child channel generates its own log during the synchronization progress. You need to check
all the base and child channel log files to be sure that the synchronization is complete.

Red Hat Enterprise Linux channels can be very large. Synchronization can
sometimes take several hours.

4.10.2.6. Manage GPG Keys

Clients use GPG keys to check the authenticity of software packages before they are installed. Only
trusted software can be installed on clients.

Trusting a GPG key is important for security on clients. It is the task of the
administrator to decide which keys are needed and can be trusted. Because a
software channel cannot be used when the GPG key is not trusted, the decision
of assigning a channel to a client depends on the decision of trusting the key.

For more information about GPG keys, see Client-configuration › Gpg-keys.

4.10.2.7. Register Clients

To register your clients, you need a bootstrap repository. By default, bootstrap repositories are
automatically created, and regenerated daily for all synchronized products. You can manually create the
bootstrap repository from the command prompt, using this command:

mgr-create-bootstrap-repo

For more information on registering your clients, see Client-configuration › Registration-overview.

4.11. Rocky Linux Client Registration
You can register Rocky Linux clients to your Uyuni Server. The method and details vary depending on
the operating system of the client.

Before you start, ensure that the client has the date and time synchronized correctly with the Uyuni
Server.

You must also have created an activation key. For more information about creating activation keys, see
Client-configuration › Activation-keys.

4.11. Rocky Linux Client Registration

119 / 218 4.11. Rocky Linux Client Registration | Uyuni 2023.10

4.11.1. Registering Rocky Linux Clients

This section contains information about registering Salt clients running Rocky Linux operating systems.

Registering Rocky Linux clients to Uyuni is tested with the default SELinux
configuration of enforcing with a targeted policy. You do not need to
disable SELinux to register Rocky Linux clients to Uyuni.

4.11.1.1. Add Software Channels

Before you can register Rocky Linux clients to your Uyuni Server, you need to add the required software
channels, and synchronize them.

The architectures currently supported are: x86_64 and aarch64, on version 9 additionally ppc64le
and s390x. For full list of supported products and architectures, see Client-configuration › Supported-
features.

In the following section, descriptions often default to the x86_64 architecture.
Replace it with other architectures if appropriate.

The channels you need for this procedure are:

Table 35. Rocky Linux Channels - CLI

OS Version Base Channel Client Channel AppStream Channel

Rocky Linux 9 rockylinux9 rockylinux9-uyuni-client rockylinux9-appstream

Rocky Linux 8 rockylinux8 rockylinux8-uyuni-client rockylinux8-appstream

Procedure: Adding Software Channels at the Command Prompt

1. At the command prompt on the Uyuni Server, as root, use the spacewalk-common-
channels command to add the appropriate channels. Ensure you specify the correct
architecture:

spacewalk-common-channels \
-a <architecture> \
<base_channel_name> \
<child_channel_name_1> \
<child_channel_name_2> \
... <child_channel_name_n>

2. If automatic synchronization is turned off, synchronize the channels:

spacewalk-repo-sync -p <base_channel_label>

3. Ensure the synchronization is complete before continuing.

4.11. Rocky Linux Client Registration

120 / 218 4.11. Rocky Linux Client Registration | Uyuni 2023.10

administration:custom-channels.pdf#_custom_channel_synchronization

The client tools channel provided by spacewalk-common-channels is
sourced from Uyuni and not from SUSE.

For Rocky Linux 8 and Rocky Linux 9 clients, add both the Base and
AppStream channels. You require packages from both channels. If you do not
add both channels, you cannot create the bootstrap repository, due to missing
packages.

You might notice some disparity in the number of packages available in the
AppStream channel between upstream and the Uyuni channel. You might also
see different numbers if you compare the same channel added at a different
point in time. This is due to the way that Rocky Linux manages their
repositories. Rocky Linux removes older version of packages when a new
version is released, while Uyuni keeps all of them, regardless of age.

If you are using modular channels with Rocky Linux 8, you must enable the Python 3.6 module stream on
the client. If you do not provide Python 3.6, the installation of the spacecmd package will fail.

The AppStream repository provides modular packages. This results in the Uyuni
Web UI showing incorrect package information. You cannot perform package
operations such as installing or upgrading directly from modular repositories
using the Web UI or API.

Alternatively, you can use Salt states to manage modular packages on Salt clients,
or use the dnf command on the client. For more information about CLM, see
Administration › Content-lifecycle.

4.11.1.2. Check Synchronization Status

Procedure: Checking Synchronization Progress from the Web UI

1. In the Uyuni Web UI, navigate to Software › Manage › Channels, then click the channel
associated to the repository.

2. Navigate to the Repositories tab, then click Sync and check Sync Status.

Procedure: Checking Synchronization Progress from the Command Prompt

1. At the command prompt on the Uyuni Server, as root, use the tail command to check the
synchronization log file:

tail -f /var/log/rhn/reposync/<channel-label>.log

2. Each child channel generates its own log during the synchronization progress. You need to check
all the base and child channel log files to be sure that the synchronization is complete.

4.11. Rocky Linux Client Registration

121 / 218 4.11. Rocky Linux Client Registration | Uyuni 2023.10

4.11.1.3. Create an Activation Key

You need to create an activation key that is associated with your Rocky Linux channels.

For more information on activation keys, see Client-configuration › Activation-keys.

4.11.1.4. Manage GPG Keys

Clients use GPG keys to check the authenticity of software packages before they are installed. Only
trusted software can be installed on clients.

Trusting a GPG key is important for security on clients. It is the task of the
administrator to decide which keys are needed and can be trusted. A software
channel cannot be assigned to a client when the GPG key is not trusted.

For more information about GPG keys, see Client-configuration › Gpg-keys.

4.11.1.5. Register Clients

To register your clients, you need a bootstrap repository. By default, bootstrap repositories are
automatically created, and regenerated daily for all synchronized products. You can manually create the
bootstrap repository from the command prompt, using this command:

mgr-create-bootstrap-repo

For more information on registering your clients, see Client-configuration › Registration-overview.

4.11.1.6. Manage Errata

When you update Rocky Linux clients, the packages include metadata about the updates.

4.12. Ubuntu Client Registration
You can register Ubuntu clients to your Uyuni Server. The method and details varies depending on the
operating system of the client.

Before you start, ensure that the client has the date and time synchronized correctly with the Uyuni
Server.

You must also have created an activation key. For more information about creating activation keys, see
Client-configuration › Activation-keys.

4.12.1. Registering Ubuntu 20.04 and 22.04 Clients

This section contains information about registering Salt clients running Ubuntu 20.04 LTS and 22.04 LTS
operating systems.

4.12. Ubuntu Client Registration

122 / 218 4.12. Ubuntu Client Registration | Uyuni 2023.10

Ubuntu is supported for Salt clients only. Traditional clients are not supported.

Bootstrapping is supported for starting Ubuntu clients and performing initial state runs such as setting
repositories and performing profile updates. However, the root user on Ubuntu is disabled by default, so
to use bootstrapping, you require an existing user with sudo privileges for Python.

 Canonical does not endorse or support Uyuni.

4.12.1.1. Add Software Channels

Before you register Ubuntu clients to your Uyuni Server, you need to add the required software channels,
and synchronize them.

In the following section, descriptions often default to the x86_64 architecture.
Replace it with other architectures if appropriate.

The channels you need for this procedure are:

Table 36. Ubuntu Channels - CLI

OS Version Base Channel Main Channel Updates
Channel

Security
Channel

Client Channel

Ubuntu 20.04 ubuntu-2004-
pool-amd64-
uyuni

ubuntu-2004-
amd64-main-
uyuni

ubuntu-2004-
amd64-main-
updates-uyuni

ubuntu-2004-
amd64-main-
security-uyuni

ubuntu-2004-
amd64-uyuni-
client

Ubuntu 22.04 ubuntu-2204-
pool-amd64-
uyuni

ubuntu-2204-
amd64-main-
uyuni

ubuntu-2204-
amd64-main-
updates-uyuni

ubuntu-2204-
amd64-main-
security-uyuni

ubuntu-2204-
amd64-uyuni-
client

Version 20.04 also requires the Universe channels:

Table 37. Ubuntu 20.04 Universe Channels - CLI

Ubuntu 20.04

Universe Channel ubuntu-2004-amd64-universe-uyuni

Universe Updates Channel ubuntu-2004-amd64-universe-updates-uyuni

Universe Security Updates Channel ubuntu-2004-amd64-universe-security-uyuni

Universe Backports Channel ubuntu-2004-amd64-universe-backports-uyuni

Procedure: Adding Software Channels at the Command Prompt

1. At the command prompt on the Uyuni Server, as root, use the spacewalk-common-
channels command to add the appropriate channels:

4.12. Ubuntu Client Registration

123 / 218 4.12. Ubuntu Client Registration | Uyuni 2023.10

spacewalk-common-channels \
<base_channel_label> \
<child_channel_label_1> \
<child_channel_label_2> \
... <child_channel_label_n>

2. If automatic synchronization is turned off, synchronize the channels:

spacewalk-repo-sync -p <base_channel_label>

3. Ensure the synchronization is complete before continuing.

You need all the new channels fully synchronized before bootstrapping any
Ubuntu client.

4.12.1.2. Check Synchronization Status

Procedure: Checking Synchronization Progress from the Web UI

1. In the Uyuni Web UI, navigate to Software › Manage › Channels, then click the channel
associated to the repository.

2. Navigate to the Repositories tab, then click Sync and check Sync Status.

Procedure: Checking Synchronization Progress from the Command Prompt

1. At the command prompt on the Uyuni Server, as root, use the tail command to check the
synchronization log file:

tail -f /var/log/rhn/reposync/<channel-label>.log

2. Each child channel generates its own log during the synchronization progress. You need to check
all the base and child channel log files to be sure that the synchronization is complete.

Ubuntu channels can be very large. Synchronization can sometimes take several
hours.

4.12.1.3. Manage GPG Keys

Clients use GPG keys to check the authenticity of software packages before they are installed. Only
trusted software can be installed on clients.

Trusting a GPG key is important for security on clients. It is the task of the
administrator to decide which keys are needed and can be trusted. Because a
software channel cannot be used when the GPG key is not trusted, the decision
of assigning a channel to a client depends on the decision of trusting the key.

4.12. Ubuntu Client Registration

124 / 218 4.12. Ubuntu Client Registration | Uyuni 2023.10

administration:custom-channels.pdf#_custom_channel_synchronization

For more information about GPG keys, see Client-configuration › Gpg-keys.

4.12.1.4. Root Access

The root user on Ubuntu is disabled by default for SSH access.

To be able to onboard using a regular user, you need to edit the sudoers file.

This issue happens with self-installed versions of Ubuntu. If the default user has
been granted administrative privileges during installation time, a password is
requiered to perform privilege escalation using sudo. With cloud instances this
does not happen because cloud-init automatically creates a file under
/etc/sudoers.d and grants privilege escalation through sudo without the
need for a password.

Procedure: Granting Root User Access

1. On the client, edit the sudoers file:

sudo visudo

Grant sudo access to the user by adding this line at the end of the sudoers file. Replace
<user> with the name of the user that is bootstrapping the client in the Web UI:

<user> ALL=NOPASSWD: /usr/bin/python, /usr/bin/python2,
/usr/bin/python3, /var/tmp/venv-salt-minion/bin/python

This procedure grants root access without requiring a password, which is
required for registering the client. When the client is successfully installed it runs
with root privileges, so the access is no longer required. We recommend that you
remove the line from the sudoers file after the client has been successfully
installed.

4.12.1.5. Register Clients

To register your clients, you need a bootstrap repository. By default, bootstrap repositories are
automatically created, and regenerated daily for all synchronized products. You can manually create the
bootstrap repository from the command prompt, using this command:

mgr-create-bootstrap-repo

For more information on registering your clients, see Client-configuration › Registration-overview.

4.12. Ubuntu Client Registration

125 / 218 4.12. Ubuntu Client Registration | Uyuni 2023.10

4.12.2. Registering Ubuntu 18.04 Clients

This section contains information about registering Salt clients running Ubuntu 18.04 LTS operating
systems.

Uyuni supports Ubuntu 18.04 LTS clients using Salt.

Ubuntu is supported for Salt clients only. Traditional clients are not supported.

Bootstrapping is supported for starting Ubuntu clients and performing initial state runs such as setting
repositories and performing profile updates. However, the root user on Ubuntu is disabled by default, so
to use bootstrapping, you require an existing user with sudo privileges for Python.

 Canonical does not endorse or support Uyuni.

4.12.2.1. Add Software Channels

Before you register Ubuntu clients to your Uyuni Server, you need to add the required software channels,
and synchronize them.

In the following section, descriptions often default to the x86_64 architecture.
Replace it with other architectures if appropriate.

The channels you need for this procedure are:

Table 38. Ubuntu Channels - CLI

OS Version Ubuntu 18.04

Base Channel ubuntu-1804-pool-amd64-uyuni

Main Channel ubuntu-1804-amd64-main-uyuni

Updates Channel ubuntu-1804-amd64-main-updates-uyuni

Security Channel ubuntu-1804-amd64-main-security-uyuni

Universe Channel ubuntu-1804-amd64-universe-uyuni

Universe Updates Channel ubuntu-1804-amd64-universe-updates-uyuni

Universe Security Updates Channel ubuntu-1804-amd64-universe-security-uyuni

Client Channel ubuntu-1804-amd64-uyuni-client

Procedure: Adding Software Channels at the Command Prompt

1. At the command prompt on the Uyuni Server, as root, use the spacewalk-common-
channels command to add the appropriate channels:

4.12. Ubuntu Client Registration

126 / 218 4.12. Ubuntu Client Registration | Uyuni 2023.10

spacewalk-common-channels \
<base_channel_label> \
<child_channel_label_1> \
<child_channel_label_2> \
... <child_channel_label_n>

2. If automatic synchronization is turned off, synchronize the channels:

spacewalk-repo-sync -p <base_channel_label>

3. Ensure the synchronization is complete before continuing.

You need all the new channels fully synchronized, including Universe (Universe
contains important dependencies for Salt), before bootstrapping any Ubuntu
client.

4.12.2.2. Check Synchronization Status

Procedure: Checking Synchronization Progress from the Web UI

1. In the Uyuni Web UI, navigate to Software › Manage › Channels, then click the channel
associated to the repository.

2. Navigate to the Repositories tab, then click Sync and check Sync Status.

Procedure: Checking Synchronization Progress from the Command Prompt

1. At the command prompt on the Uyuni Server, as root, use the tail command to check the
synchronization log file:

tail -f /var/log/rhn/reposync/<channel-label>.log

2. Each child channel generates its own log during the synchronization progress. You need to check
all the base and child channel log files to be sure that the synchronization is complete.

Ubuntu channels can be very large. Synchronization can sometimes take several
hours.

4.12.2.3. Manage GPG Keys

Clients use GPG keys to check the authenticity of software packages before they are installed. Only
trusted software can be installed on clients.

Trusting a GPG key is important for security on clients. It is the task of the
administrator to decide which keys are needed and can be trusted. Because a
software channel cannot be used when the GPG key is not trusted, the decision
of assigning a channel to a client depends on the decision of trusting the key.

4.12. Ubuntu Client Registration

127 / 218 4.12. Ubuntu Client Registration | Uyuni 2023.10

administration:custom-channels.pdf#_custom_channel_synchronization

For more information about GPG keys, see Client-configuration › Gpg-keys.

4.12.2.4. Root Access

The root user on Ubuntu is disabled by default for SSH access.

To be able to onboard using a regular user, you need to edit the sudoers file.

This issue happens with self-installed versions of Ubuntu. If the default user has
been granted administrative privileges during installation time, a password is
requiered to perform privilege escalation using sudo. With cloud instances this
does not happen because cloud-init automatically creates a file under
/etc/sudoers.d and grants privilege escalation through sudo without the
need for a password.

Procedure: Granting Root User Access

1. On the client, edit the sudoers file:

sudo visudo

Grant sudo access to the user by adding this line at the end of the sudoers file. Replace
<user> with the name of the user that is bootstrapping the client in the Web UI:

<user> ALL=NOPASSWD: /usr/bin/python, /usr/bin/python2,
/usr/bin/python3, /var/tmp/venv-salt-minion/bin/python

This procedure grants root access without requiring a password, which is
required for registering the client. When the client is successfully installed it runs
with root privileges, so the access is no longer required. We recommend that you
remove the line from the sudoers file after the client has been successfully
installed.

4.12.2.5. Register Clients

To register your clients, you need a bootstrap repository. By default, bootstrap repositories are
automatically created, and regenerated daily for all synchronized products. You can manually create the
bootstrap repository from the command prompt, using this command:

mgr-create-bootstrap-repo

For more information on registering your clients, see Client-configuration › Registration-overview.

4.12. Ubuntu Client Registration

128 / 218 4.12. Ubuntu Client Registration | Uyuni 2023.10

4.13. Register Clients to a Proxy
Proxy servers can act as a broker and package cache for both Salt and traditional clients. Registering
clients to a proxy is similar to registering them directly to the Uyuni Server, with a few key differences.

These sections contain information on registering Salt clients to a proxy using the Web UI, commands on
the command line, or a bootstrap script. There is also information on registering traditional clients using a
bootstrap script. There are also procedure how you can move clients from one Uyuni Proxy to another
one or to the Uyuni Server.

Within the Web UI, proxy pages show information about both Salt and traditional clients. You can see a
list of clients that are connected to a proxy by clicking the name of the proxy in Systems › System List ›
Proxy, then select the Proxy subtab of the Details tab.

A list of chained proxies for a Salt client can be seen by clicking the name of the client in Systems › All,
then select the Connection subtab of the Details tab.

4.13.1. Move Clients between Proxies

You can move Salt and Salt SSH push clients between proxies without the need to repeat the registration
process.

You cannot move chained proxies. Instead of moving a chained proxy, create a
new proxy, move the clients, and delete the old proxy.

If you want to move a traditional client between proxies, you must repeat the
registration process from the beginning.

Procedure: Moving Salt or Salt SSH Push Client between Proxies

1. In the Uyuni Web UI, navigate to the System Details page for the client you want to move
between proxies.

2. Navigate to the Connection tab. Then follow the Change proxy link to see the drop-down
menu.

3. From the New Proxy drop-down menu select the proxy you want the client to move to, and click
[Change Proxy] .

Procedure: Moving Multiple Salt or Salt SSH Push Clients between Proxies with SSM

1. In the Uyuni Web UI, navigate to Systems › System List and check each client to move, this adds
the clients to the system set manager.

2. Navigate to Systems › System Set Manager, and go to the Misc › Proxy`` tab.

3. From the New Proxy drop-down menu select the proxy you want the clients to move to, and
click [Change Proxy] .

The same functionality is also available with the system.changeProxy API call.

4.13. Register Clients to a Proxy

129 / 218 4.13. Register Clients to a Proxy | Uyuni 2023.10

4.13.1.1. Background Information

The effect of this function differs between normal Salt clients and Salt SSH push clients.

4.13.1.1.1. Normal Salt Clients

The function schedules a Salt state action, which modifies master: setting in the
susemanager.conf Salt client configuration file to point to the new proxy. Then the function restarts
the Salt client.

Changing master: by manually editing the susemanager.conf file has
the same effect and is supported, too.

When the minion restarts and reconnects via the new proxy, the server updates the proxy path in the
database and schedules another action for refreshing the channel URLs.

4.13.1.1.2. Salt SSH Push Clients

The function updates the proxy path immediately in the database and new action for refreshing the
channel URLs is scheduled.

4.13.2. Move Clients from Proxies to the Server

If you want to move a Salt client from a proxy to the server, select None from proxy list.

If you want to move a traditional client to the server you must repeat the registration process from the
beginning.

4.13.3. Register Clients to a Proxy with the Web UI

You can register Salt clients to the Uyuni Proxy using the Web UI.

A bootstrap repository is needed for non-SLE clients in general and for SLE clients before version 15. A
bootstrap repository offers packages for installing Salt on clients and for registering Salt or traditional
clients.

For information about creating a bootstrap repository, see Client-configuration › Bootstrap-repository.

Procedure: Registering Clients to a Proxy with the Web UI

1. In the Uyuni Web UI, navigate to Systems › Bootstrapping.

2. In the Host field, type the fully qualified domain name (FQDN) of the client to be bootstrapped.

3. In the SSH Port field, type the SSH port number to use to connect and bootstrap the client. By
default, the SSH port is 22.

4. In the User field, type the username to log in to the client. By default, the username is root.

5. In the Authentication Method field, select the authentication method to use for
bootstrapping the client.

4.13. Register Clients to a Proxy

130 / 218 4.13. Register Clients to a Proxy | Uyuni 2023.10

◦ For password authentication, in the Password field, type password to log in to the client.

◦ For SSH Private key authentication, enter the private key and the associated passphrase. The
key is only stored for as long as the bootstrapping process takes to complete.

6. In the Activation Key field, select the activation key that is associated with the software
channel you want to use to bootstrap the client.

7. In the Proxy field, select the proxy server you want to register to.

8. By default, the Disable SSH Strict Key Host Checking checkbox is selected. This
allows the bootstrap process to automatically accept SSH host keys without requiring you to
manually authenticate.

9. OPTIONAL: Check the Manage System Completely via SSH checkbox. If you check
this option, the client is configured to use SSH for its connection to the server, and no other
connection method is configured.

10. Click [Bootstrap] to begin registration.

When the bootstrap process has completed, your client is listed at Systems › System List.

4.13.3.1. Register on the Command Line (Salt)

Instead of the Web UI, you can use the command line to register a Salt client to a proxy. This procedure
requires that you have installed the Salt package on the Salt client before registration. For SLE 12 based
clients, you also must have activated the Advanced Systems Management module.

Registering traditional clients on the command line is also possible, but it
requires more steps. It is not covered here. Use the bootstrap script procedure to
register traditional clients. For more information, see client-proxy-script.pdf.

Procedure: Registering Clients to a Proxy Using the Command Line

1. Choose a client configuration file located at:

/etc/salt/minion

or:

/etc/salt/minion.d/NAME.conf

This is sometimes also called a minion file.

2. Add the proxy FQDN as the master to the client configuration file:

master: PROXY123.EXAMPLE.COM

3. Restart the salt-minion service:

4.13. Register Clients to a Proxy

131 / 218 4.13. Register Clients to a Proxy | Uyuni 2023.10

client-proxy-script.pdf

systemctl restart salt-minion

4. On the server, accept the new client key; replace <client> with the name of your client:

salt-key -a '<client>'

4.13.4. Registering with a Bootstrap Script (Salt and Traditional)

You can register Salt or traditional clients through the Uyuni Proxy with a bootstrap script. This is done
almost the same way as registering clients directly with the Uyuni Server. The difference is that you create
the bootstrap script on the Uyuni Proxy with a command line tool. The bootstrap script then deploys all
necessary information to the clients. The bootstrap script requires some parameters such as activation
keys or GPG keys. These parameters depend on your specific setup.

Procedure: Registering Clients to a Proxy with a Bootstrap Script

1. Create a client activation key on the Uyuni server using the Web UI. For more information, see
Client-configuration › Activation-keys.

2. On the proxy, execute the mgr-bootstrap command line tool as root. If needed, use the
additional command line switches to tune your bootstrap script. To install a traditional client
instead of a Salt client, ensure you use the --traditional switch.

To view available options type mgr-bootstrap --help from the command line:

mgr-bootstrap --activation-keys=key-string

3. OPTIONAL: Edit the resulting bootstrap script.

4. Execute the bootstrap script directly on the clients or from the proxy with ssh. Replace
<bootstrap> with the name of the bootstrap script and <client.example.com> with
the host name of your client:

cat <bootstrap> | ssh root@<client.example.com> /bin/bash

4.14. Registering clients on a public cloud
When you have your Uyuni Server set up, you are ready to start registering clients.

4.14.1. Add Products and Synchronize Repositories

Ensure you have already added the corresponding products for your clients and synced the repositories to
Uyuni. This is required to create the bootstrap repositories used for registering clients.

4.14. Registering clients on a public cloud

132 / 218 4.14. Registering clients on a public cloud | Uyuni 2023.10

For more information, see installation-and-upgrade:pubcloud-setup.pdf.

4.14.2. Prepare on-demand images

An instance started from an on-demand image provided by SUSE is automatically registered, and the
update infrastructure and SUSE Linux Enterprise modules are activated. To use your on-demand image as
a Uyuni client, you need to disable this automation before you begin.

Procedure: Preparing on-demand images

1. Log in to the on-demand instance.

2. At the command prompt, as root, remove the registration data and repositories:

registercloudguest --clean

3. Remove the cloud-regionsrv-client package:

zypper rm cloud-regionsrv-client

4. Remove additional packages specific to your cloud provider:

◦ Amazon EC2:

zypper rm regionServiceClientConfigEC2 regionServiceCertsEC2

◦ Google Compute Engine:

zypper rm cloud-regionsrv-client-plugin-gce
regionServiceClientConfigGCE regionServiceCertsGCE

◦ Microsoft Azure:

zypper rm regionServiceClientConfigAzure regionServiceCertsAzure

For instructions on registering Uyuni to SUSE Customer Center, see Installation-and-upgrade › Server-
setup.

4.14.3. Register clients

In the Uyuni Web UI, navigate to Systems › Bootstrapping, then fill in the Host, SSH Port, User,
and Password fields. Make sure you use stable FQDNs for the Host field, or Uyuni cannot find your
host when your Public Cloud gives you a different short-lived FQDNS.

4.14. Registering clients on a public cloud

133 / 218 4.14. Registering clients on a public cloud | Uyuni 2023.10

installation-and-upgrade:pubcloud-setup.pdf#add-product-sync-repo

If you are attempting to bootstrap traditional clients, check that you can resolve
the host name of the server while you are logged in to the client. You might
need to add the FQDN of the server to /etc/hosts local resolution file on
the client. Check using the hostname -f command with the local IP address
of the server.

Public cloud images usually do not allow SSH login with username and password, but only SSH with a
certificate. If you want to use bootstrap from the Web UI, you need to enable SSH login with username
and SSH key. You can do this by navigating to Systems › Bootstrapping and changing the authentication
method.

If your cloud provider is Microsoft Azure, you can log in with username and password. To do this, you
need to allow the AzureUser to run commands as root without a password. To do this, open the
/etc/sudoers.d/waagent file, and add or edit this line:

AzureUser ALL=(ALL) NOPASSWD: ALL

Allowing the AzureUser to run commands as root without a password carries a
security risk. Use this method for testing only. Do not do this for production
systems.

When the bootstrap process has completed successfully, your client is listed at Systems › System List.

• If you want more control over the process, have to register many clients, or are registering
traditional clients, create a bootstrap script. For more information, see Client-configuration ›
Registration-bootstrap.

• For Salt clients and even more control over the process, executing single commands on the
command line can be useful. For more information, see Client-configuration › Registration-cli.

• When registering clients launched from a public cloud image (for example, AWS AMI), you need
to do some additional configuration to prevent them from over-writing each other. For more
information about registering clones, see Administration › Troubleshooting.

4.14.4. Activation keys

Activation keys are used with traditional and Salt clients to ensure that your clients have the correct
software entitlements, are connecting to the appropriate channels, and are subscribed to the relevant
groups. Each activation key is bound to an organization, which you can set when you create the key.

For more on activation keys, see Client-configuration › Activation-keys.

4.14.5. Automatic registration of clients created by Terraform

New clients created by Terraform can be automatically registered to Uyuni. Registration can be achieved
in two ways:

4.14. Registering clients on a public cloud

134 / 218 4.14. Registering clients on a public cloud | Uyuni 2023.10

• cloud-init based registration

• remote execution provisioner based registration

4.14.5.1. cloud-init based client registration

Registering by leveraging cloud-init is the preferred way of automatic registering of the newly
created virtual machines. This solution avoids configuring an SSH connection to the host. It can also be
used regardless of the tool used for client creation.

User can pass the set of user data when deploying the image with Terraform, to automatically register the
machine to Uyuni. user_data is run only once at bootstrap, and only the first time the machine is
started.

Before using cloud-init to register clients, the user must configure:

• Bootstrap script. For more information, see Client-configuration › Registration-bootstrap.

• Activation keys. For more information, see Client-configuration › Activation-keys.

The following command will download the bootstrap script and register the new machine when it is
created. It should be added to the cloud-init configuration:

curl -s http://hub-server.tf.local/pub/bootstrap/bootstrap-default.sh | bash
-s

Anytime user_data is updated to change the provisioning, Terraform will
destroy and then recreate the machines with a new IP, etc.

For more information about cloud-init on AWS, see https://registry.terraform.io/providers/
hashicorp/template/latest/docs/data-sources/cloudinit_config.

For a cloud-init example, see https://registry.terraform.io/providers/hashicorp/cloudinit/latest/docs/
data-sources/cloudinit_config#example-usage.

4.14.5.2. remote-exec provisioner based registration

The second solution for automatic registering of the newly created virtual machines uses Terraform’s
remote-exec provisioner.

remote-exec provisioner interacts with the newly created machines. It opens an SSH connection and
can run commands on that machine.

When using remote-exec provisioner to register clients, the user must ensure
that the machine running Terraform will have access to the new virtual machine
after its creation.

4.14. Registering clients on a public cloud

135 / 218 4.14. Registering clients on a public cloud | Uyuni 2023.10

https://registry.terraform.io/providers/hashicorp/template/latest/docs/data-sources/cloudinit_config
https://registry.terraform.io/providers/hashicorp/template/latest/docs/data-sources/cloudinit_config
https://registry.terraform.io/providers/hashicorp/cloudinit/latest/docs/data-sources/cloudinit_config#example-usage
https://registry.terraform.io/providers/hashicorp/cloudinit/latest/docs/data-sources/cloudinit_config#example-usage

The remaining requirements are the same as when using cloud-init based client registration:

• Bootstrap script. For more information, see Client-configuration › Registration-bootstrap.

• Activation keys. For more information, see Client-configuration › Activation-keys.

The following command will download the bootstrap script and register the new machine when it is
created. It should be defined as the remote command to run:

curl -s http://hub-server.tf.local/pub/bootstrap/bootstrap-default.sh | bash
-s

For more information about remote-exec provisioner, see https://www.terraform.io/docs/
provisioners/remote-exec.html.

4.14. Registering clients on a public cloud

136 / 218 4.14. Registering clients on a public cloud | Uyuni 2023.10

https://www.terraform.io/docs/provisioners/remote-exec.html
https://www.terraform.io/docs/provisioners/remote-exec.html

Chapter 5. Client Upgrades
Clients use the versioning system of their underlying operating system, and require regular upgrades.

For SCC registered clients using SUSE operating systems, you can perform upgrades within the Uyuni
Web UI. For supported SUSE Linux Enterprise 15 upgrade paths, see https://documentation.suse.com/
sles/15-SP4/html/SLES-all/cha-upgrade-paths.html

To upgrade clients running SLE 12 to SLE 15, the upgrade is automated, but you need to do some
preparation steps before you begin. For more information, see Client-configuration › Client-upgrades-
major.

You can also automate client upgrades using the content lifecycle manager. For more information, see
Client-configuration › Client-upgrades-lifecycle.

For more information about product migration such as service pack upgrades openSUSE Leap minor
version upgrades, or openSUSE Leap to SUSE Linux Enterprise migrations, see Client-configuration ›
Client-upgrades-product-migration.

For more information about upgrading unregistered openSUSE Leap clients, see Client-configuration ›
Client-upgrades-uyuni.

5.1. Client - Major Version Upgrade
Your clients must have the latest available service pack (SP) for the installed operating system, with all the
latest updates applied. Before you start, ensure that the system is up to date and all updates have been
installed successfully.

The upgrade is controlled by YaST and AutoYaST, it does not use Zypper.

5.1.1. Prepare to Migrate

Before you can migrate your client from SLE 12 to SLE 15 , you need to:

1. Prepare installation media

2. Create an auto-installable distribution

3. Create an activation key

4. Upload an AutoYaST profile

Procedure: Preparing Installation Media (for example, SLE 15 SP2)

1. On the Uyuni Server, create a local directory for the SLE 15 SP2 installation media:

mkdir -p /srv/images/sle15sp2

5.1. Client - Major Version Upgrade

137 / 218 5.1. Client - Major Version Upgrade | Uyuni 2023.10

https://documentation.suse.com/sles/15-SP4/html/SLES-all/cha-upgrade-paths.html
https://documentation.suse.com/sles/15-SP4/html/SLES-all/cha-upgrade-paths.html

2. Download an ISO image with the installation sources, and mount the ISO image on your server:

mount -o loop DVD1.iso /mnt/

3. Copy everything from the mounted ISO to your local file system:

cp -r /mnt/* /srv/images/sle15sp2

4. When the copy is complete, unmount the ISO image:

umount /mnt

This image is the Unified Installer and can be used for multiple
autoinstallable distributions.

Procedure: Creating an Autoinstallable Distribution

1. In the Uyuni Web UI, navigate to Systems › Autoinstallation › Distributions and click
[Create Distribution] .

2. In the Create Autoinstallable Distribution section, use these parameters:

◦ In the Distribution Label section, type a unique name for the distribution. Use only
letters, numbers, hyphens, periods, and underscores, and ensure the name is longer than four
characters. For example, sles15sp2-x86_64.

◦ In the Tree Path field, type an absolute path to the installation source. For example,
/srv/images/sle15sp2.

◦ In the Base Channel field, select SLE-Product-SLES15-SP2-Pool for

x86_64.

◦ In the Installer Generation field, select SUSE Linux Enterprise 15.

◦ In the Kernel Options field, type any options to be passed to the kernel when booting
for the installation. The install= parameter and the self_update=0

pt.options=self_update parameter are added by default.

◦ In the Post Kernel Options section, type any options to be passed to the kernel
when booting the installed system for the first time.

3. Click [Create Autoinstallable Distribution] to save.

To switch from the old SLE 12 base channel to the new SLE 15 channel, you need an activation key.

Procedure: Creating an Activation Key

1. In the Uyuni Server Web UI, navigate to Systems › Activation Keys and click Create Key.

2. Enter a description for your key.

5.1. Client - Major Version Upgrade

138 / 218 5.1. Client - Major Version Upgrade | Uyuni 2023.10

3. Enter a key or leave it blank to generate an automatic key.

4. OPTIONAL: If you want to limit the usage, enter your value in the Usage text field.

5. Select the SLE-Product-SLES15-SP2-Pool for x86_64 base channel.

6. OPTIONAL: Select any Add-On System Types. For more information, see
https://documentation.suse.com/sles/15-SP4/html/SLES-all/article-modules.html.

7. Click [Create Activation Key] .

8. Click the Child Channels tab and select the required channels.

9. Click [Update Key] .

5.1.2. Create an Autoinstallation Profile

Autoinstallation profiles contain all the installation and configuration data needed to install a system. They
can also contain scripts to be executed after the installation is complete. For example scripts that you can
use as a starting point, see https://github.com/SUSE/manager-build-profiles/tree/master/AutoYaST.

For valid AutoYaST upgrade settings, see

https://doc.opensuse.org/projects/autoyast/#CreateProfile-upgrade.

Procedure: Creating an Autoinstallation Profile

1. In the Uyuni Web UI, navigate to Systems › Autoinstallation › Profiles and upload your
autoinstallation profile script.

For example scripts that you can use as a starting point, see

https://github.com/SUSE/manager-build-profiles/tree/master/AutoYaST.

2. In the Kernel Options field, type autoupgrade=1.

Optionally, you can also include the Y2DEBUG=1 option. The debug setting is not required but
can help with investigating any future problems you might encounter.

Clients running in Azure cloud must add textmode=1

console=ttyS0 to Kernel Options.

3. Paste the autoinstallation profile or use the file upload field.

4. Click [Create] to save.

5. When the uploaded profile requires variables to be set, navigate to Systems › Autoinstallation ›
Profiles, select the profile to edit, and navigate to the Variables tab.

Specify the required variables, using this format:

<key>=<value>

5.1. Client - Major Version Upgrade

139 / 218 5.1. Client - Major Version Upgrade | Uyuni 2023.10

https://documentation.suse.com/sles/15-SP4/html/SLES-all/article-modules.html
https://github.com/SUSE/manager-build-profiles/tree/master/AutoYaST
https://doc.opensuse.org/projects/autoyast/#CreateProfile-upgrade
https://github.com/SUSE/manager-build-profiles/tree/master/AutoYaST

5.1.3. Migration

Before you begin, check that all the channels referenced in the autoinstallation profile are available and
fully synchronized.

You can monitor the mirroring progress in /var/log/rhn/reposync/<channel-

label>.log.

Procedure: Migrating

1. In the Uyuni Server Web UI, navigate to Systems and select the client to be upgraded.

2. Navigate to the Provisioning tab, and select the autoinstallation profile you uploaded.

3. Click [Schedule Autoinstallation and Finish]. The system downloads the
required files, change the bootloader entries, reboot, and start the upgrade.

Next time the client synchronizes with the Uyuni Server, it receives a re-installation job. The re-
installation job fetches the new kernel and initrd packages. It also writes a new
/boot/grub/menu.lst (GRUB Legacy) or /boot/grub2/grub.cfg (GRUB 2), containing
pointers to the new kernel and initrd packages.

When the client next boots, it uses grub to boot the new kernel with its initrd. PXE booting is not used
during this process.

Approximately three minutes after the job was fetched, the client goes down for reboot.

For Salt clients, use the spacewalk/minion_script snippet to register
the client again after migration has completed.

5.2. Upgrade Using the Content Lifecycle Manager
When you have many SUSE Linux Enterprise Server clients to manage, you can automate in-place
upgrades using the content lifecycle manager.

5.2.1. Prepare to Upgrade

Before you can upgrade your clients, you need to make these preparations:

• Create a content lifecycle project

• Create an activation key

• Create an autoinstallable distribution

• Create an autoinstallation profile

Procedure: Creating a Content Lifecycle Project

1. Create a content lifecycle project for your distribution.

For more information, see Administration › Content-lifecycle.

5.2. Upgrade Using the Content Lifecycle Manager

140 / 218 5.2. Upgrade Using the Content Lifecycle Manager | Uyuni 2023.10

2. Ensure you a choose a short but descriptive name for your project.

3. Include all source channel modules that you require for your distribution.

4. Add filters as required, and set up at least one environment.

Procedure: Creating an Activation Key

1. Create an activation key for your distribution.

For more information, see Client-configuration › Activation-keys.

2. Ensure your activation key includes all filtered project channels.

Procedure: Creating an Autoinstallable Distribution

1. Create an autoinstallable distribution for every base channel you want to migrate.

For more information, see Client-configuration › Autoinst-distributions.

2. Give your distribution a label that references the name of the content lifecycle project.

3. In the Installer Generation field, select the SLES version you are using.

Procedure: Creating an Autoinstallation Profile

1. Create an autoinstallation profile for every target distribution and service pack you want to upgrade
to.

For more information, see Client-configuration › Autoinst-profiles.

2. You must use a different profile for Salt and traditional clients.

3. You can use variables in the profile to distinguish between the different lifecycle environments.

For example autoinstallation profiles, see https://github.com/SUSE/manager-build-profiles/tree/master/
AutoYaST.

Use these variables in your autointallation profiles for automating in-place upgrades:

Listing 1. Example: Variables for Use in Autoinstallation Profiles

registration_key=1-15sp1-demo-test
org=1
channel_prefix=15sp1-demo-test
distro_label=15sp1-demo-test

5.2. Upgrade Using the Content Lifecycle Manager

141 / 218 5.2. Upgrade Using the Content Lifecycle Manager | Uyuni 2023.10

https://github.com/SUSE/manager-build-profiles/tree/master/AutoYaST
https://github.com/SUSE/manager-build-profiles/tree/master/AutoYaST

Listing 2. Example: Entry for Use in Autoinstallation Profiles

 <listentry>
 <ask_on_error config:type="boolean">true</ask_on_error>

<media_url>https://$redhat_management_server/ks/dist/child/$channel_prefix-
sle-module-web-scripting15-sp1-pool-x86_64/$distro_label</media_url>
 <name>$channel_prefix SLE-Module-Web-Scripting15-SP1 Pool for x86_64
</name>
 <product>Web Scripting Module 15 SP1 x86_64 Pool</product>
</listentry>

5.2.2. Upgrade

When you have prepared the server for the upgrade, you can provision the clients.

Procedure: Provisioning the Clients

1. In the Uyuni Web UI, navigate to Systems › System List, and select the clients you want to
provision to add them to the system set manager.

2. Navigate to Systems › System Set Manager › Overview and click the Provisioning tab.

3. Select the autoinstallation profile to use.

For clients that are able to use PXE, the migration is automated as soon as you have provisioned them.
For all other clients, you can use Cobbler to perform the upgrade.

Procedure: Using Cobbler to Upgrade Clients

1. At the command prompt, as root, check the available Cobbler profiles:

cobbler profile list

2. Build the ISO file with your chosen profile and distribution:

cobbler buildiso --iso=/tmp/SLE_15-sp1.iso --profiles=SLE_15
-sp1:1:Example --distro=SLE_15-sp1

For more information about using CD-ROMs to provision clients, see Client-configuration ›
Autoinst-cdrom.

5.3. Product Migration
Product migration allows you to upgrade SLE-based client systems from an Service Pack (SP) level to a
later one. For example, you can migrate SUSE Linux Enterprise Server 15 SP1 to SUSE Linux Enterprise
Server 15 SP2.

Product migration is for upgrading within the same major version. You cannot use product migration to
migrate from SUSE Linux Enterprise Server 12 to SUSE Linux Enterprise Server 15. For more

5.3. Product Migration

142 / 218 5.3. Product Migration | Uyuni 2023.10

information about major upgrades, see Client-configuration › Client-upgrades-major.

You can also migrate openSUSE Leap to a later minor version or to the corresponding SUSE Linux
Enterprise Server SP level, for example:

• openSUSE Leap 15.1 to 15.2

• openSUSE Leap 15.1 to SUSE Linux Enterprise Server 15 SP1

• openSUSE Leap 15.5 to SUSE Linux Enterprise Server 15 SP5

In SUSE Linux Enterprise Server 12 and later, SUSE supports service pack skipping if SUSE Customer
Center provides it. For example, you can upgrade from SUSE Linux Enterprise Server 15 to SP2, without
installing SP1.

For supported SUSE Linux Enterprise Server upgrade paths, see https://documentation.suse.com/sles/15-
SP4/html/SLES-all/cha-upgrade-paths.html#sec-upgrade-paths-supported.

During migration, Uyuni automatically accepts any required licenses (EULAs)
before installation.

5.3.1. Single System Migration

Before starting the product migration:

• Ensure there are no pending updates or patches. Check the System Status on the client
system’s Details › Overview page, and install all offered updates or patches. If your client system is
not up to date, product migration may fail.

• Make sure all the channels of the target product are fully synchronized. To check the
synchronization status in the Web UI, navigate to the Admin › Setup Wizard › Products page.

• Ensure you have a working system backup available, in case of an emergency. Product migration
does not have a rollback feature. When the migration procedure has begun, rolling back is not
possible.

Procedure: Performing a Single System Migration

1. From the Systems › Overview page, select a client.

2. From the system details page of the client, navigate to the Software › Product Migration tab.

3. Select the target migration path and click [Select Channels] .

4. From the Product Migration - Channels page select the correct base channel,
including Mandatory Child Channels and any additional Optional Child

Channels.

5. OPTIONAL: Check Allow Vendor Change to allow packages that have changed vendors to
be installed. If this occurs, a notification is shown with details before the migration is started.

5.3. Product Migration

143 / 218 5.3. Product Migration | Uyuni 2023.10

https://documentation.suse.com/sles/15-SP4/html/SLES-all/cha-upgrade-paths.html#sec-upgrade-paths-supported
https://documentation.suse.com/sles/15-SP4/html/SLES-all/cha-upgrade-paths.html#sec-upgrade-paths-supported

To migrate openSUSE Leap to SUSE Linux Enterprise Server, you must
check the Allow Vendor Change option.

6. Click [Schedule Migration] when your channels have been configured properly.

5.3.2. Product Mass Migration

If you want to migrate a large number of clients to the next SP version, you can use Uyuni API calls.

The spacecmd commandline tool provides a system_scheduleproductmigration sub
command, which can be used to schedule a migration for a large number of clients to the next minor
version.

5.3.2.1. Perform a Product Mass Migration

The product mass migration operation is dangerous and the process should be
tested thoroughly. At least, do a dry-run first.

Be careful not to upgrade systems unintentionally.

Procedure: Performing a Product Mass Migration

1. List available migration targets, and take note of the system IDs you want to migrate:

spacecmd api -- system.listMigrationTargets -A 1000010001

2. For each system ID, call listMigrationTarget and check that the desired target product is
available.

◦ If the system ID has an available target, call
system.scheduleProductMigration.

◦ If the desired target is not available, skip the system.

3. Adapt this template for your environment:

target = '[....]'
basechannel = 'channel-label'
system_ids = [1, 2, 3]

session = auth.login(user, pass)
for system in system_ids
 if system.listMigrationTargets(session, system).ident == target
 system.scheduleProductMigration(session, system, target,
basechannel, [], False, <now>)
 else
 print "Cannot migrate to requested target -- skipping system"
 endif
endfor

5.3. Product Migration

144 / 218 5.3. Product Migration | Uyuni 2023.10

5.3.2.2. Example: SLES 15 SP2 to SLES 15 SP3

For this example, a group will be created temporarily to facilitate the mass migration.

Procedure: Creating a Mass Product Migration Group

1. In the Uyuni Web UI, navigate to Systems › System Groups, and click [Create Group] .

2. Name the group mpm-target-sles15sp3.

◦ Only systems subscribed to the same base channel should be added to the created group. In
the example, only systems subscribed to SLE-Product-SLES15-SP2-Pool for
x86_64 should be added to the group.

For more information about adding clients to groups, see client-configuration:system-
groups.pdf.

Procedure: Adding Systems to the Group

1. Get the targets for all the systems in the group by running:

spacecmd -- system_listmigrationtargets group:mpm-target-sles15sp3

2. The command output a string of "IDs."

◦ Only select a target, which is reported for all systems.

◦ The string is the identifier for the MIGRATIONTARGET of the other command.

The spacecmd sub-commands
system_scheduleproductmigration and
system_listmigrationtargets are looping over all
systems that are part of the group.

If there are 100 systems in the group, you will see 100 actions
scheduled.

All systems in the group must support the same migration target.

Procedure: Running the Mass Migration Command

1. The syntax for the system_scheduleproductmigration command is as follows:

spacecmd -- system_scheduleproductmigration <SYSTEM>
<BASE_CHANNEL_LABEL> \
 <MIGRATION_TARGET> [options]

2. For this example to upgrade all systems in the group mpm-target-sles15sp3 from SLES 12
SP2 to SLES 15 SP, enter on the command line:

5.3. Product Migration

145 / 218 5.3. Product Migration | Uyuni 2023.10

client-configuration:system-groups.pdf#_add_clients_to_groups
client-configuration:system-groups.pdf#_add_clients_to_groups

spacecmd -- system_scheduleproductmigration group:mpm-target-sles15sp3 \
 sle-product-sles15-sp3-pool-x86_64 "[190,203,195,1242]" -d

5.3.2.2.1. Mandatory Syntax Explained

To see syntax usage and options for system_scheduleproductmigration, run:

spacecmd system_scheduleproductmigration help

<SYSTEM>

For this example we will use the group we created to select all of the systems from that group:

group:mpm-target-sles15sp3

<BASE_CHANNEL_LABEL>

This is the label for the target base channel. In this case, the system is being upgraded to SLES 15
SP3, and the label is sle-product-sles15-sp3-pool-x86_64.

To see a list of all base channels currently mirrored, run:

spacecmd softwarechannel_listbasechannels.

Keep in mind you cannot upgrade to a channel unless it is an available target for your current base
channel.

<MIGRATION_TARGET>

To identify this value for systems in the group group:mpm-target-sles15sp3, run:

spacecmd -- system_listmigrationtargets group:mpm-target-sles15sp3

The MIGRATION_TARGET parameter must be passed in the following format; note necessary shell
quotation to prevent sideeffects with brackets:

"[190,203,195,1242]"

Options

• -s START_TIME

• -d pass this flag, if you want to do a dry run (it is recommended to run a dry run before the
actual migration)

• -c CHILD_CHANNELS (comma-separated child channels labels with no spaces)

5.3. Product Migration

146 / 218 5.3. Product Migration | Uyuni 2023.10

In this case we included the -d option, which can be removed after a successful dry run.

If successful, the command output for each scheduled system will look like this:

Scheduling Product migration for system mpm-sles152-1
Scheduled action ID: 66

You can also track the action, in this case the dry run, in the Web UI for a given system in the group.
From the system details page of the client, Navigate to Events › History. If there are any failures during
the dry run, the system should be investigated.

If all is well, the -d option can be removed from the command to run the real migration.

After the migration is complete, you can reboot the system from the Uyuni Web UI.

5.4. Upgrade Uyuni Clients
In this section, we use openSUSE Leap as an example.

5.4.1. Prepare to Upgrade
Procedure: Preparing the Client Upgrade

1. At the command prompt on the Uyuni Server, as root, use the spacewalk-common-
channels command to add the appropriate channels.

spacewalk-common-channels \
opensuse_leap15_4 \
opensuse_leap15_4-non-oss \
opensuse_leap15_4-non-oss-updates \
opensuse_leap15_4-updates \
opensuse_leap15_4-uyuni-client

2. Fully synchronize all channels with spacewalk-repo-sync. In case of already defined
repository URLs, continue with installation-and-upgrade:proxy-uyuni.pdf.

3. In the Uyuni Server Web UI, navigate to Software › Manage › Channels and click the Uyuni
Client Tools for openSUSE Leap 15.4 (x86_64) channel name.

4. In the upper right corner, click [Manage Channel] .

5. Click the Repositories tab, and select External - Uyuni Client Tools for
openSUSE Leap 15.3 (x86_64).

6. Click [Update Repositories] .

7. Navigate to Repositories › Sync subtab, and click [Sync Now] .

8. Do the same with openSUSE Leap 15.4 (x86_64) and External - openSUSE
Leap 15.3 (x86_64).

5.4. Upgrade Uyuni Clients

147 / 218 5.4. Upgrade Uyuni Clients | Uyuni 2023.10

installation-and-upgrade:proxy-uyuni.pdf#uyuni-202007-channeldupes

Unfold openSUSE Leap 15.4 (x86_64) to see all child channels populated with packages.

5.4.2. Upgrade

To upgrade a client you replace the software repositories and update the software, and finally reboot the
client.

Procedure: Upgrading the Client

1. In the Uyuni Server Web UI, navigate to Systems and click the name of the client.

2. Click Software › Software Channels, and as the base channel select the openSUSE Leap 15.5
channel that is listed in the Customs Channels list.

3. In the Child Channels pane, select the 15.5 child channels.

4. Click [Next] , and Confirm Software Channel Change with [Confirm] .

5. Click Software › Packages › Upgrade, and select all the packages to be updated on the client, and
then apply the selection. Click [Upgrade Packages], check the details, and click
[Confirm] to complete the update.

6. Reboot the client.

If you need to update many clients, you can create an action chain of this command sequence on the
Uyuni Server. You can use the action chain to perform updates on multiple clients at the same time.

5.4. Upgrade Uyuni Clients

148 / 218 5.4. Upgrade Uyuni Clients | Uyuni 2023.10

Chapter 6. Client Deletion
If you need to remove a client from your Uyuni Server, you can use the Web UI to delete it. You can also
remove a client from the command line. These procedures work for both traditional and Salt clients.

6.1. Delete a Client with the Web UI
Procedure: Deleting a Client

1. In the Uyuni Web UI, navigate to Systems › System List and select the client to delete.

2. Click [Delete System] .

3. Check the details and click [Delete Profile] to confirm.

4. For Salt clients, Uyuni attempts to clean up additional configuration. If the client cannot be
contacted, you are given the option to cancel the deletion, or delete the client without cleaning up
the configuration files.

You can also delete multiple clients using the system set manager. For more information about the system
set manager, see Client-configuration › System-set-manager.

It is not possible to automatically clean up a traditional client after deleting it.
You have to take care of this yourself. Furthermore, cleaning up a Salt client
does only disable salt and stop the service if possible. It does not uninstall the
package.

Normally you migrate a traditional client to a Salt client without deleting the
client. Salt automatically detects that you have a traditional client and does the
necessary changes itself. But if you already deleted the traditional client and
want to register it as a Salt client again, see Administration › Troubleshooting.

6.2. Delete a Salt Client on the Command Line (with API Call)
Procedure: Deleting a Client from the Server

1. Delete the client with the FQDN (Fully Qualified Domain Name):

spacecmd system_delete FQDN

spacecmd system_delete also deletes the Salt key.

system_delete offers the following options:

6.1. Delete a Client with the Web UI

149 / 218 6.1. Delete a Client with the Web UI | Uyuni 2023.10

usage: system_delete [options] <SYSTEMS>

 options:
 -c TYPE - Possible values:
 * 'FAIL_ON_CLEANUP_ERR' - fail in case of cleanup error,
 * 'NO_CLEANUP' - do not cleanup, just delete,
 * 'FORCE_DELETE' - try cleanup first but delete server anyway
 in case of error

6.3. Delete a Client from the Command Line

6.3.1. Salt Client

This process is only for Uyuni clients, do not run it on the Uyuni Server itself.

You must not execute the following procedure on clients running Red Hat
Enterprise Linux, Debian, or clones. Instead of zypper use equivalent packager
commands such as yum, dnf, or apt.

Procedure: Deleting SLES 12 and 15 Salt Clients

1. Stop the salt-minion service:

systemctl stop salt-minion

2. Remove the repositories and configuration files:

rm /etc/zypp/repos.d/susemanager\:channels.repo
rm -r /etc/sysconfig/rhn/
rm -r /etc/salt/

3. Remove Client Packages:

zypper rm salt salt-minion python*-salt sle-manager-tools-release

Procedure: Salt Bundle Client - Manual Registration Cleanup

1. To unregister, run:

systemctl stop venv-salt-minion
zypper rm -y venv-salt-minion
rm /etc/zypp/repos.d/susemanager\:channels.repo /etc/venv-salt-minion/*
rm -r /etc/venv-salt-minion/*

For information about the Salt bundle, see Client-configuration › Contact-methods-saltbundle.

This process is only for Uyuni clients, do not run it on the Uyuni Server itself.

6.3. Delete a Client from the Command Line

150 / 218 6.3. Delete a Client from the Command Line | Uyuni 2023.10

You must not execute the following procedure literally on clients running Red
Hat Enterprise Linux, Debian, or clones. Instead of zypper use equivalent
packager commands such as yum, dnf, or apt.

Procedure: Traditional SLES 12 and 15 Clients - Manual Cleanup

1. Stop the osad service (if it is in use):

systemctl stop osad

2. On a SLES 12 client remove the following packages if installed. This should be tried first (in case
the osad package is not installed, do not list it on the command line):

zypper rm spacewalksd spacewalk-check zypp-plugin-spacewalk \
spacewalk-client-tools osad python2-zypp-plugin-spacewalk \
python2-spacewalk-check python2-spacewalk-client-setup

3. On a SLES 15 client remove the following packages if installed:

zypper rm spacewalk-client-setup mgr-daemon spacewalk-check \
zypp-plugin-spacewalk mgr-osad python3-zypp-plugin-spacewalk \
python3-spacewalk-check python3-spacewalk-client-setup

4. You will see the following output:

Refreshing service 'spacewalk'.
Loading repository data...
Reading installed packages...
Resolving package dependencies...

The following packages are going to be REMOVED:
 spacewalk-check spacewalk-client-setup spacewalksd zypp
plugin-python osad

5 packages to remove.
After the operation, 301.0 KiB will be freed.
Continue? [y/n/?] (y):

The above RPM packages are client specific, and should be removed. If this fails, they should be
manually removed. The rpm -e command should not be used unless the zypper rm command
above failed.

5. After this is complete, the /etc/sysconfig/rhn/systemid file should be removed. This file only exists
on a client machine and is used to register itself with Uyuni:

rm /etc/sysconfig/rhn/systemid

6. Any configured spacewalk channels should be deleted with:

6.3. Delete a Client from the Command Line

151 / 218 6.3. Delete a Client from the Command Line | Uyuni 2023.10

rm /etc/zypp/repos.d/spacewalk*

7. Finally verify that repositories are properly configured. Refresh them on the server and then list
them:

zypper ref -s
zypper lr

If any repositories pointing to spacewalk still exist, remove them with:

zypper repos -d
zypper removerepo <ID of the repo in the output from previous command>

6.3. Delete a Client from the Command Line

152 / 218 6.3. Delete a Client from the Command Line | Uyuni 2023.10

Chapter 7. Client Operations
In addition to registering, upgrading, or deleting clients other operations can be performed.

Uyuni clients can be managed individually, or organised in groups using System Set Manager, System
Groups or Configuration Management.

You can obtain Custom System Information, manage Configuration Snapshots or power on, power off,
and reboot clients using the SUSE Manager Web UI.

This section contains detailed description of each of these operation.

7.1. Package Management
Clients use packages to install, uninstall, and upgrade software.

To manage packages on a client, navigate to Systems, click the client to manage, and navigate to the
Systems › Software › Packages subtab. The options available in this section vary depending on the type
of client you have selected, and its current channel subscriptions.

When packages are installed or upgraded, licenses or EULAs are automatically
accepted.

Most package management actions can be added to action chains. For more about action chains, see
Reference › Schedule.

7.1.1. Verify Packages

You can check that packages you have installed on a client match the current state of the database they
were installed from. The metadata of the installed package is compared to information in the database,
including the file checksum, file size, permissions, owner, group, and type.

Procedure: Verifying Installed Packages

1. In the Uyuni Web UI, navigate to Systems, click the client the package is installed on, and
navigate to the Systems › Software › Packages › Verify subtab.

2. Select the packages you want to verify and click [Verify Selected Packages] .

3. When the verification is complete, navigate to Systems › Events › History to see the results.

7.1.2. Compare Packages

You can compare the packages installed on a client with a stored profile, or with packages installed on
another client. When the comparison is made, you can choose to modify the selected client to match.

To compare packages against a profile, you need to have stored a profile. Profiles are created from the
packages on a currently installed client. When the profile has been created, you can use it to install more

7.1. Package Management

153 / 218 7.1. Package Management | Uyuni 2023.10

clients with the same packages installed.

Procedure: Creating a Stored Profile

1. In the Uyuni Web UI, navigate to Systems, click the client to base your profile off, and navigate
to the Systems › Software › Packages › Profiles subtab.

2. Click [Create System Profile] .

3. Type a name and description for your profile and click [Create Profile] .

Procedure: Comparing Client Packages

1. In the Uyuni Web UI, navigate to Systems, click the client to compare, and navigate to the
Systems › Software › Packages › Profiles subtab. To compare with a stored profile, select the
profile and click [Compare] .

2. To compare with another client, select the client name and click [Compare] to see a list of
differences between the two clients.

3. Check packages you want to install on the selected client, uncheck packages you want to remove,
and click [Sync Packages to] .

7.2. Patch Management
You can use custom patches within your organization to manage clients. This allows you to issue patch
alerts for packages in custom channels, schedule patch installation, and manage patches across
organizations.

7.2.1. Create Patches

To use a custom patch, you need to create the patch, add packages to it and add it to one or more
channels.

Procedure: Creating a Custom Patch

1. In the Uyuni Web UI, navigate to Patches › Manage Patches, click [Create Patch] .

2. In the Create Patch section, use these details:

◦ In the Synopsis field, type a short description of the patch.

◦ In the Advisory field, type a label for the patch. We recommend you devise a naming
convention for your organization to make patch management easier.

◦ In the Advisory Release field, enter a release number for your patch. For example, if
this is the first version of this patch, use 1.

◦ In the Advisory Type field, select the type of patch to use. For example, Bug Fix
Advisory for a patch that fixes errors.

◦ If you selected an advisory type of Security Advisory, in the Advisory
Severity field, select the severity level to use.

◦ In the Product field, type the name of the product this patch refers to.

7.2. Patch Management

154 / 218 7.2. Patch Management | Uyuni 2023.10

◦ OPTIONAL: In the Author field, type the name of the author of the patch.

◦ Complete the Topic, Description, and Solution fields with further information
about the patch.

3. OPTIONAL: In the Bugs section, specify the information of any related bugs, using these details:

◦ In the ID field, enter the bug number.

◦ In the Summary field, type a short description of the bug.

◦ In the Bugzilla URL field, type the address of the bug.

◦ In the Keywords field, type any keywords related to the bug. Use a comma between each
keyword.

◦ Complete the References and Notes fields with further information about the bug.

◦ Select one or more channels to add the new patch to.

4. Click [Create Patch] .

You can also create patches by cloning an existing one. Cloning preserves package associations and
simplifies issuing patches.

Procedure: Cloning Patches

1. In the Uyuni Web UI, navigate to Patches › Clone Patches.

2. In the View patches potentially applicable to: field, select the software
channel for the patch you want to clone.

3. Select the patch or patches you want to clone, and click [Clone Patches] .

4. Select one or more channels to add the cloned patch to.

5. Confirm the details to begin the clone.

When you have created a patch, you can assign packages to it.

Procedure: Assigning Packages to a Patch

1. In the Uyuni Web UI, navigate to Patches › Manage Patches, and click the the advisory name of
the patch to see the patch details.

2. Navigate to the Packages › Add tab.

3. In the Channel field, select the software channel that contains the packages you want to assign to
the patch, and click [View Packages] . You can select All managed packages to see
the available packages in all channels.

4. Check the packages you want to include, and click [Add Packages] .

5. Confirm the details of the packages, and click [Confirm] to assign them to the patch.

6. Navigate to the Packages › List/Remove tab to check that the packages have been assigned
correctly.

When packages are assigned to a patch, the patch cache is updated to reflect the changes. The cache
update might take a couple of minutes.

7.2. Patch Management

155 / 218 7.2. Patch Management | Uyuni 2023.10

If you need to change the details of an existing patch, you can do so from the Patches Management
page.

Procedure: Editing and Deleting Existing Patch Alerts

1. In the Uyuni Web UI, navigate to Patches › Manage Patches.

2. Click the advisory name of the patch to see the patch details.

3. Make the changes as required, and click [Update Patch] .

4. To delete a patch, select the patch in the Patches Management page, and click [Delete
Patches] . Deleting patches might take a few minutes.

7.2.2. Apply Patches to Clients

When a patch is ready, you can apply it to clients either singly, or with other patches.

Each package within a patch is part of one or more channels. If the client is not subscribed to the channel,
the update is not installed.

If the client has a more recent version of a package already installed, the update is not installed. If the
client has an older version of the package installed, the package is upgraded.

Procedure: Applying All Applicable Patches

1. In the Uyuni Web UI, navigate to Systems › Overview and select the client you want to update.

2. Navigate to the Software › Patches tab.

3. Click [Select All] to select all applicable patches.

4. Click [Apply Patches] to update the client.

If you are signed in with Administrator privileges, you can also perform larger batch upgrades for clients.

Procedure: Applying a Single Patch to Multiple Clients

1. In the Uyuni Web UI, navigate to Patches › Patch List.

2. Locate the patch you want to apply, and click the number under the Systems column for that
patch.

3. Select the clients you want to apply the patch to, and click [Apply Patches] .

4. Confirm the list of clients to perform the update.

Procedure: Applying Multiple Patches to Multiple Clients

1. In the Uyuni Web UI, navigate to Systems › Overview and check the clients you want to update to
add them to the system set manager.

2. Navigate to Systems › System Set Manager and naviagte to the Patches tab.

3. Select the patches you want to apply to the clients and click [Apply Patches] .

4. Schedule a date and time for the update to occur, and click [Confirm] .

7.2. Patch Management

156 / 218 7.2. Patch Management | Uyuni 2023.10

5. To check the progress of the update, navigate to Schedule › Pending Actions.

Scheduled package updates are installed using the contact method configured for
each client. For more information, see Client-configuration › Contact-
methods-intro.

7.3. System Locking
System locks are used to prevent actions from occurring on a client. For example, a system lock prevents a
client from being updated or restarted. This is useful for clients running production software, or to prevent
accidental changes. You can disable the system lock when you are ready to perform actions.

System locks are implemented differently on traditional and Salt clients.

7.3.1. System Locks on Traditional Clients

When a traditional client is locked, no actions can be scheduled using the Web UI, and a padlock icon is
displayed next to the name of the client in the System › System List.

Procedure: System Locking a Traditional Client

1. In the Uyuni Web UI, navigate to the System Details page for the client you want to lock.

2. Under Lock Status, click [Lock this system]. The client remains locked until you
click [Unlock this system] .

Some actions can still be completed on locked traditional clients, including remote commands, and
automated patch updates. To stop automated patch updates, navigate to the System Details page for
the client, and on the Properties tab, uncheck Auto Patch Update.

7.3.2. System Locks on Salt Clients

When a Salt client is locked, or put into blackout mode, no actions can be scheduled, Salt execution
commands are disabled, and a yellow banner is displayed on the System Details page. In this mode,
actions can be scheduled for the locked client using the Web UI or the API, but the actions fail.

 The locking mechanism is not available for Salt SSH clients.

Procedure: System Locking a Salt Client

1. In the Uyuni Web UI, navigate to the System Details page for the client you want to lock.

2. Navigate to the Formulas tab, check the system lock formula, and click [Save] .

3. Navigate to the Formulas › System Lock tab, check Lock system, and click [Save] . On this
page, you can also enable specific Salt modules while the client is locked.

4. When you have made your changes, you might need to apply the highstate. In this case, a banner in
the Web UI notifies you. The client remains locked until you remove the system lock formula.

7.3. System Locking

157 / 218 7.3. System Locking | Uyuni 2023.10

For more information about blackout mode in Salt, see
https://docs.saltstack.com/en/latest/topics/blackout/index.html.

7.3.3. Package Locks

Package locking can be used on several clients, but different feature sets are available. You must
differentiate between:

1. SUSE Linux Enterprise and openSUSE (zypp-based) versus Red Hat Enterprise Linux or Debian
clients, and

2. Traditional versus Salt clients.

7.3.3.1. Package Locks on Zypp-based Systems

Package locks are used to prevent unauthorized installation or upgrades to software packages. When a
package has been locked, it shows a padlock icon, indicating that it cannot be installed. Any attempt to
install a locked package is reported as an error in the event log.

Locked packages cannot be installed, upgraded, or removed, neither through the Uyuni Web UI, nor
directly on the client machine using a package manager. Locked packages also indirectly lock any
dependent packages.

Systems with the Zypper package manager have package locking available on
traditional and Salt clients.

Procedure: Using Package Locks

1. Navigate to the Software › Packages › Lock tab on the managed system to see a list of all
available packages.

2. Select the packages to lock, and click [Request Lock] . Pick date and time for the lock to
activate. By default, the lock is activated as soon as possible. Note that the lock might not activate
immediately.

3. To remove a package lock, select the packages to unlock and click [Request Unlock] . Pick
date and time as with activating the lock.

7.3.3.2. Package Locks on Red Hat Enterprise Linux- and Debian-like Systems

Some Red Hat Enterprise Linux- and Debian-like systems have package locking
available on Salt clients.

On Red Hat Enterprise Linux- and Debian-like systems, package locks are only used to prevent
unauthorized upgrades or removals to software packages. When a package has been locked, it shows a
padlock icon, indicating that it cannot be changed. Any attempt to change a locked package is reported as
an error in the event log.

Locked packages cannot be upgraded or removed, neither through the Uyuni Web UI, nor directly on the

7.3. System Locking

158 / 218 7.3. System Locking | Uyuni 2023.10

https://docs.saltstack.com/en/latest/topics/blackout/index.html
https://docs.saltstack.com/en/latest/topics/blackout/index.html

client machine using a package manager. Locked packages also indirectly lock any dependent packages.

Procedure: Using Package Locks

1. On the Red Hat Enterprise Linux 7 systems, install the yum-plugin-versionlock package
as root. On the Red Hat Enterprise Linux 8 systems, install the python3-dnf-plugin-
versionlock package as root. On Debian systems, the apt tool has the locking feature
included.

2. Navigate to the Software › Packages › Lock tab on the managed system to see a list of all
available packages.

3. Select the packages to lock, and click [Request Lock] . Pick date and time for the lock to
activate. By default, the lock is activated as soon as possible. Note that the lock might not activate
immediately.

4. To remove a package lock, select the packages to unlock and click [Request Unlock] . Pick
date and time as with activating the lock.

7.4. Configuration Management
You can use configuration files and channels to manage configuration for your clients, rather than
configuring each client manually.

Some of the following features are available for traditional clients only. For
features supported on Salt clients, see the table below.

Configuration parameters are scripted and stored in configuration files. You can write configuration files
directly using the Uyuni Web UI, or you can upload or link to files that exist in other locations.

Configuration files can be centrally managed, or locally managed. Centrally managed configuration files
are provided by global configuration channels and can be applied to any client subscribed to the Uyuni
Server. Locally managed configuration files are used to override centrally managed configuration settings.
They are especially useful for Uyuni users who do not have configuration administration privileges, but
need to make changes to the clients that they manage.

Configuration channels are used to organize configuration files. You can subscribe clients to configuration
channels, and deploy configuration files as required.

Configuration files are version-controlled, so you can add configuration settings, test them on your clients,
and roll back to a previous revision as required. When you have created your configuration channels, you
can also perform comparisons between various configuration files, and between revisions of the same
configuration file.

Configuration files can be centrally managed, or locally managed. Centrally managed configuration files
are provided by global configuration channels. Locally managed configuration files are created or
uploaded to Uyuni directly.

The available configuration management features are different for Salt and traditional clients. This table
shows the supported features on different client types:

7.4. Configuration Management

159 / 218 7.4. Configuration Management | Uyuni 2023.10

Table 39. Configuration Management Supported Features

Feature Salt Traditional

Global Configuration Channels

Deploying Files

Comparing Files

Locally Managed Files

Sandbox Files

Applying the Highstate

File Import from a Client

Jinja Templating

Configuration Macros

7.4.1. Prepare Traditional Clients for Configuration Management

Traditional clients require some extra preparation to use configuration management. If you installed your
traditional client with AutoYaST or Kickstart you probably already have the appropriate packages. For
other traditional clients, ensure you have installed the relevant tools child channel for your client operating
system. For more information about software channels, see Client-configuration › Channels.

The packages you require are:

• mgr-cfg: base libraries and functions needed by all mgr-cfg-* packages

• mgr-cfg-actions: required to run configuration actions scheduled using Uyuni.

• mgr-cfg-client: provides a command line interface to the client features of the configuration
management system.

• mgr-cfg-management: provides a command line interface to manage Uyuni configuration.

You can install these packages during the bootstrap process by navigating to Systems › Activation Keys,
clicking the activation key you intend to use during bootstrap, and checking the Configuration
File Deployment option. For more information about activation keys, see Client-configuration ›
Activation-keys.

7.4.2. Create Configuration Channels

To create a new central configuration channel:

Procedure: Creating Central Configuration Channel

1. In the Uyuni Web UI, navigate to Configuration › Channels, and click [Create Config
Channel] .

7.4. Configuration Management

160 / 218 7.4. Configuration Management | Uyuni 2023.10

2. Type a name for the channel.

3. Type a label for the channel. This field must contain only letters, numbers, hyphens (-) and
underscores (_).

4. Type a description for the channel that allows you to distinguish it from other channels.

5. Click [Create Config Channel] to create the new channel.

You can also use a configuration channel to manage Salt states on Salt clients.

Procedure: Creating a Salt State Channel

1. In the Uyuni Web UI, navigate to Configuration › Channels, and click [Create State
Channel] .

2. Type a name for the channel.

3. Type a label for the channel. This field must contain only letters, numbers, hyphens (-) and
underscores (_).

4. Type a description for the channel that allows you to distinguish it from other channels.

5. Type the SLS Contents for the init.sls file.

6. Click [Create Config Channel] to create the new channel.

7.4.3. Add Configuration Files, Directories, or Symbolic Links

When you have created a configuration channel you can add a configuration file, directory, or symbolic
link:

Procedure: Adding a Configuration File, Directory, or Symbolic Link

1. In the Uyuni Web UI, navigate to Configuration › Channels, and click the name of the
configuration channel that you want to add a configuration file to, and navigate to the Add Files ›
Create File subtab.

2. In the File Type field, choose whether you want to create a text file, directory, or symbolic
link.

3. In the Filename/Path field, type the absolute path to the location where the file should be
deployed.

4. If you are creating a symbolic link, type the target file and path in the Symbolic Link
Target Filename/Path field.

5. Type the User name and Group name for the file in the Ownership field, and the File
Permissions Mode.

6. If the client has SELinux enabled, you can configure SELinux contexts to enable the
required file attributes (for example: user, role, and file type).

7. If the configuration file includes a macro, enter the symbol that marks the beginning and end of the
macro.

8. Enter the configuration file contents in the File Contents text box, using the script drop-
down box to choose the appropriate scripting language.

7.4. Configuration Management

161 / 218 7.4. Configuration Management | Uyuni 2023.10

9. Click [Create Configuration File] .

7.4.4. Subscribe Clients to Configuration Channels

You can subscribe individual clients to configuration channels by navigating to Systems › System List,
selecting the client you want to subscribe, and navigating to the Configuration tab. To subscribe
multiple clients to a configuration channel, you can use the system set manager (SSM).

Procedure: Subscribing Multiple Clients to Configuration Channels

1. In the Uyuni Web UI, navigate to Systems › Systems List and select the clients you want to work
with.

2. Navigate to Systems › System Set Manager, and go to the Configuration › Subscribe to
Channels subtab to see the list of available configuration channels.

3. OPTIONAL: Click the number in the Systems currently subscribed column to see
which clients are currently subscribed to the configuration channel.

4. Check the configuration channels you want to subscribe to, and click [Continue] .

5. Rank the configuration channels using the up and down arrows. Where settings conflicts occur
between configuration channels, channels closer to the top of the list take precedence.

6. Determine how the channels are applied to the selected clients. Click [Subscribe With
Lowest Priority] to add the new channels at a lower priority than currently subscribed
channels. Click [Subscribe with Highest Priority] to add the new channels at a
higher priority than currently subscribed channels. Click [Replace Existing

Subscriptions] to remove existing channels and replace them with the new channels.

7. Click [Apply Subscriptions] .

If new configuration channel priorities conflict with existing channels, the
duplicate channel is removed and replaced according to the new priority. If the
client’s configuration priorities are going to be reordered by an action, the
Web UI requires you to confirm the change before proceeding.

7.4.5. Compare Configuration Files

You can also use the system set manager (SSM) to compare the configuration file deployed on clients
with the configuration file stored on the Uyuni Server.

Procedure: Comparing Configuration Files

1. In the Uyuni Web UI, navigate to Systems › Systems List and select the clients subscribed to the
configuration files you want to compare.

2. Navigate to Systems › System Set Manager, and go to the Configuration › Compare Files
subtab to the list of available configuration files.

3. OPTIONAL: Click the number in the Systems column to see which clients are currently
subscribed to the configuration file.

7.4. Configuration Management

162 / 218 7.4. Configuration Management | Uyuni 2023.10

4. Check the configuration files to compare, and click [Schedule File Comparison] .

7.4.6. Jinja templating on Salt clients

Jinja templating is possible on Salt clients. Jinja provides variables from pillars or grains. They can be used
in configuration files or Salt states.

For more information, see https://docs.saltproject.io/salt/user-guide/en/latest/topics/jinja.html with this
example:

{% if grains.os_family == 'RedHat' %}
 {% set dns_cfg = '/etc/named.conf' %}
{% elif grains.os_family == 'Debian' %}
 {% set dns_cfg = '/etc/bind/named.conf' %}
{% else %}
 {% set dns_cfg = '/etc/named.conf' %}
{% endif %}
dns_conf:
 file.managed:
 - name: {{ dns_cfg }}
 - source: salt://dns/files/named.conf

7.4.7. Configuration file macros on traditional clients

Being able to store one file and share identical configurations is useful, but in some cases you might need
many variations of the same configuration file, or configuration files that differ only in system-specific
details, such as host name and MAC address. In this case, you can use macros or variables within the
configuration files. This allows you to upload and distribute a single file, with hundreds or even thousands
of variations. In addition to variables for custom system information, the following standard macros are
supported:

rhn.system.sid
rhn.system.profile_name
rhn.system.description
rhn.system.hostname
rhn.system.ip_address
rhn.system.custom_info(key_name)
rhn.system.net_interface.ip_address(eth_device)
rhn.system.net_interface.netmask(eth_device)
rhn.system.net_interface.broadcast(eth_device)
rhn.system.net_interface.hardware_address(eth_device)
rhn.system.net_interface.driver_module(eth_device)

To use this feature, either upload or create a configuration file via the Configuration Channel
Details page. Then open its Configuration File Details page and include the supported
macros of your choice. Ensure that the delimiters used to offset your variables match those set in the
Macro Start Delimiter and Macro End Delimiter fields and do not conflict with other
characters in the file. We recommend that the delimiters be two characters in length and do not contain
the percent (%) symbol.

For example, you may have a file applicable to all of your servers that differs only in IP address and host
name. Rather than manage a separate configuration file for each server, you can create a single file, such

7.4. Configuration Management

163 / 218 7.4. Configuration Management | Uyuni 2023.10

https://docs.saltproject.io/salt/user-guide/en/latest/topics/jinja.html

as server.conf, with the IP address and host name macros included.

hostname={| rhn.system.hostname |}
ip_address={| rhn.system.net_interface.ip_address(eth0) |}

When the file is delivered to individual systems, whether through a scheduled action in the Uyuni Web UI
or at the command line with the Uyuni Configuration Client (mgrcfg-client), the variables will be
replaced with the host name and IP address of the system as recorded in Uyuni’s system profile. In this
example, the deployed version will look similar to this:

hostname=test.example.domain.com
ip_address=177.18.54.7

To capture custom system information, insert the key label into the custom information macro
(rhn.system.custom_info). For example, if you developed a key labeled "asset" you can add it to
the custom information macro in a configuration file to have the value substituted on any system
containing it. The macro would look like this:

asset={@ rhn.system.custom_info(asset) @}

When the file is deployed to a system containing a value for that key, the macro gets translated, resulting
in a string similar to this:

asset=Example#456

To include a default value (for example, if one is required to prevent errors), you can append it to the
custom information macro, like this:

asset={@ rhn.system.custom_info(asset) = 'Asset #' @}

This default is overridden by the value on any system containing it.

The Uyuni Configuration Manager (mgrcfg-manager) is available on Uyuni client machines to assist
with system management. It will not translate or alter files, as the tool is system agnostic. The mgrcfg-
manager command does not depend on system settings. Binary files cannot be interpolated.

7.5. Power Management
You can power on, power off, and reboot clients using the Uyuni Web UI.

This feature uses either the IPMI or Redfish protocol and is managed using a Cobbler profile. The
selected client must have a power management controller supporting one of these protocols.

For Redfish, ensure you can establish a valid SSL connection between the client and the Uyuni Server.

7.5. Power Management

164 / 218 7.5. Power Management | Uyuni 2023.10

You must have trusted the certificate authority used to sign the SSL Server Certificate of the Redfish
management controller. The CA certificate must be in .pem format, and stored on the Uyuni Server at
/etc/pki/trust/anchors/. When you have saved the certificate, run update-ca-

certificate.

Procedure: Enabling Power Management

1. In the Uyuni Web UI, navigate to Systems › Systems List, select the client you want to manage,
and navigate to the Provisioning › Power Management tab.

2. In the Type field, select the power management protocol to use.

3. Complete the details for the power management server, and click the appropriate button for the
action to take, or click [Save only] to save the details without taking any action.

You can apply power management actions to multiple clients at the same time by adding them to the
system set manager. For more information about using the system set manager, see Client-configuration
› System-set-manager.

7.5.1. Power Management and Cobbler

The first time you use a power management feature, a Cobbler system record is automatically created, if
one does not yet exist for the client. These automatically created system records are not bootable from the
network, and include a reference to a dummy system image. This is needed because Cobbler does not
currently support system records without profiles or images.

Cobbler power management uses fence-agent tools to support protocols other than IPMI. Only IPMI and
Redfish protocols are supported by Uyuni. You can configure your client to use other protocols by adding
the fence-agent names as a comma-separated list to the java.power_management.types
configuration parameter in the rhn.conf configuration files.

7.6. Configuration Snapshots
Snapshots record the package profile, configuration files, and Uyuni settings for a client at a set point in
time. You can roll back to older snapshots to restore previous configuration settings.

Snapshots are supported on traditional clients only. Salt clients do not support
this feature.

Snapshots are captured automatically after some actions occur. You can also manually take a snapshot at
any time. We recommend that you ensure you have a current snapshot before performing any potentially
destructive action on your clients.

Snapshots are enabled by default. You can disable automatic snapshots by setting
enable_snapshots=0 in the rhn.conf configuration file.

Manage your snapshots by navigating to Systems › Systems List and selecting the client you want to
manage. Navigate to the Provisioning › Snapshots tab to see a list of all current snapshots for the

7.6. Configuration Snapshots

165 / 218 7.6. Configuration Snapshots | Uyuni 2023.10

selected client. Click the name of a snapshot to see more information about the changes recorded in the
snapshot. You can use the subtabs in the Provisioning › Snapshots tab to see the changes that rolling
back to the selected snapshot makes to:

• Group memberships

• Channel subscriptions

• Installed packages

• Configuration channel subscriptions

• Configuration files

• Snapshot tags

You can use a snapshot to roll back most changes to a client, but not all of them.
For example, you cannot roll back multiple updates, and you cannot roll back a
product migration. Always ensure you have taken a backup before performing
upgrades on your clients.

7.6.1. Snapshot Tags

Snapshot tags allow you to add meaningful descriptions to your snapshots. You can use tags to record
extra information about snapshots, such as a last known working configuration, or a successful upgrade.

Manage your snapshot tags by navigating to Systems › Systems List and selecting the client you want to
manage. Navigate to the Provisioning › Snapshot Tags tab to see a list of all current snapshot tags for the
selected client. Click Create System Tag, enter a description, and click the [Tag Current
Snapshot] button.

7.6.2. Snapshots on Large Installations

There is no maximum number of snapshots that Uyuni keeps. This means that the database that stores the
snapshots grows as you add more clients, packages, channels, and configuration changes.

If you have a large installation, with thousands of clients, you can use the Uyuni API to create a recurring
cleanup script on a recurring schedule to ensure that old snapshots are deleted regularly. Alternatively, you
can disable the feature by setting enable_snapshots=0 in the rhn.conf configuration file.

7.7. Custom System Information
You can include customized system information about your clients. System information is defined as
key:value pairs, which can be assigned to clients. For example, you can define a key:value pair for a
particular processor, then assign that key to all clients that have that processor installed. Custom system
information is categorized, and can be searched using the Uyuni Web UI.

Before you begin, you need to create a key that allows you to store custom information.

Procedure: Creating a Custom System Information Key

7.7. Custom System Information

166 / 218 7.7. Custom System Information | Uyuni 2023.10

1. In the Uyuni Web UI, navigate to Systems › Custom System Info, and click [Create Key] .

2. In the Key Label field, add a name for your key. Do not use spaces. For example, intel-
x86_64-quadcore.

3. In the Description field, provide any additional information required.

4. Repeat for each key you require.

For Salt clients, this information is available via Salt pillar. You can retrieve this information from a Salt
client with a command such as:

salt $minionid pillar.get custom_info:key1

This command will result in an output such as:

$minionid:
 val1

When you have created some custom system information keys, you can apply them to clients.

Procedure: Applying Custom Information Keys to Clients

1. In the Uyuni Web UI, navigate to Systems, click the client to apply custom information to, and
navigate to the Details › Custom Info tab.

2. Click [Create Value] .

3. Locate the value you want to apply, and click the key label.

4. In the Value field, provide any additional information.

5. Click [Update Key] to apply the custom information to the client.

For more information about configuration management, see Client-configuration › Configuration-
management.

7.8. System Set Manager
The system set manager (SSM) is used to perform actions on more than one client at a time. SSM creates
ephemeral sets of clients, making it useful for one-off actions that you need to apply to a number of
clients. If you want more permanent sets, consider using system groups instead. For more information
about system groups, see Client-configuration › System-groups.

The actions available for use in SSM are listed in this table. The icons in this table indicate:

• this action is available in SSM for this client type

• this action is not available in SSM for this client type

• this action is under consideration for this client type, and may or may not be supported at a later
date.

7.8. System Set Manager

167 / 218 7.8. System Set Manager | Uyuni 2023.10

Table 40. Available SSM Actions

Action Traditional Salt

List systems

Install patches

Schedule patch updates

Upgrade packages

Install packages

Remove packages

Verify packages

Create groups

Manage groups

Channel memberships

Channel subscriptions

Deploy/diff channels

Autoinstall clients

Tag for snapshot

Remote commands

Power management

Update system preferences

Update hardware profiles

Update package profiles

Set/remove custom values

Reboot clients

Migrate clients to another
organization

Delete clients

You can select clients for the SSM in several ways:

• Navigate to Systems › System List and check the clients you want to work with.

7.8. System Set Manager

168 / 218 7.8. System Set Manager | Uyuni 2023.10

• Navigate to Systems › System Groups, and click [Use in SSM] for the system group you
want to work with.

• Navigate to Systems › System Groups, check the group you want to work with, and click [Work
with Group] .

When you have selected the clients you want to work with, navigate to Systems › System Set Manager,
or click the systems selected icon in the top menu bar.

The details in SSM might differ slightly from the details in other parts of the
Uyuni Web UI. In SSM, all available updates are shown. This allows you to
upgrade to packages that might not be the latest version.

7.8.1. Change Base Channels in SSM

You can use SSM to change the base channel of more than one client at the same time.

Changing the base channel significantly changes the packages and patches
available to the affected clients. Use with caution.

Procedure: Using SSM to Change Base Channels for Multiple Clients

1. In the Uyuni Web UI, navigate to Systems › System List, check the clients you want to work with,
and navigate to Systems › System Set Manager.

2. Navigate to the Channels subtab.

3. Locate the current base channel in the list, and verify that the number shown in the Systems
column is correct. You can click the number in this column to see more details of the clients you
are changing.

4. Select the new base channel in the Desired base Channel field, and click [Next] .

5. For each child channel, select No change, Subscribe, or Unsubscribe, and click
[Next] .

6. Check the changes you are making, and choose a time for the action to occur.

7. Click [Confirm] to schedule the changes.

7.9. System Groups
You can use system groups to make it easier to manage a large number of clients. Groups can be used to
perform bulk actions on clients such as applying updates, configuration channels, salt states, or formulas.

You can organize clients into groups in any way that works for your environment. For example, you could
organize clients on which operating system is installed, which physical location they are in, or the type of
workload they are handling. Clients can be in any number of groups, so you can define your groups in
different ways.

When you have clients organized into groups, you can perform updates on all clients in one or more

7.9. System Groups

169 / 218 7.9. System Groups | Uyuni 2023.10

groups, or on intersections between groups. For example, you can define one group for all Salt clients, and
another group for all SLES clients. You can then perform updates on all Salt clients, or use the
intersection between the groups, and update all Salt SLES clients.

7.9.1. Create Groups

You need to create some groups before you can use them to organize your clients.

Procedure: Creating a New System Group

1. In the Uyuni Web UI, navigate to Systems › System Groups.

2. Click [Create Group] .

3. Give your new group a name and a description.

4. Click [Create Group] to save your group.

5. Repeat for each group you require.

7.9.2. Add Clients to Groups

You can add individual clients to your groups, or add multiple clients at the same time.

Procedure: Adding A Single Client to a Group

1. In the Uyuni Web UI, navigate to Systems › System List and click the name of the client to add.

2. Navigate to the Groups › Join tab.

3. Check the group to join and click [Join Selected Groups] .

Procedure: Adding Multiple Clients to a Group

1. In the Uyuni Web UI, navigate to Systems › System Groups and click the name of the group to
add clients to.

2. Navigate to the Target systems tab.

3. Check the clients to add and click [Add Systems] .

Procedure: Adding Multiple Clients to a Group with SSM

1. In the Uyuni Web UI, navigate to Systems › System List and check each client to add, this adds
the clients to the system set manager.

2. Navigate to Systems › System Set Manager, and go to the Groups tab.

3. Locate the group to join and check Add.

4. Click [Alter Membership] .

5. Click [Confirm] to join the clients to the selected group.

For more information about the system set manager, see Client-configuration › System-set-manager.

You can see which clients are in a group by navigating to Systems › System Groups, clicking the name

7.9. System Groups

170 / 218 7.9. System Groups | Uyuni 2023.10

of the group, and navigating to the Systems tab. Alternatively, you can see a graphical representation of
your system groups by navigating to Systems › Visualization › Systems Grouping.

7.9.3. Work with Groups

When you have your clients arranged into groups, you can use your groups to manage updates. For Salt
clients, you can also apply states and formulas to all clients in a group.

In the Uyuni Web UI, navigate to Systems › System Groups. The list shows an icon if there are updates
available for any of the clients in the group. The list shows a question mark icon if checking the update
status is disabled for any of the clients in the group. Click the icon to see more information about the
updates available and to apply them to the clients.

You can also work with more than one group at a time. Select the groups you want to work with, and
click [Work with union] to select every client in every selected group.

Alternatively, you can work on intersections of groups. Select two or more groups, and click [Work
with intersection] to select only those clients that exist in all the selected groups. For example,
you might have one group for all Salt clients, and another group for all SLES clients. The intersection of
these groups would be all Salt SLES clients.

7.10. System Types
Clients are categorized by system type. Every client can have both a base system type, and an add-on
system type assigned.

Base system types include Management, for traditional clients, and Salt for Salt clients.

Add-on system types include Virtualization Host, for clients that operate as virtual hosts, and
Container Build Host for clients that operate as a build host.

You can adjust the add-on system type by navigating to Systems › System List › System Types. Check
the clients you want to change the add-on system type for, select the Add-On System Type, and
click either [Add System Type] or [Remove System Type] .

You can also change the base system type from Management to Salt, by re-registering the client.

Changing the base system type requires that you re-register your client. This
deletes any customization or configuration on the client, however event history is
preserved. It also requires client downtime.

7.10.1. Change a Traditional Client to Salt Using the Web UI

The simplest method to change a traditional client to a Salt client is to re-register it with the Web UI.

Procedure: Changing a Traditional Client to Salt Using the Web UI

7.10. System Types

171 / 218 7.10. System Types | Uyuni 2023.10

1. In the Uyuni Web UI, navigate to Systems › System List, identify the client you want to change,
and take a note of the hostname.

2. Navigate to Systems › Bootstrapping.

3. In the Host field, type the hostname of the client to be re-registered.

4. Complete the other fields as required.

5. Click [Bootstrap] to schedule the bootstrap process.

When the client has completed registration, it shows in the Systems List with the system type
Salt.

7.10.2. Change a Traditional Client to Salt at the Command Prompt

You can use the command prompt to re-register a traditional client as a Salt client. This requires you to
delete the packages used by the traditional client. You can then re-register the client using your preferred
registration method for Salt clients.

Procedure: Changing a Traditional Client to Salt at the Command Prompt

1. On the client to be changed, at the command prompt, use your package manager to remove these
packages:

spacewalk-check
spacewalk-client-setup
osad
osa-common
mgr-osad
spacewalksd
mgr-daemon
rhnlib
rhnmd

2. Use your preferred registration method to re-register the client as a Salt client.

When the client has completed registration, it shows in the Systems List with the system type
Salt.

7.10. System Types

172 / 218 7.10. System Types | Uyuni 2023.10

Chapter 8. Operating System Installation
Generally, you register clients that are already running. You might have installed these machines manually
just before registering them to Uyuni, or they might be pre-existing systems that were installed before you
added Uyuni to your environment.

Alternatively, you can use Uyuni to help you install an operating system and register it to Uyuni in one go.
This method is partially or totally automated, so you can save time answering installer questions, and is
especially useful if you have many clients you want to install and register.

There are several ways to install an operating system from Uyuni:

• in-place, on clients that are already registered;

• over the network, using PXE boot;

• preparing an installation CD-ROM or an USB key, and then going to the machine to boot on that
medium;

• as part of the Uyuni for Retail solution.

The in-place reinstallation method assumes that a previous operating system has already been installed on
the client, and that the client has already been registered to Uyuni.

For information about the in-place installation method, see Client-configuration › Autoinst-reinstall.

The network boot installation method works on unformatted machines. However, it can only be
performed in certain network configurations:

• the Uyuni Server, or one of its proxies, are on the same local network as the machine you want to
install, or you have a DHCP relay that allows you to cross all routers in between;

• you are able to set up a new DHCP server or to configure an existing one;

• the client to install is able to boot with PXE, and you can configure it to do so.

For information about the network boot method, see Client-configuration › Autoinst-pxeboot.

The removable medium method allows you to bypass these network constraints. However, it assumes the
machine is able to read CD-ROMs or USB keys, and boot from them. It also requires physical access to
the client machine.

For information about the removable media method, see Client-configuration › Autoinst-cdrom.

For information about the Uyuni for Retail approach, see Retail › Retail-overview.

Autoinstallation of Ubuntu and Debian clients is not supported. These operating
systems must be installed manually.

The autoinstallation features of Uyuni are based on a software named Cobbler. For more information

173 / 218 Chapter 8. Operating System Installation | Uyuni 2023.10

about Cobbler, see https://cobbler.readthedocs.io.

SUSE only supports Cobbler functions that are available in the Uyuni Web UI,
or through the Uyuni API. The sole command-line command supported by
Cobbler is buildiso. Only supported features are documented here.

8.1. Reinstall Registered Systems
The in-place reinstallation starts from the local client system. There is therefore no need for the client to
be able to boot over network with PXE.

To reinstall a registered client in-place, you must define an autoinstallable distribution and an
autoinstallation profile. For information, see Client-configuration › Autoinst-distributions and Client-
configuration › Autoinst-profiles.

When you have defined the autoinstallation profile and distribution, you can perform the reinstallation.

Procedure: Reinstall an Already Registered Client

1. In the Uyuni Web UI, navigate to Systems › Systems List, select the client to reinstall, and go to
the Provisioning › Autoinstallation › Schedule subtab.

2. Select the autoinstallation profile that you prepared, select a proxy if needed, and click
[Schedule Autoinstallation and Finish] .

3. If your client is a traditional client, and you have not configured osad, you need to wait until the
job is fetched.

4. You can monitor progress of the installation by navigating to Provisioning › Autoinstallation ›
Session Status, or on the client directly. The client reboots, and in the boot menu selects a new
choice called reinstall-system.

The installation then proceeds over HTTP protocol.

8.1. Reinstall Registered Systems

174 / 218 8.1. Reinstall Registered Systems | Uyuni 2023.10

https://cobbler.readthedocs.io

8.2. Install via the Network (PXE Boot)
During a network boot installation:

1. The client boots in PXE mode.

2. A DHCP server provides the client with an IP address and mask, the address of an installation
server, and the name of a bootloader file on that server.

3. The client downloads the bootloader file via the TFTP protocol from the installation server and
executes it.

4. The client is presented with a choice of possible profiles to install from a menu, or starts
automatically installing one of the profiles.

5. The client downloads via the TFTP protocol a kernel and an initial RAM disk for the distribution
matching that profile.

6. The installation kernel starts an installation program, either Kickstart or AutoYaST. From now on it
uses resources provided on the server via the HTTP protocol.

7. The distribution is installed automatically according to the Kickstart or AutoYaST profile.

8. The profile calls a code snippet that registers the client to the Uyuni Server, either as a traditional
or Salt client.

The installation server can either be the Uyuni Server or one of its proxies. To install from a proxy, you
must synchronize the TFTP tree between the server and the proxy before you begin.

The DHCP server may also provide other configuration information to the client, like a host name, the
address of a router and the address of a domain name server. Some of this information might be needed
for the autoinstallation, for example if you specify the installation server by its domain name.

In the PXE boot menu, the first choice is Local boot. If you select this, the boot process continues

8.2. Install via the Network (PXE Boot)

175 / 218 8.2. Install via the Network (PXE Boot) | Uyuni 2023.10

from the local disk drives. This option is selected automatically if no profile was selected after a certain
time. This is a security measure to prevent from starting an autoinstallation if no human operator is there
to select one of the profiles.

Alternatively, the installation can start automatically from one of the profiles without manual intervention.
This is called "unattended provisioning."

The "bare metal" functionality is a kind of unattended provisioning based on PXE boot. In this scenario,
the bootloader file only registers the client at the Uyuni Server and does not start the installation. You can
then trigger an in-place reinstallation later.

Procedure: Installing with PXE Boot

1. Prepare the DHCP server, see Prepare the DHCP Server.

2. Prepare an autoinstallable distribution, see Client-configuration › Autoinst-distributions.

3. Prepare an autoinstallation profile, see Client-configuration › Autoinst-profiles.

4. Reboot the client, and chose a profile to install.

Some other steps are optional. To use a proxy as the installation server, see Synchronize the TFTP Tree
with Proxies. For unattended provisioning, see Client-configuration › Autoinst-unattended.

8.2.1. Prepare the DHCP Server

The PXE boot process uses DHCP to find the TFTP server. The Uyuni Server or its proxies can act as
such a TFTP server.

You must have administrative access to the network’s DHCP server. Edit the DHCP configuration file so
that it points to the installation server as the TFTP boot server.

Example: Configuring the ISC DHCP Server

1. On the DHCP server, as root, open the /etc/dhcpd.conf file.

2. Modify the declaration for your client:

 host myclient { (...)
 next-server 192.168.2.1;
 filename "pxelinux.0"; }

1. Save the file and restart the dhcpd service.

This example directs the PXE client myclient to the installation server at 192.168.2.1 and
instructs it to retrieve the pxelinux.0 bootloader file.

Alternatively, if your DHCP server is registered at Uyuni, you can configure it using the DHCPd formula
instead:

Example: Configuring the ISC DHCP Server Using the DHCPd Formula

8.2. Install via the Network (PXE Boot)

176 / 218 8.2. Install via the Network (PXE Boot) | Uyuni 2023.10

client-configuration:autoinst-pxeboot.pdf#prepare-the-dhcp-server
client-configuration:autoinst-pxeboot.pdf#synchronize-the-tftp-tree-with-proxies
client-configuration:autoinst-pxeboot.pdf#synchronize-the-tftp-tree-with-proxies

1. Navigate to Systems › System List, select the client you want to change, and go to the Formulas
tab to enable the DHCPd formula.

2. Go to the formula’s Dhcpd tab, and in the Next Server field, enter the hostname or IP
address of the installation server.

3. In the Filename EFI field, type grub/shim.efi to enable EFI PXE support.

4. In the Filename field, type pxelinux.0 to enable legacy BIOS support.

5. Click [Save Formula] to save your configuration.

6. Apply the highstate.

If you do not use Secure Boot, type grub/grubx86.efi instead of
grub/shim.efi in the Filename EFI field.

For different architectures, see table GRUB EFI binary names for different
architectures.

 Using Cobbler managed DHCP is unsupported with Uyuni.

This sets up a global PXE server for all the hosts, you can also have per-host settings. For more
information about the DHCPd formula, see Specialized-guides › Salt.

8.2.2. Synchronize the TFTP Tree with Proxies

You can synchronize the TFTP tree on the Uyuni Server with the Uyuni Proxy. For synchronization,
HTTPS port 443 must be open.

 Every added proxy slows down the tree synchronization.

Procedure: Synchronizing TFTP between Server and Proxy

1. On the Uyuni Server, at the command prompt, as root, install the susemanager-tftpsync
package:

zypper install susemanager-tftpsync

1. On the Uyuni Proxy, at the command prompt, as root, install the susemanager-tftpsync-
recv package:

zypper install susemanager-tftpsync-recv

1. On the proxy, as root, run the configure-tftpsync.sh script. The script interactively asks
you for details on the host names and IP addresses of the Uyuni Server and Proxy, as well for the
location of the tftpboot directory on the Proxy. For more information, use the configure-

8.2. Install via the Network (PXE Boot)

177 / 218 8.2. Install via the Network (PXE Boot) | Uyuni 2023.10

tftpsync.sh --help command.

2. On the server, as root, run the configure-tftpsync.sh script.

configure-tftpsync.sh proxy1.example.com proxy2.example.com

3. Run the cobbler sync command on the server to push the files to the proxy. This fails if you
have not configured the proxies correctly.

If you want to change the list of proxies later on, you can use the configure-tftpsync.sh script
to edit them.

If you reinstall an already configured proxy and want to push all the files again,
you must remove the cache file at
/var/lib/cobbler/pxe_cache.json before you call cobbler

sync.

8.2.3. GRUB EFI binary names for different architectures
Table 41. GRUB EFI binary names for different architectures

Architecture GRUB EFI binary name

aarch64 grubaa64.efi

x86-64 grubx86.efi

ppc64le grub.ppc64le

8.3. Install via a CD-ROM or a USB Key
For clients that are not yet registered to Uyuni, and if network boot over PXE is not an option, a bootable
CD-ROM or USB key can be used to install the system.

One option to prepare such a removable medium is to use Cobbler. For information about using Cobbler
to prepare an ISO image, see Build an ISO Image With Cobbler.

For SUSE systems, it is often recommended to prepare an ISO image using KIWI. For more information,
see Build a SUSE ISO Image With KIWI.

In all cases, you use the resulting image to burn a CD-ROM or prepare a USB key.

8.3.1. Build an ISO Image With Cobbler

Cobbler can create ISO boot images that contain a set of distributions, kernels, and a menu that works in a
similar way to a PXE installation.

8.3. Install via a CD-ROM or a USB Key

178 / 218 8.3. Install via a CD-ROM or a USB Key | Uyuni 2023.10

client-configuration:autoinst-cdrom.pdf#build-iso-with-cobbler
client-configuration:autoinst-cdrom.pdf#build-iso-with-kiwi

 Building ISOs with Cobbler is not supported on IBM Z.

In order to prepare an ISO image with Cobbler, you need to prepare a distribution and a profile, similar to
using network boot over PXE. For information about creating a distribution, see Client-configuration ›
Autoinst-distributions. For information about creating a profile, see Client-configuration › Autoinst-
profiles.

The Cobbler buildiso command takes parameters to define the name and output location of the boot
ISO. Specifying the distribution with --distro is mandatory when running buildiso command.

cobbler buildiso --iso=/path/to/boot.iso --distro=<your-distro-label>

You must use distro and profile labels as listed by Cobbler, and not simply as
shown in the UI.

To list the names of distributions and profiles stored by Cobbler, run the commands:

cobbler distro list
cobbler profile list

The boot ISO includes all profiles and systems by default. You can limit which profiles and systems are
used with the --profiles and --systems options. For example:

cobbler buildiso --systems="system1 system2 system3" \
 --profiles="<your-profile1-label> <your-profile2-label> <your-profile3-
label> --distro=<your-distro-label>

If you cannot write an ISO image to a public tmp directory, check your systemd
settings in /usr/lib/systemd/system/cobblerd.service.

8.3.2. Build a SUSE ISO Image With KIWI

KIWI is an image creation system. You can use KIWI to create a bootable ISO image to be used by the
target system for installation of a SUSE system. When the system is rebooted or switched on, it boots
from the image, loads the AutoYaST configuration from your Uyuni, and installs SUSE Linux Enterprise
Server according to the AutoYaST profile.

To use the ISO image, boot the system and type autoyast at the prompt (assuming you left the label
for the AutoYaST boot as autoyast). Press Enter to begin the AutoYaST installation.

For more information about KIWI, see http://doc.opensuse.org/projects/kiwi/doc/.

8.3. Install via a CD-ROM or a USB Key

179 / 218 8.3. Install via a CD-ROM or a USB Key | Uyuni 2023.10

http://doc.opensuse.org/projects/kiwi/doc/

8.3.3. Build a Red Hat ISO Image With Cobbler

For more information, see client-configuration:autoinst-cdrom.pdf.

8.4. Autoinstallable Distributions
The autoinstallation process relies on an several files to initiate the installation. These files include the
Linux kernel, an initial RAM disk, and other files required to boot the operating system in installation
mode.

You can extract the needed files from a DVD image. For information, see Distribution Based on an ISO
Image.

Alternatively, you can install the tftpboot-installation package. For information, see
Distribution Based on a RPM Package.

You must also have a base channel synchronized on your Uyuni Server for the same operating system
version as those files.

When you have the files ready, and the base channel synchronized, you need to declare the distribution.
This operation associates the installation files to the base channel. The distribution can be referred to by
one or more installation profiles. For information, see Declare an Autoinstallable Distribution.

8.4.1. Distribution Based on an ISO Image

This method assumes you have installation media for the operating system you want to install on the
clients. This is usually a DVD .iso image that contains the Linux kernel, an initrd file, and other
files required to boot the operating system in installation mode.

Procedure: Importing Files from Installation Media

1. Copy the installation media to your Uyuni Server. For SUSE operating systems, you can download
installation media from https://www.suse.com/download/.

2. Loop-mount the ISO image, and copy its contents somewhere:

mount -o loop,ro <image_name>.iso /mnt
mkdir -p /srv/www/distributions
cp -a /mnt /srv/www/distributions/<image_name>
umount /mnt

3. Take a note of the file path. You will need it when you declare the distribution to Uyuni.

8.4.2. Distribution Based on a RPM Package

This method works on SUSE systems. It is simpler than importing contents from an installation media,
because it uses prepackaged files for your installation system.

Procedure: Extracting Files from an Installation Package

8.4. Autoinstallable Distributions

180 / 218 8.4. Autoinstallable Distributions | Uyuni 2023.10

client-configuration:autoinst-cdrom.pdf#build-iso-with-cobbler
client-configuration:autoinst-distributions.pdf#based-on-iso-image
client-configuration:autoinst-distributions.pdf#based-on-iso-image
client-configuration:autoinst-distributions.pdf#based-on-rpm-package
client-configuration:autoinst-distributions.pdf#declare-distribution
https://www.suse.com/download/

1. On the Uyuni Server, install the package whose name starts with tftpboot-installation.
You can determine its exact name with the command zypper se tftpboot-
installation

2. Determine where the installation files went with the command ls -d

/usr/share/tftpboot-installation/*. Take a note of the file path. You will need it
when you declare the distribution to Uyuni.

This procedure prepares the installation of the same operating system version as the one that powers your
Uyuni Server. If you want to install a different operating system or version on the client, you need to
manually get the package tftpboot-installation-* from the distribution it belongs to. In the
Package Search input box Uyuni, search the packages whose names start with tftpboot-
installation, then look at the package’s details. They show the local path below
/var/spacewalk/.

8.4.3. Declare an Autoinstallable Distribution

The next step after extracting the autoinstallation files is to declare an autoinstallable distribution.

Procedure: Declaring an Autoinstallable Distribution

1. In the Uyuni Web UI, navigate to Systems › Autoinstallation › Distributions.

2. Click Create Distribution, and complete these fields:

◦ In the Distribution Label field, enter a name to identify your autoinstallable
distribution.

◦ In the Tree Path field, enter the path to the installation media saved on your Uyuni
Server.

◦ Select the matching Base Channel. This must match the installation media.

◦ Select the Installer Generation. This must match the installation media.

◦ OPTIONAL: Specify kernel options to use when booting this distribution. There are
multiple ways to provide kernel options. Only add options here that are generic for the
distribution.

3. Click [Create Autoinstallable Distribution] .

The installation files that you prepared might not contain the packages you need to install. If they are not
included, add useonlinerepo=1 to the Kernel Options field.

The package repositories contain metadata that can be unsigned. If the metadata is unsigned, add
insecure=1 to the Kernel Options field, or use your own GPG key as explained in Client-
configuration › Autoinst-owngpgkey.

These kernel options are needed for example when you use the "online installer" ISO images instead of
the full DVD, or when you use the tpboot-installation package.

Navigate to Systems › Autoinstallation › Distributions to manage your autoinstallable distributions.

8.4. Autoinstallable Distributions

181 / 218 8.4. Autoinstallable Distributions | Uyuni 2023.10

8.5. Autoinstallation Profiles
An autoinstallation profile determines how the operating system will be installed. For example, you can
specify additional kernel parameters to be passed to the installer.

The most important part of the profile is the "autoinstallation file." When you perform an installation
manually, you must provide information to the installer, such as partitioning and networking information
and user details. The autoinstallation file is a method of providing this information in a scripted form.
This type of file is sometimes also referred to as an "answers file."

Within Uyuni, you can use two different types of profiles, depending on the operating system of the
clients you want to install:

• For SUSE Linux Enterprise or openSUSE clients, use AutoYaST.

• For Red Hat Enterprise Linux clients, use Kickstart.

You can use both AutoYaST and Kickstart profiles if you want to install clients with different operating
systems.

• For information about how to declare profiles, see Declare the Profile

• For information about AutoYaST profiles, see AutoYaST Profiles.

• For information about Kickstart profiles, see Kickstart Profiles.

The autoinstallation file contained in the profile can include variables and code snippets. For information
about variables and code snippets, see Templates Syntax.

8.5.1. Declare the Profile

When you have prepared an autoinstallation file and distribution, you can create profiles to manage
autoinstallation on your Uyuni Server. The profile will determine how to install this distribution you
selected. One way to create a profile is to upload an AutoYaST or Kickstart file. Alternatively, for
Kickstart only, you can use the Web UI wizard.

Procedure: Creating an Autoinstallation Profile by Upload

1. In the Uyuni Web UI, navigate to Systems › Autoinstallation › Profiles.

2. Click [Upload Kickstart/AutoYaST File] .

3. In the Label field, type a name for the profile. Do not use spaces.

4. In the Autoinstall Tree field, select the autoinstallable distribution to use for this profile.

5. In the Virtualization Type field, select the type of virtualization to use for this profile, or
select None if you do not want to use this profile to create a new virtual machine.

6. Copy the contents of your autoinstallation file into the File Contents field, or upload the file
directly using the File to Upload field.

For more information about the details to include here, see AutoYaST Profiles or Kickstart

8.5. Autoinstallation Profiles

182 / 218 8.5. Autoinstallation Profiles | Uyuni 2023.10

client-configuration:autoinst-profiles.pdf#declare-profile
client-configuration:autoinst-profiles.pdf#autoyast
client-configuration:autoinst-profiles.pdf#kickstart
client-configuration:autoinst-profiles.pdf#templates-syntax
client-configuration:autoinst-profiles.pdf#autoyast
client-configuration:autoinst-profiles.pdf#kickstart

Profiles.

7. Click [Create] to create the profile.

Procedure: Creating a Kickstart Profile by Wizard

1. In the Uyuni Web UI, navigate to Systems › Autoinstallation › Profiles.

2. Click [Create Kickstart Profile] .

3. In the Label field, type a name for the profile. Do not use spaces.

4. In the Base Channel field, select the base channel to use for this profile. This field is populated
from the distributions available. If the base channel you need is not available, check that you have
created the distribution correctly.

5. In the Virtualization Type field, select the type of virtualization to use for this profile, or
select None for no virtualization.

6. Click [Next] .

7. In the Distribution File Location type the path to the installation media installed on
the Uyuni Server.

8. Click [Next] .

9. Provide a password for the root user on the client.

10. Click [Finish] .

11. Review the details of your new profile, and customize as required.

When you are creating your autoinstallation profile, you can check Always use the newest
Tree for this base channel. This setting allows Uyuni to automatically pick the latest
distribution that is associated with the specified base channel. If you add new distributions later, Uyuni
uses the most recently created or modified.

Changing the Virtualization Type usually requires changes to the profile bootloader and
partition options. This can overwrite your customization. Verify new or changed settings before saving
them, by navigating to the Partitioning tab.

The kernel options from the distribution and the profile are combined.

You can change the details and settings of your autoinstallation profiles by navigating to Systems ›
Autoinstallation › Profiles and clicking the name of the profile you want to edit. Alternatively, navigate
to Systems › System List, select the client you want to provision, and navigate to the Provisioning ›
Autoinstallation subtab.

8.5.2. AutoYaST Profiles

An AutoYaST profile consists of a Label that identifies the profile, an Autoinstall Tree that
points to an autoinstallable distribution, various options, and, most importantly, an AutoYaST installation
file.

8.5. Autoinstallation Profiles

183 / 218 8.5. Autoinstallation Profiles | Uyuni 2023.10

client-configuration:autoinst-profiles.pdf#kickstart

The AutoYaST installation file is an XML file that give directions to the AutoYaST installer. AutoYaST
calls it a "control file." For the full syntax of AutoYaST installation files, see https://doc.opensuse.org/
projects/autoyast/#cha-configuration-installation-options.

SUSE provides templates of AutoYaST installation files that you can use as a starting point for your own
custom files. You will find the templates at https://github.com/SUSE/manager-build-profiles in the
AutoYast directory. Each of these profiles requires you to set some variables before you use it. Check
the README file included with the script to determine which variables you need. For more information
about using variables in AutoYaST scripts, see Variables.

These are the most important sections in the AutoYaST installation file for installing with Uyuni:

• <add-on> allows to add child channels to the installation

See https://doc.opensuse.org/projects/autoyast/#Software-Selections-
additional with an ``<add-on>`` example

• `<general>$SNIPPET('spacewalk/sles_no_signature_checks')</genera
l> disables signature checks

• <software> allows to specify product for the Unified Installer

See https://doc.opensuse.org/projects/autoyast/#CreateProfile-Software
with a "<software>" example

• <init-scripts
config:type="list">$SNIPPET('spacewalk/minion_script')</init-

scripts> allows the client to register to Uyuni as a Salt client.

For more information about AutoYaST, see https://doc.opensuse.org/projects/autoyast/.

A more recent, Salt-based alternative to AutoYaST, is Yomi. For information about Yomi, see
Specialized-guides › Salt.

8.5.3. Kickstart Profiles

Kickstart profiles offer a large number of configuration options. To create these profiles, you can upload
them, or use a dedicated wizard.

Kickstart profiles allow you to use file preservation lists. If you have many custom configuration files
located on a client you want to reinstall with Kickstart, you can save them as a list, and associate that list
with the Kickstart profile.

Procedure: Creating a File Preservation List

1. In the Uyuni Web UI, navigate to Systems › Autoinstallation › File Preservation and click
[Create File Preservation List] .

8.5. Autoinstallation Profiles

184 / 218 8.5. Autoinstallation Profiles | Uyuni 2023.10

https://doc.opensuse.org/projects/autoyast/#cha-configuration-installation-options
https://doc.opensuse.org/projects/autoyast/#cha-configuration-installation-options
https://github.com/SUSE/manager-build-profiles
client-configuration:autoinst-profiles.pdf#variables
https://doc.opensuse.org/projects/autoyast/

2. Enter a suitable label, and list absolute paths to all files and directories you want to save.

3. Click [Create List] .

4. Include the file preservation list in your Kickstart profile.

5. Navigate to Systems › Autoinstallation › Profiles and select the profile you want to edit, go to the
System Details › File Preservation subtab, and select the file preservation list to include.

File preservation lists are limited to a total size of 1 MB. Special devices like
/dev/hda1 and /dev/sda1 cannot be preserved. Only use file and
directory names, you cannot use regular expression wildcards.

For more information about Kickstart, see the Red Hat documentation.

8.5.4. Templates Syntax

Parts of your installation file are replaced during the installation. Variables are replaced with single values,
and code snippets are replaced with whole sections of text. Escaped symbols or sections are not replaced.

A template engine called Cheetah allows Cobbler to do these replacements. This mechanism allows you to
reinstall large numbers of systems, without having to manually create profiles for each of them.

You can create autoinstallation variables and code snippets within the Uyuni Web UI. Within a profile,
the Autoinstallation File tab allows you to see the result of the substitutions.

• For information about variables, see Variables.

• For information about code snippets, see Code Snippets.

• For information about escaping symbols or text blocks, see Escaping.

8.5.4.1. Variables

Autoinstallation variables can be used to substitute values into Kickstart and AutoYaST profiles. To define
a variable, from the profile, navigate to the Variables subtab, and create a name=value pair in the
text box.

For example, you could create a variable that holds the IP address of the client, and another that holds the
address of its gateway. Those variables can then be defined for all the clients installed from the same
profile. To do that, add these lines to the Variables text box:

ipaddr=192.168.0.28
gateway=192.168.0.1

To use the variable, prepend a $ sign in the profile to substitute the value. For example, the network
part of a Kickstart file may look like the following:

8.5. Autoinstallation Profiles

185 / 218 8.5. Autoinstallation Profiles | Uyuni 2023.10

client-configuration:autoinst-profiles.pdf#variables
client-configuration:autoinst-profiles.pdf#code-snippets
client-configuration:autoinst-profiles.pdf#escaping

network --bootproto=static --device=eth0 --onboot=on --ip=$ipaddr \
 --gateway=$gateway

The $ipaddr is resolved to 192.168.0.28, and the $gateway to 192.168.0.1.

In installation files, variables use a hierarchy. System variables take precedence over profile variables,
which in turn take precedence over distribution variables.

8.5.4.2. Code Snippets

Uyuni comes with a large number of predefined code snippets. Navigate to Systems › Autoinstallation ›
Autoinstallation Snippets to see the list of existing snippets.

Use a snippet by inserting the $SNIPPET() macro in your autoinstallation file. For example, in
Kickstart:

$SNIPPET('spacewalk/rhel_register_script')

Or, in AutoYaST:

<init-scripts config:type="list">
 $SNIPPET('spacewalk/sles_register_script')
</init-scripts>

The macro is parsed by Cobbler and substituted with the contents of the snippet. You can also store your
own code snippets to use in autoinstallation files later on. Click [Create Snippet] to create a new
code snippet.

This example sets up a Kickstart snippet for a common hard drive partition configuration:

clearpart --all
part /boot --fstype ext3 --size=150 --asprimary
part / --fstype ext3 --size=40000 --asprimary
part swap --recommended

part pv.00 --size=1 --grow

volgroup vg00 pv.00
logvol /var --name=var vgname=vg00 --fstype ext3 --size=5000

Use the snippet with, for example:

$SNIPPET('my_partition')

8.5. Autoinstallation Profiles

186 / 218 8.5. Autoinstallation Profiles | Uyuni 2023.10

8.5.4.3. Escaping

If the autoinstallation file contains shell script variables like $(example), the content needs to be
escaped with a backslash: \$(example). Escaping the $ symbol prevents the templating engine from
evaluating the symbol as an internal variable.

Text blocks such as code fragments or scripts can be escaped by wrapping them with the \#raw and
\#end raw directives. For example:

#raw
#!/bin/bash
for i in {0..2}; do
 echo "$i - Hello World!"
done
#end raw

Any line with a # symbol followed by a whitespace is treated as a comment and is therefore not
evaluated. For example:

start some section (this is a comment)
echo "Hello, world"
end some section (this is a comment)

8.6. Unattended Provisioning
The "bare metal" functionality allows you to register any new machine as soon as it connects to the local
network, using a generic PXE boot image. You then go to Uyuni Web UI and assign a profile to this
machine. The next time the client boots, the operating system is installed according to that profile. For
information about the bare metal provisioning, see Bare Metal Provisioning.

If you do not want to use the bare metal functionality, you can still declare manually the system at Uyuni.
The Uyuni API allows you to create system records for systems as if they were collected by the bare
metal functionality. For information about declaring systems with the API, see Create a System Record
Manually.

8.6.1. Bare Metal Provisioning

When you have the bare metal provisioning option enabled, any client connected to the Uyuni network is
automatically added to the organization as soon as it is powered on. When this operation is complete, the
client is shut down, and it appears in the Systems list, ready to be installed.

Procedure: Enable the Bare Metal Functionality

1. In the Uyuni Web UI, navigate to Admin › Manager Configuration › Bare-metal systems.

2. Click [Enable adding to this organization] .

New clients that are powered on are added to the organization that belongs to the administrator who
enabled the bare metal feature. They are of "bootstrap" type, and still need to be provisioned to become

8.6. Unattended Provisioning

187 / 218 8.6. Unattended Provisioning | Uyuni 2023.10

client-configuration:autoinst-unattended.pdf#bare-metal
client-configuration:autoinst-unattended.pdf#create-system-record
client-configuration:autoinst-unattended.pdf#create-system-record

regular clients.

To change the organization new clients are added to, disable the bare metal feature, log in as the
administrator of the new organization, and then re-enable the feature. You can migrate already registered
systems to other organizations, using the Migrate tab.

You can use the system set manager (SSM) with clients that are registered that way. However, not all SSM
features are available for those clients, because they do not yet have an operating system installed. This
also applies to mixed sets that include systems registered that way. All features become available to the set
when all the clients in the set have been provisioned. For more information on SSM, see Client-
configuration › System-set-manager.

Procedure: Provision "Bootstrap" Type clients

1. In the Uyuni Web UI, navigate to Systems, select the client to provision, and go to the
Provisioning › Autoinstallation tab.

2. Select the AutoYaST profile to use, and click [Create PXE installation

configuration] . This option creates a system entry at Cobbler.

3. Power on the client.

The server uses TFTP to provision the new client, so the appropriate port and networks must be
configured correctly for provisioning to be successful.

8.6.2. Create a System Record Manually

You can use an API call to declare an association between a client identified by its MAC address and an
autoinstallation profile. Next time the system reboots, it starts the installation based on the specified
profile.

Procedure: Reinstallation From a Manually Declared Profile

1. On the Uyuni Server, at the command prompt, use the system.createSystemRecord API
call. In this example, replace name with the name of your client, <profile> with the profile
label, <iface> with the name of the interface on the client such as eth0, and <hw_addr>
with its hardware address such as 00:25:22:71:e7:c6:

$ spacecmd api -- --args '["<name>", "<profile>", "", "", \
 [{"name": "<iface>", "mac": "<hw_addr>"}]]' \
 system.createSystemRecord

2. Power on the client. It boots from the network, and the correct profile is selected for installation.

This command creates a system record at Cobbler. You may also specify additional parameters, like
kernel options, the IP address of the client, and its domain name. For more information, see the API
documentation for createSystemRecord call.

8.6. Unattended Provisioning

188 / 218 8.6. Unattended Provisioning | Uyuni 2023.10

8.7. Use Your Own GPG Key
If the repositories you are using for autoinstallation have unsigned metadata, you usually have to use the
insecure=1 kernel parameter as an option of the autoinstallable distribution, and use a
spacewalk/sles_no_signature_checks code snippet in the AutoYaST installation file.

A safer alternative is to provide your own GPG key.

 This technique applies to SUSE clients only.

Procedure: Include your own GPG key

1. Create a GPG key.

2. Use it to sign the package’s metadata.

3. Add it to the initial RAM disk of your installation media.

◦ For information on how to create the key and sign the metadata with it, see Administration
› Repo-metadata.

◦ For information on how to add the key to installation media used for network boot, see
Own GPG Key for PXE Boot.

◦ For information on how to add the key to installation media used for a boot from CD-ROM,
see Own GPG Key in a CD-ROM.

When you signed the metadata with your new GPG key, any already onboarded
client will not know about the new key. Ideally, you should sign the metadata
before you register any client.

For already onboarded clients that use those repositories, the workaround is to
disable GPG key checking on them.

8.7.1. Own GPG Key for PXE Boot

The initial RAM disk (initrd) used by PXE boot process normally contains SUSE’s GPG key only.
You must add our own key to this file, so it can be used to check the packages.

Procedure: Add a GPG key to the initial RAM disk

1. Create a directory with a path identical to the one that is used during the boot process to find the
GPG key:

mkdir -p tftproot/usr/lib/rpm/gnupg/keys

2. Copy your GPG key into this directory with the suffix .asc:

8.7. Use Your Own GPG Key

189 / 218 8.7. Use Your Own GPG Key | Uyuni 2023.10

client-configuration:autoinst-owngpgkey.pdf#gpg-key-pxeboot
client-configuration:autoinst-owngpgkey.pdf#gpg-key-cdrom

cp /srv/www/htdocs/pub/mgr-gpg-pub.key
tftproot/usr/lib/rpm/gnupg/keys/mgr-gpg-pub.asc

3. Inside the top level directory, package the content and append it to the initrd that is part of your
installation media files:

cd tftproot
find . | cpio -o -H newc | xz --check=crc32 -c >> /path/to/initrd

8.7.2. Own GPG key in a CD-ROM

You can modify an installation image with the mksusecd utility. This utility is contained in the
Development Tools module.

Procedure: Add a GPG key to an Installation ISO image

1. Create a directory with a path identical to the one that is used during the boot process to find the
GPG key:

mkdir -p initrdroot/usr/lib/rpm/gnupg/keys

2. Copy your GPG key into this directory with the suffix .asc:

cp /srv/www/htdocs/pub/mgr-gpg-pub.key
initrdroot/usr/lib/rpm/gnupg/keys/mgr-gpg-pub.asc

3. Amend the existing ISO image with mksusecd:

mksusecd --create <new-image>.iso --initrd initrdroot/ <old-image>.iso

8.7. Use Your Own GPG Key

190 / 218 8.7. Use Your Own GPG Key | Uyuni 2023.10

Chapter 9. Virtualization
You can use Uyuni to manage virtualized clients in addition to regular traditional or Salt clients. In this
type of installation, a virtual host is installed on the Uyuni Server to manage any number of virtual guests.
If you choose to, you can install several virtual hosts to manage groups of guests.

The range of capabilities that virtualized clients have depends on the third-party virtualization provider
you choose.

Xen and KVM hosts and guests can be managed directly in Uyuni. This enables you to autoinstall hosts
and guests using AutoYaST or Kickstart, and manage guests in the Web UI.

For VMWare, including VMWare vSphere, and Nutanix AHV, Uyuni requires you to set up a virtual host
manager (VHM) to control the VMs. This gives you control over the hosts and guests, but in a more
limited way than available with Xen and KVM; Uyuni cannot create or edit VMs on VMWare vSphere or
Nutanix AHV.

Other third-party virtualization providers are not directly supported by Uyuni. However, if your provider
allows you to export a JSON configuration file for the VM, you can upload that configuration file to
Uyuni and manage it with a VHM.

For more information about using VHMs to manage virtualization, see Client-configuration › Vhm.

9.1. Manage Virtualized Hosts
Before you begin, ensure that the client you want to use as a virtualization host has the
Virtualization Host system type assigned to it. Both traditional and Salt clients can be used as
virtual hosts. Navigate to Systems › Systems List and click the name of the client to use as a
virtualization host. The system types are listed in the System Properties section. If the
Virtualization Host system type is not listed, click [Edit These Properties] to assign
it.

When a client has the Virtualization Host system type, the Virtualization tab is available
in the System Details page for the client. The Virtualization tab allows you to create and manage
virtual guests, and manage storage pools and virtual networks.

9.2. Create Virtual Guests
You can add virtual guests to your virtualization hosts within the Uyuni Web UI.

Procedure: Creating a Virtual Guest

1. In the Uyuni Web UI, navigate to Systems › Systems List, click the name of the virtualization
host, and navigate to the Virtualization tab.

2. In the General section, complete these details:

◦ In the Guests subtab, click [Create Guest] .

9.1. Manage Virtualized Hosts

191 / 218 9.1. Manage Virtualized Hosts | Uyuni 2023.10

◦ In the Name field, type the name of the guest.

◦ In the Hypervisor field, select the hypervisor to use.

◦ In the Virtual Machine Type field, select either fully virtualized or para-virtualized.

◦ In the Maximum Memory field, type the upper size limit for the guest disk, in MiB.

◦ In the Virtual CPU count, type the number of vCPUs for the guest.

◦ In the Architecture field, select the emulated CPU architecture to use on the guest. By
default, the architecture selected matches the virtual host.

◦ In the Auto-installation Profile field, select the auto-installation tool to use to
install the guest. Leave this field blank if you do not want to use auto-installation.

3. In the Disks section, complete the details of the virtual disk to use with the client. In the
Source template image URL field, ensure you type the path to an operating system
image. If you do not do this, your guest is created with an empty disk.

4. In the Networks section, complete the details of the virtual network interface to use with the
client. Leave the MAC address field blank to generate a MAC address.

5. In the Graphics section, complete the details of the graphics driver to use with the client.

6. Schedule a time for the guest to be created, and click [Create] to create the guest.

7. The new virtual guest starts as soon as it has successfully been created.

You can add virtual guests on a pacemaker cluster within the Uyuni Web UI, too.

Procedure: Creating a cluster managed Virtual Guest

1. Follow the Creating a Virtual Guest procedure on one of the nodes of the cluster with
the following additions:

◦ Ensure the Define as a cluster resource field is checked.

◦ In the Path to the cluster shared folder for VM definitions field,
type the path to a folder shared by all cluster nodes where the guest configuration will be
stored.

◦ Make sure every disk is located on a storage pool shared by all the cluster nodes.

Virtual Guests managed by a cluster can be live migrated.

9.3. Virtualization with Xen and KVM
Xen and KVM virtualized clients can be managed directly in Uyuni.

To begin, you need to set up a virtual host on your Uyuni Server. You can then set up autoinstallation
using AutoYaST or Kickstart for additional virtual hosts and for virtual guests.

This section also includes information about administering virtual guests after they have been installed.

9.3. Virtualization with Xen and KVM

192 / 218 9.3. Virtualization with Xen and KVM | Uyuni 2023.10

9.3.1. Host Setup

The way that you set up Xen or KVM on a VM host depends on operating system you want to use on its
associated guests:

• For SUSE operating systems, see the SLES Virtualization Guide available from
https://documentation.suse.com/sles/15-SP4/html/SLES-all/book-virtualization.html.

• For Red Hat Enterprise Linux operating systems, refer to the Red Hat documentation for your
version.

Uyuni uses libvirt to install and manage guests. You must have the libvirtd package installed on
your host. In most cases, the default settings are sufficient and you do not need to adjust them. However,
if you want to access the VNC console on your guests as a non-root user, you need to perform some
configuration changes. For more information about how to set up the VNC console, see the
documentation for your operating system.

You need a bootstrap script on the Uyuni Server. The bootstrap script must include the activation key for
your host. We also recommend that you include your GPG key for additional security. For more on
creating a bootstrap script, see Client-configuration › Registration-bootstrap.

When the bootstrap script is ready, use it to register the host with the Uyuni Server. For more information
about client registration, see Client-configuration › Registration-overview.

For Salt clients, you need to enable the Virtualization Host entitlement. This allows you to see
VM changes instantly.

Procedure:

1. In the Uyuni Web UI, navigate to the System Details page for the host, and click the
Properties tab. Alternatively, the Virtualization Host entitlement can be added at the
registration key level.

2. In the Add-On System Types section, check Virtualization Host, and click
[Update Properties] to save the changes.

3. Restart the salt-minion service to activate the new configuration:

systemctl restart salt-minion

9.3.2. Autoinstallation

You can use AutoYaST or Kickstart to automatically install and register Xen and KVM guests.

You need an activation key for the VM host you want to register the guests to, and for each guest. The
activation key must have the provisioning and Virtualization Platform entitlements. For
more information about creating activation keys, see Client-configuration › Activation-keys.

If you want to automatically register the guests with Uyuni after installation, you need to create a

9.3. Virtualization with Xen and KVM

193 / 218 9.3. Virtualization with Xen and KVM | Uyuni 2023.10

https://documentation.suse.com/sles/15-SP4/html/SLES-all/book-virtualization.html

bootstrap script. For more information about creating a bootstrap script, see Client-configuration ›
Registration-bootstrap.

9.3.2.1. Create an Autoinstallable Distribution

You need to create an autoinstallable distribution on the VM host to be able to autoinstall clients from
Uyuni. The distribution can be made available from a mounted local or remote directory, or on a loop-
mounted ISO image.

The configuration of the autoinstallable distribution differs depending on whether you are using a Red Hat
Enterprise Linux or SUSE operating system on your guests. The packages for a Red Hat Enterprise Linux
installation are fetched from the associated base channel. Packages for installing SUSE systems are
fetched from the autoinstallable distribution. Therefore, for SUSE systems, the autoinstallable distribution
must be a complete installation source.

Table 42. Paths for autoinstallable distributions

Operating System Type Kernel Location initrd Location

Red Hat Enterprise Linux images/pxeboot/vmlinuz images/pxeboot/initrd.
img

SUSE boot/<arch>/loader/ini
trd

boot/<arch>/loader/lin
ux

In all cases, ensure that the base channel matches the autoinstallable distribution.

Before you begin, ensure you have a installation media available to your VM Host. It can be on a remote
resource, a local directory, or a loop-mounted ISO image. Additionally, ensure that all files and directories
are world-readable.

Procedure: Creating an Autoinstallable Distribution

1. In the Uyuni Web UI, navigate to Systems › Autoinstallation › Distributions and click
[Create Distribution] .

2. In the Create Autoinstallable Distribution section, use these parameters:

◦ In the Distribution Label section, type a unique name for the distribution. Use only
letters, numbers, hyphens (-), periods (.), and underscores (_), and ensure the name is
longer than four characters.

◦ In the Tree Path field, type an absolute path to the installation source.

◦ In the Base Channel field, select the channel that matches the installation source. This
channel is used as the package source for non-SUSE installations.

◦ In the Installer Generation field, select the operating system version that matches
the installation source.

◦ In the Kernel Options field, type any options to be passed to the kernel when booting
for the installation. The install= parameter and the self_update=0

pt.options=self_update parameter are added by default.

9.3. Virtualization with Xen and KVM

194 / 218 9.3. Virtualization with Xen and KVM | Uyuni 2023.10

◦ In the Post Kernel Options section, type any options to be passed to the kernel
when booting the installed system for the first time.

3. Click [Create Autoinstallable Distribution] to save.

When you have created an autoinstallable distribution, you can edit it by navigating to Systems ›
Autoinstallation › Distributions and selecting the distribution you want to edit.

9.3.2.2. Create and Upload an Autoinstallation Profile

Autoinstallation profiles contain all the installation and configuration data needed to install a system. They
can also contain scripts to be executed after the installation is complete.

Kickstart profiles can be created using the Uyuni Web UI, by navigating to Systems › Autoinstallation ›
Profiles, clicking [Create New Kickstart File] , and following the prompts.

You can also create AutoYaST or Kickstart autoinstallation profiles by hand. SUSE provides templates of
AutoYaST installation files that you can use as a starting point for your own custom files. You will find
them at https://github.com/SUSE/manager-build-profiles.

If you are using AutoYaST to install SLES, you also need to include this snippet:

<products config:type="list">
 <listentry>SLES</listentry>
</products>

• For more on AutoYaST, see client-configuration:autoinst-profiles.pdf.

• For more on Kickstart, see client-configuration:autoinst-profiles.pdf, or refer to the Red Hat
documentation for your installation.

Procedure: Uploading an Autoinstallation Profile

1. In the Uyuni Web UI, navigate to Systems › Autoinstallation › Profiles and click [Upload
Kickstart/AutoYaST File] .

2. In the Create Autoinstallation Profile section, use these parameters:

◦ In the Label field, type a unique name for the profile. Use only letters, numbers, hyphens (
-), periods (.), and underscores (_), and ensure the name is longer than six characters.

◦ In the Autoinstall Tree field, select the autoinstallable distribution you created
earlier.

◦ In the Virtualization Type field, select the relevant Guest type (for example, KVM
Virtualized Guest. Do not choose Xen Virtualized Host here.

◦ OPTIONAL: If you want to manually create your autoinstallation profile, you can type it
directly into the File Contents field. If you have a file already created, leave the
File Contents field blank.

◦ In the File to Upload field, click [Choose File] , and use the system dialog to
select the file to upload. If the file is successfully uploaded, the filename is shown in the

9.3. Virtualization with Xen and KVM

195 / 218 9.3. Virtualization with Xen and KVM | Uyuni 2023.10

https://github.com/SUSE/manager-build-profiles
client-configuration:autoinst-profiles.pdf#autoyast
client-configuration:autoinst-profiles.pdf#kickstart

File to Upload field.

◦ The contents of the uploaded file is shown in the File Contents field. If you need to
make edits, you can do so directly.

3. Click [Create] to save your changes and store the profile.

When you have created an autoinstallation profile, you can edit it by navigating to Systems ›
Autoinstallation › Profiles and selecting the profile you want to edit. Make the desired changes and save
your settings by clicking [Create] .

If you change the Virtualization Type of an existing Kickstart profile, it
might also modify the bootloader and partition options, potentially overwriting
any custom settings. Carefully review the Partitioning tab to verify these
settings before making changes.

9.3.2.3. Automatically Register Guests

When you install VM guests automatically, they are not registered to Uyuni. If you want your guests to be
automatically registered as soon as they are installed, you can add a section to the autoinstallation profile
that invokes a bootstrap script, and registers the guests.

This section gives instructions for adding a bootstrap script to an existing AutoYaST profile.

For more information about creating a bootstrap script, see Client-configuration › Registration-
bootstrap. For instructions on how to do this for {kickstart], refer to the Red Hat documentation for your
installation.

Procedure: Adding a Bootstrap Script to an AutoYaST Profile

1. Ensure your bootstrap script contains the activation key for the VM guests you want to register
with it, and that is located on the host at
/srv/www/htdocs/pub/bootstrap_vm_guests.sh.

2. In the Uyuni Web UI, navigate to Systems › Autoinstallation › Profiles, and select the AutoYaST
profile to associate this script with.

3. In the File Contents field, add this snippet at the end of the file, immediately before the
closing </profile> tag. Ensure you replace the example IP address in the snippet with the
correct IP address for your Uyuni Server:

<scripts>
 <init-scripts config:type="list">
 <script>
 <interpreter>shell </interpreter>
 <location>
 http://`192.168.1.1`/pub/bootstrap/bootstrap_vm_guests.sh
 </location>
 </script>
 </init-scripts>
</scripts>

9.3. Virtualization with Xen and KVM

196 / 218 9.3. Virtualization with Xen and KVM | Uyuni 2023.10

4. Click Update to save your changes.

If your AutoYaST profile already contains a <scripts> section, do not add a
second one. Place the bootstrap snippet inside the existing <scripts> section.

9.3.2.4. Autoinstall VM Guests

When you have everything set up, you can start to autoinstall your VM guests.

Each VM host can only install one guest at a time. If you are scheduling more
than one autoinstallation, make sure you time them so that the next installation
does not begin before the previous one has completed. If a guest installation
starts while another one is still running, the running installation is canceled.

1. In the Uyuni Web UI, navigate to Systems › Overview, and select the VM host you want to install
guests on.

2. Navigate to the Virtualization tab, and the Provisioning subtab.

3. Select the autoinstallation profile you want to use, and specify a unique name for the guest.

4. Choose a proxy if applicable and enter a schedule.

5. To change the guest’s hardware profile and configuration options, click [Advanced

Options] .

6. Click [Schedule Autoinstallation and Finish] to complete.

9.3.3. Manage VM Guests

You can use the Uyuni Web UI to manage your VM Guests, including actions like shutting down,
restarting, and adjusting CPU and memory allocations.

To do this, you need your Xen or KVM VM host registered to the Uyuni Server, and have the
libvirtd service running on the host.

In the Uyuni Web UI, navigate to Systems › System List, and click on the VM host for the guests you
want to manage. Navigate to the Virtualization tab to see all guests registered to this host, and
access the management functions.

For more information about managing VM guests using the Web UI, see Reference › Systems.

9.3. Virtualization with Xen and KVM

197 / 218 9.3. Virtualization with Xen and KVM | Uyuni 2023.10

Chapter 10. Virtual Host Managers
Virtual Host Managers (VHMs) are used to gather information from a range of client types.

VHMs can be used to collect private or public cloud instances and organize them into virtualization
groups. With your virtualized clients organized this way, Taskomatic collects data on the clients for display
in the Uyuni Web UI. VHMs also allow you to use subscription matching on your virtualized clients.

You can create a VHM on your Uyuni Server, and use it to inventory available public cloud instances.
You can also use a VHM to manage clusters created with Kubernetes.

• For more information on using a VHM with Amazon Web Services, see Client-configuration ›
Vhm-aws.

• For more information on using a VHM with Microsoft Azure, see Client-configuration › Vhm-
azure.

• For more information on using a VHM with Google Compute Engine, see Client-configuration ›
Vhm-gce.

• For more information on using a VHM with Kubernetes, see Client-configuration › Vhm-
kubernetes.

• For more information on using a VHM with Nutanix, see Client-configuration › Vhm-nutanix.

• For more information on using a VHM with VMWare vSphere, see Client-configuration › Vhm-
vmware.

• For more information on using a VHM with other hosts, see Client-configuration › Vhm-file.

10.1. VHM and Amazon Web Services
You can use a virtual host manager (VHM) to gather instances from Amazon Web Services (AWS).

The VHM allows Uyuni to obtain and report information about your clusters. For more information on
VHMs, see Client-configuration › Vhm.

10.1.1. Create an Amazon EC2 VHM

The Virtual Host Manager (VHM) runs on the Uyuni Server.

Ensure you have installed the virtual-host-gatherer-libcloud package on the Uyuni Server.

Procedure: Creating an Amazon EC2 VHM

1. In the Uyuni Web UI, navigate to Systems › Virtual Host Managers.

2. Click [Create] and select Amazon EC2 from the drop-down menu.

3. In the Add an Amazon EC2 Virtual Host Manager section, use these parameters:

◦ In the Label field, type a custom name for your VHM.

10.1. VHM and Amazon Web Services

198 / 218 10.1. VHM and Amazon Web Services | Uyuni 2023.10

◦ In the Access Key ID field, type the access key ID provided by Amazon.

◦ In the Secret Access Key field, type the secret access key associated with the
Amazon instance.

◦ In the Region field, type the region to use.

◦ In the Zone field, type the zone your VM is located in. This is required for subscription
matching to work. For more information about setting regions and zones, see client-
configuration:virtualization.pdf.

4. Click [Create] to save your changes and create the VHM.

5. On the Virtual Host Managers page, select the new VHM.

6. On the Properties page, click [Refresh Data] to inventory the new VHM.

To see which objects and resources have been inventoried, navigate to Systems › System List › Virtual
Systems.

Instances running on the Amazon public cloud report a UUID to the Uyuni Server in the format of an i
followed by seventeen hexadecimal digits:

I1234567890abcdef0

10.1.2. AWS Permissions for Virtual Host Manager

For security reasons, always grant the least privilege possible for a task to be performed. Using an Access
Key with excessive permissions for users connecting to AWS is not advised.

For SUSE Manager to gather the information required from AWS, the VHM needs permission to describe
EC2 instances and addresses. One method to grant this is to create a new IAM user (Identity and Access
Management) specific to this task, create a policy as follows and attach to the user:

{
 "Version": "2012-10-17",
 "Statement":[
 {
 "Effect": "Allow",
 "Action": [
 "ec2:DescribeAddresses",
 "ec2:DescribeInstances"
],
 "Resource": "*"
 }
]
}

You can limit permissions more by restricting access to specific regions. For more information, see
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ExamplePolicies_EC2.html#iam-example-read-
only.

10.1. VHM and Amazon Web Services

199 / 218 10.1. VHM and Amazon Web Services | Uyuni 2023.10

client-configuration:virtualization.pdf#_susesupport_and_vm_zones
client-configuration:virtualization.pdf#_susesupport_and_vm_zones
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ExamplePolicies_EC2.html#iam-example-read-only
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ExamplePolicies_EC2.html#iam-example-read-only

10.2. VHM and Azure
You can use a virtual host manager (VHM) to gather instances from Microsoft Azure.

The VHM allows Uyuni to obtain and report information about your virtual machines. For more
information on VHMs, see Client-configuration › Vhm.

10.2.1. Prerequisites

The VHM you create needs to have the correct permissions assigned, in order for it to access the Azure
VM.

Log in to your Azure account as the subscription administrator, and ensure that the Azure user account
and application are in the correct groups. The group that the application is in determines the role it has,
and therefore the permissions.

10.2.2. Create an Azure VHM

The Virtual Host Manager (VHM) runs on the Uyuni Server.

Ensure you have installed the virtual-host-gatherer-libcloud package on the Uyuni Server.

Procedure: Creating an Azure VHM

1. In the Uyuni Web UI, navigate to Systems › Virtual Host Managers.

2. Click [Create] and select Azure from the drop-down menu.

3. In the Add an Azure Virtual Host Manager section, use these parameters:

◦ In the Label field, type a custom name for your VHM.

◦ In the Subscription ID field, type the subscription ID found in Azure portal >
Services > Subscriptions page.

◦ In the Application ID field, type the application ID that you collected when you
registered the application.

◦ In the Tenant ID field, type the tenant ID provided by Azure that you collected when
you registered the application.

◦ In the Secret Key field, type the secret key associated with the Azure instance.

◦ In the Zone field, type the zone your VM is located in. For example, for West Europe,
enter westeurope. This is required for subscription matching to work.

4. Click [Create] to save your changes and create the VHM.

5. On the Virtual Host Managers page, select the new VHM.

6. On the Properties page, click [Refresh Data] to inventory the new VHM.

To see which objects and resources have been inventoried, navigate to Systems › System List › Virtual
Systems.

10.2. VHM and Azure

200 / 218 10.2. VHM and Azure | Uyuni 2023.10

10.2.3. Assigning permissions

If the permissions are not set correctly, you might receive an error like this when you run virtual-
host-gatherer:

General error: [AuthorizationFailed] The client 'client_name' with object id
'object_ID' does not have authorization to perform action
'Microsoft.Compute/virtualMachines/read' over scope '/subscriptions/not-very-
secret-subscription-id' or the scope is invalid. If access was recently
granted, please refresh your credentials.

To determine the correct credentials, run this command at the prompt on the Uyuni Server:

virtual-host-gatherer -i input_azure.json -o out_azure.json -vvv

The input_azure.json file should contain this information:

[
 {
 "id": "azure_vhm",
 "module": "Azure",
 "subscription_id": "subscription-id",
 "application_id": "application-id",
 "tenant_id": "tenant-id",
 "secret_key": "secret-key",
 "zone": "zone"
 }
]

10.2.4. Azure UUID

Instances running on the Azure public cloud report this UUID to the Uyuni Server:

13f56399-bd52-4150-9748-7190aae1ff21

10.3. VHM and Google Compute Engine
You can use a virtual host manager (VHM) to gather instances from Google Compute Engine (GCE).

The VHM allows Uyuni to obtain and report information about your virtual machines. For more
information on VHMs, see Client-configuration › Vhm.

10.3.1. Prerequisites

The VHM you create needs to have the correct permissions assigned to access the GCE VM.

Log in to your Google Cloud Platform account as an administrator, and use the Cloud Identity and Access
Management (IAM) tool to ensure that the service account has the appropriate roles.

10.3. VHM and Google Compute Engine

201 / 218 10.3. VHM and Google Compute Engine | Uyuni 2023.10

10.3.2. Create a GCE VHM

The Virtual Host Manager (VHM) runs on the Uyuni Server.

To run a VHM, your Uyuni Server needs to have port 443 open, to access the clients.

Ensure you have installed the virtual-host-gatherer-libcloud package on the Uyuni Server.

Before you begin, log in to the GCE panel, and download a certificate file. Store this file locally on your
Uyuni Server, and take note of the path.

Procedure: Creating a GCE VHM

1. In the Uyuni Web UI, navigate to Systems › Virtual Host Managers.

2. Click [Create] and select Google Compute Engine from the drop-down menu.

3. In the Add a Google Conpute Engine Virtual Host Manager section, use these
parameters:

◦ In the Label field, type a custom name for your VHM.

◦ In the Service Account Email field, type the email address associated with your
service account.

◦ In the Cert Path field, type the local path on the Uyuni Server to the key that you
downloaded from the GCE panel.

◦ In the Project ID field, type the project ID used by the GCE instance.

◦ In the Zone field, type the zone your VM is located in. This is required for subscription
matching to work.

4. Click [Create] to save your changes and create the VHM.

5. On the Virtual Host Managers page, select the new VHM.

6. On the Properties page, click [Refresh Data] to inventory the new VHM.

To see which objects and resources have been inventoried, navigate to Systems › System List › Virtual
Systems.

10.3.3. Assigning Permissions

If the permissions are not set correctly, you might receive an error like this when you run virtual-
host-gatherer:

ERROR: {'domain': 'global', 'reason': 'forbidden', 'message': "Required
'compute.zones.list' permission for 'projects/project-id'"}
ERROR: Could not connect to the Google Compute Engine Public Cloud using
specified credentials.

To determine the correct credentials, run this command at the prompt on the Uyuni Server:

10.3. VHM and Google Compute Engine

202 / 218 10.3. VHM and Google Compute Engine | Uyuni 2023.10

virtual-host-gatherer -i input_google.json -o out_google.json -vvv

The input_google.json file should contain this information:

[
 {
 "id": "google_vhm",
 "module": "GoogleCE",
 "service_account_email": "mail@example.com",
 "cert_path": "secret-key",
 "project_id": "project-id",
 "zone": "zone"
 }
]

10.3.4. GCE UUID

Instances running on the Google public cloud report this UUID to Uyuni Server:

152986662232938449

10.4. VHM and Kubernetes
You can use a virtual host manager (VHM) to manage Kubernetes clusters.

The VHM allows Uyuni to obtain and report information about your clusters. For more information on
VHMs, see Client-configuration › Vhm.

To use Uyuni with Kubernetes, you will need to have your Uyuni Server configured for container
management, with all required channels present, and a registered container build host available.

You also require:

• At least one Kubernetes cluster available on your network.

• The virtual-host-gatherer-Kubernetes package installed on the Uyuni Server.

• Kubernetes version 1.5.0 or higher.

• Docker version 1.12 or higher on the container build host.

10.4.1. Create a Kubernetes VHM

Kubernetes clusters are registered with Uyuni as a VHM.

You will need a kubeconfig file to register and authorize your Kubernetes cluster. You can get a
kubeconfig file using the Kubernetes command line tool kubectl. kubectl config view
--flatten=true provides the configuration with the certificate files embedded as needed for the
VHM.

10.4. VHM and Kubernetes

203 / 218 10.4. VHM and Kubernetes | Uyuni 2023.10

Procedure: Creating a Kubernetes VHM

1. In the Uyuni Web UI, navigate to Systems › Virtual Host Managers.

2. Click [Create] and select Kubernetes Cluster.

3. In the Add a Kubernetes Virtual Host Manager section, use these parameters:

◦ In the Label field, type a custom name for your VHM.

◦ Select the kubeconfig file that contains the required data for the Kubernetes cluster.

4. In the context field, select the appropriate context for the cluster. This is specified in the
kubeconfig file.

5. Click [Create] .

Procedure: Viewing the Nodes in a Cluster

1. In the Uyuni Web UI, navigate to Systems › Virtual Host Managers.

2. Select the Kubernetes cluster.

3. Refresh the node data by clicking [Schedule refresh data] .

The node data can take a few moments to update. You might need to refresh your browser window to see
the updated information.

Any connection or authentication problems are logged to gatherer.log.

Node data is not refreshed during registration. You need to manually refresh the
data to see it.

10.4.2. Retrieve Image Runtime Data

You can view runtime data about Kubernetes images in the Uyuni Web UI, by navigating to Images ›
Image List.

The image list table contains three columns:

• Revision:

A sequence number that increments on every rebuild for images built by Uyuni, or on every import
for externally built images.

• Runtime:

Overall status of the running instances for each image in registered clusters.

• Instances:

Number of instances running this image across all the clusters registered in Uyuni. You can see a
breakdown of numbers by clicking the pop-up icon next to the number.

10.4. VHM and Kubernetes

204 / 218 10.4. VHM and Kubernetes | Uyuni 2023.10

The Runtime column displays one of these status messages:

• All instances are consistent with SUSE Manager:

All the running instances are running the same build of the image as tracked by Uyuni.

• Outdated instances found:

Some of the instances are running an older build of the image. You might need to redeploy the
image.

• No information:

The checksum of the instance image does not match the image data contained in Uyuni. You might
need to redeploy the image.

Procedure: Building an Image

1. In the Uyuni Web UI, navigate to Images › Stores.

2. Click [Create] to create an image store.

3. Navigate to Images › Profiles.

4. Click [Create] to create an image profile. You will need to use a dockerfile that is suitable to
deploy to Kubernetes.

5. Navigate to Images › Build to build an image with the new profile.

6. Deploy the image into one of the registered Kubernetes clusters. You can do this with the
kubectl tool.

The updated data should now be available in the image list at Images › Image List.

Procedure: Importing a Previously Deployed Image

1. In the Uyuni Web UI, navigate to Images › Image Stores.

2. Add the registry that owns the image you want to import, if it is not already there.

3. Navigate to Images › Image List and click [Import] .

4. Complete the fields, select the image store you created, and click [Import] .

The imported image should now be available in the image list at Images › Image List.

Procedure: Rebuilding a Previously Deployed Image

1. In the Uyuni Web UI, navigate to Images › Image List, locate the row that contains the image you
want to rebuild, and click [Details] .

2. Navigate to the Build Status section, and click [Rebuild] . The rebuild can take some
time to complete.

When the rebuild has successfully completed, the runtime status of the image is updated in the image list

10.4. VHM and Kubernetes

205 / 218 10.4. VHM and Kubernetes | Uyuni 2023.10

at Images › Image List. This shows that the instances are running a previous build of the image.

You can only rebuild images if they were originally built with Uyuni. You cannot
rebuild imported images.

Procedure: Retrieving Additional Runtime Data

1. In the Uyuni Web UI, navigate to Images › Image List, locate the row that contains the running
instance, and click [Details] .

2. Navigate to the Overview tab. In the Image Info section, there is data in the Runtime and
Instances fields.

3. Navigate to the Runtime tab. This section contains a information about the Kubernetes pods
running this image in all the registered clusters. The information in this section includes:

◦ Pod name.

◦ Namespace which the pod resides in.

◦ The runtime status of the container in the specific pod.

10.4.3. Permissions and Certificates

You can only use kubeconfig files with Uyuni if they contain all embedded
certificate data.

The API calls from Uyuni are:

• GET /api/v1/pods

• GET /api/v1/nodes

The minimum recommended permissions for Uyuni are:

• A ClusterRole to list all the nodes:

resources: ["nodes"]
verbs: ["list"]

• A ClusterRole to list pods in all namespaces (role binding must not restrict the namespace):

resources: ["pods"]
verbs: ["list"]

If /pods returns a 403 reponse, the entire cluster is ignored by Uyuni.

For more information on working with RBAC Authorization, see https://kubernetes.io/docs/admin/
authorization/rbac/.

10.4. VHM and Kubernetes

206 / 218 10.4. VHM and Kubernetes | Uyuni 2023.10

https://kubernetes.io/docs/admin/authorization/rbac/
https://kubernetes.io/docs/admin/authorization/rbac/

10.5. Virtualization with Nutanix
You can use Nutanix AHV virtual machines with Uyuni by setting up a virtual host manager (VHM). To
begin, you need to set up a VHM on your Uyuni Server, and inventory the available VM hosts.

10.5.1. VHM Setup

The Virtual Host Manager (VHM) runs on the Uyuni Server.

Ensure you have installed the virtual-host-gatherer-Nutanix package on the Uyuni Server.

To run a VHM, your Uyuni Server must have port 9440 open to access the Nutanix Prism Element API.

Procedure: Creating a Nutanix VHM

1. In the Uyuni Web UI, navigate to Systems › Virtual Host Managers.

2. Click [Create] and select Nutanix AHV.

3. In the Add a Nutanix AHV Virtual Host Manager section, use these parameters:

◦ In the Label field, type a custom name for your VHM.

◦ In the Hostname field, type the fully qualified domain name (FQDN) or host IP address.

◦ In the Port field, type the Prism Element API port to use (for example, 9440).

◦ In the Username field, type the username associated with the VM host.

◦ In the Password field, type the password associated with the VM host user.

4. Click [Create] to save your changes and create the VHM.

5. On the Virtual Host Managers page select the new VHM.

6. On the Properties page, click [Refresh Data] to inventory the new VHM.

To see which objects and resources have been inventoried, navigate to Systems › System List › Virtual
Systems.

Connecting to the Nutanix Prism API server from a browser using HTTPS can
sometimes log an invalid certificate error. If this occurs, refreshing
the data from the virtual host manager fails. A valid SSL certificate (not self-
signed) is required on your Nutanix API server. If you’re using a custom CA
authority for your Nutanix SSL certificate, copy the custom CA certificate to
/etc/pki/trust/anchors on the Uyuni Server. Re-trust the certificate
by running the update-ca-certificates command on the command
line, and restart the spacewalk services.

After your VHM has been created and configured, Taskomatic runs data collection automatically. If you
want to manually perform data collection, navigate to Systems › Virtual Host Managers, select the
appropriate VHM, and click [Refresh Data] .

Uyuni ships with a tool called virtual-host-gatherer that can connect to VHMs using their

10.5. Virtualization with Nutanix

207 / 218 10.5. Virtualization with Nutanix | Uyuni 2023.10

API, and request information about virtual hosts. virtual-host-gatherer maintains the concept
of optional modules, where each module enables a specific VHM. This tool is automatically invoked
nightly by Taskomatic. Log files for the virtual-host-gatherer tool are located at
/var/log/rhn/gatherer.log.

10.6. Virtualization with VMWare
You can use VMWare vSphere virtual machines, including ESXi and vCenter, with Uyuni by setting up a
virtual host manager (VHM).

To begin, you need to set up a VHM on your Uyuni Server, and inventory the available VM hosts.
Taskomatic can then begin data collection using the VMs API.

10.6.1. VHM Setup

The Virtual Host Manager (VHM) runs on the Uyuni Server.

To run a VHM, your Uyuni Server needs to have port 443 open, to access the VMWare API.

VMWare hosts use access roles and permissions to control access to hosts and guests. Ensure that any
VMWare objects or resources that you want to be inventoried by the VHM have at least read-only
permissions. If you want to exclude any objects or resources, mark them with no-access.

When you are adding new hosts to Uyuni, you need to consider if the roles and permissions that have
been assigned to users and objects need to be inventoried by Uyuni.

For more on users, roles, and permissions, see the VMWare vSphere documentation:
https://docs.vmware.com/en/VMware-vSphere/index.html

Procedure: Creating a VMWare VHM

1. In the Uyuni Web UI, navigate to Systems › Virtual Host Managers.

2. Click [Create] and select VMWare-based.

3. In the Add a VMWare-based Virtual Host Manager section, use these parameters:

◦ In the Label field, type a custom name for your VHM.

◦ In the Hostname field, type the fully qualified domain name (FQDN) or host IP address.

◦ In the Port field, type the ESXi API port to use (for example, 443).

◦ In the Username field, type the username associated with the VM host.

◦ In the Password field, type the password associated with the VM host user.

4. Click [Create] to save your changes and create the VHM.

5. On the Virtual Host Managers page select the new VHM.

6. On the Properties page, click [Refresh Data] to inventory the new VHM.

To see which objects and resources have been inventoried, navigate to Systems › System List › Virtual

10.6. Virtualization with VMWare

208 / 218 10.6. Virtualization with VMWare | Uyuni 2023.10

https://docs.vmware.com/en/VMware-vSphere/index.html

Systems.

Connecting to the ESXi server from a browser using HTTPS can sometimes log
an invalid certificate error. If this occurs, refreshing the data from the
virtual hosts server fails. To correct the problem, extract the certificate from the
ESXi server, and copy it to /etc/pki/trust/anchors. Re-trust the
certificate by running the update-ca-certificates command on the
command line, and restart the spacewalk services.

After your VHM has been created and configured, Taskomatic runs data collection automatically. If you
want to manually perform data collection, navigate to Systems › Virtual Host Managers, select the
appropriate VHM, and click [Refresh Data] .

Uyuni ships with a tool called virtual-host-gatherer that can connect to VHMs using their
API, and request information about virtual hosts. virtual-host-gatherer maintains the concept
of optional modules, where each module enables a specific VHM. This tool is automatically invoked
nightly by Taskomatic. Log files for the virtual-host-gatherer tool are located at
/var/log/rhn/gatherer.log.

10.6.2. Troubleshooting SSL Errors on VMWare

If you see SSL errors while configuring your VMWare installation, you need to download the CA
certificate file from VMWare, and trust it on Uyuni.

Procedure: Trusting VMWare CA Certificates

1. Download the CA Certificate from your VMWare installation. You can do this by logging in to
your vCenter Web UI, and clicking [Download trusted root CA certificates] .

2. If the downloaded CA certificates file is in .zip format, extract the archive. The certificate files
have a number as an extension. For example, certificate.0.

3. Copy the certificate files to your Uyuni Server, and save them to the
/etc/pki/trust/anchors/ directory.

4. Change the filename suffix on the copied certificate to either .crt or .pem.

5. On the Uyuni Server, at the command prompt, update the CA certificate record:

update-ca-certificates

10.7. Virtualization with Other Third Party Providers
If you want to use a third-party virtualization provider other than Xen, KVM, or VMware, you can import
a JSON configuration file to Uyuni.

Similarly, if you have a VMWare installation that does not provide direct access to the API, a file-based
VHM provides you with some basic management features.

10.7. Virtualization with Other Third Party Providers

209 / 218 10.7. Virtualization with Other Third Party Providers | Uyuni 2023.10

This option is for importing files that have been created with the virtual-
host-gatherer tool. It is not designed for manually created files.

Procedure: Exporting and Importing a JSON File

1. Export the JSON configuration file by running virtual-host-gatherer on the VM
network.

2. Save the produced file to a location accessible by your Uyuni Server.

3. In the Uyuni Web UI, navigate to Systems › Virtual Host Managers.

4. Click [Create] and select File-based.

5. In the Add a file-based Virtual Host Manager section, use these parameters:

◦ In the Label field, type a custom name for your VHM.

◦ In the Url field, type the path to your exported JSON configuration file.

6. Click [Create] to save your changes and create the VHM.

7. On the Virtual Host Managers page, select the new VHM.

8. On the Properties page, click [Refresh Data] to inventory the new VHM.

10.7. Virtualization with Other Third Party Providers

210 / 218 10.7. Virtualization with Other Third Party Providers | Uyuni 2023.10

Listing 3. Example: Exported JSON configuration file:

{
 "examplevhost": {
 "10.11.12.13": {
 "cpuArch": "x86_64",
 "cpuDescription": "AMD Opteron(tm) Processor 4386",
 "cpuMhz": 3092.212727,
 "cpuVendor": "amd",
 "hostIdentifier": "'vim.HostSystem:host-182'",
 "name": "11.11.12.13",
 "os": "VMware ESXi",
 "osVersion": "5.5.0",
 "ramMb": 65512,
 "totalCpuCores": 16,
 "totalCpuSockets": 2,
 "totalCpuThreads": 16,
 "type": "vmware",
 "vms": {
 "vCenter": "564d6d90-459c-2256-8f39-3cb2bd24b7b0"
 }
 },
 "10.11.12.14": {
 "cpuArch": "x86_64",
 "cpuDescription": "AMD Opteron(tm) Processor 4386",
 "cpuMhz": 3092.212639,
 "cpuVendor": "amd",
 "hostIdentifier": "'vim.HostSystem:host-183'",
 "name": "10.11.12.14",
 "os": "VMware ESXi",
 "osVersion": "5.5.0",
 "ramMb": 65512,
 "totalCpuCores": 16,
 "totalCpuSockets": 2,
 "totalCpuThreads": 16,
 "type": "vmware",
 "vms": {
 "49737e0a-c9e6-4ceb-aef8-6a9452f67cb5": "4230c60f-3f98-2a65-
f7c3-600b26b79c22",
 "5a2e4e63-a957-426b-bfa8-4169302e4fdb": "42307b15-1618-0595-
01f2-427ffcddd88e",
 "NSX-gateway": "4230d43e-aafe-38ba-5a9e-3cb67c03a16a",
 "NSX-l3gateway": "4230b00f-0b21-0e9d-dfde-6c7b06909d5f",
 "NSX-service": "4230e924-b714-198b-348b-25de01482fd9"
 }
 }
 }
}

For more information, see the man page on your Uyuni server for virtual-host-gatherer:

man virtual-host-gatherer

The README file of that package provides background information about the type of a hypervisor, etc.:

/usr/share/doc/packages/virtual-host-gatherer/README.md

The man page and the README file also contain example configuration files.

10.7. Virtualization with Other Third Party Providers

211 / 218 10.7. Virtualization with Other Third Party Providers | Uyuni 2023.10

Chapter 11. GNU Free Documentation License
Copyright © 2000, 2001, 2002 Free Software Foundation, Inc. 51 Franklin St, Fifth Floor, Boston, MA
02110-1301 USA. Everyone is permitted to copy and distribute verbatim copies of this license document,
but changing it is not allowed.

0. PREAMBLE
The purpose of this License is to make a manual, textbook, or other functional and useful document
"free" in the sense of freedom: to assure everyone the effective freedom to copy and redistribute it, with
or without modifying it, either commercially or noncommercially. Secondarily, this License preserves for
the author and publisher a way to get credit for their work, while not being considered responsible for
modifications made by others.

This License is a kind of "copyleft", which means that derivative works of the document must themselves
be free in the same sense. It complements the GNU General Public License, which is a copyleft license
designed for free software.

We have designed this License in order to use it for manuals for free software, because free software
needs free documentation: a free program should come with manuals providing the same freedoms that
the software does. But this License is not limited to software manuals; it can be used for any textual work,
regardless of subject matter or whether it is published as a printed book. We recommend this License
principally for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS
This License applies to any manual or other work, in any medium, that contains a notice placed by the
copyright holder saying it can be distributed under the terms of this License. Such a notice grants a world-
wide, royalty-free license, unlimited in duration, to use that work under the conditions stated herein. The
"Document", below, refers to any such manual or work. Any member of the public is a licensee, and is
addressed as "you". You accept the license if you copy, modify or distribute the work in a way requiring
permission under copyright law.

A "Modified Version" of the Document means any work containing the Document or a portion of it,
either copied verbatim, or with modifications and/or translated into another language.

A "Secondary Section" is a named appendix or a front-matter section of the Document that deals
exclusively with the relationship of the publishers or authors of the Document to the Document’s overall
subject (or to related matters) and contains nothing that could fall directly within that overall subject.
(Thus, if the Document is in part a textbook of mathematics, a Secondary Section may not explain any
mathematics.) The relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding them.

The "Invariant Sections" are certain Secondary Sections whose titles are designated, as being those of
Invariant Sections, in the notice that says that the Document is released under this License. If a section
does not fit the above definition of Secondary then it is not allowed to be designated as Invariant. The
Document may contain zero Invariant Sections. If the Document does not identify any Invariant Sections

212 / 218 Chapter 11. GNU Free Documentation License | Uyuni 2023.10

then there are none.

The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover
Texts, in the notice that says that the Document is released under this License. A Front-Cover Text may
be at most 5 words, and a Back-Cover Text may be at most 25 words.

A "Transparent" copy of the Document means a machine-readable copy, represented in a format whose
specification is available to the general public, that is suitable for revising the document straightforwardly
with generic text editors or (for images composed of pixels) generic paint programs or (for drawings)
some widely available drawing editor, and that is suitable for input to text formatters or for automatic
translation to a variety of formats suitable for input to text formatters. A copy made in an otherwise
Transparent file format whose markup, or absence of markup, has been arranged to thwart or discourage
subsequent modification by readers is not Transparent. An image format is not Transparent if used for any
substantial amount of text. A copy that is not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input
format, LaTeX input format, SGML or XML using a publicly available DTD, and standard-conforming
simple HTML, PostScript or PDF designed for human modification. Examples of transparent image
formats include PNG, XCF and JPG. Opaque formats include proprietary formats that can be read and
edited only by proprietary word processors, SGML or XML for which the DTD and/or processing tools
are not generally available, and the machine-generated HTML, PostScript or PDF produced by some
word processors for output purposes only.

The "Title Page" means, for a printed book, the title page itself, plus such following pages as are needed
to hold, legibly, the material this License requires to appear in the title page. For works in formats which
do not have any title page as such, "Title Page" means the text near the most prominent appearance of the
work’s title, preceding the beginning of the body of the text.

A section "Entitled XYZ" means a named subunit of the Document whose title either is precisely XYZ or
contains XYZ in parentheses following text that translates XYZ in another language. (Here XYZ stands
for a specific section name mentioned below, such as "Acknowledgements", "Dedications",
"Endorsements", or "History".) To "Preserve the Title" of such a section when you modify the Document
means that it remains a section "Entitled XYZ" according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that this License applies
to the Document. These Warranty Disclaimers are considered to be included by reference in this License,
but only as regards disclaiming warranties: any other implication that these Warranty Disclaimers may
have is void and has no effect on the meaning of this License.

2. VERBATIM COPYING
You may copy and distribute the Document in any medium, either commercially or noncommercially,
provided that this License, the copyright notices, and the license notice saying this License applies to the
Document are reproduced in all copies, and that you add no other conditions whatsoever to those of this
License. You may not use technical measures to obstruct or control the reading or further copying of the
copies you make or distribute. However, you may accept compensation in exchange for copies. If you
distribute a large enough number of copies you must also follow the conditions in section 3.

213 / 218 Chapter 11. GNU Free Documentation License | Uyuni 2023.10

You may also lend copies, under the same conditions stated above, and you may publicly display copies.

3. COPYING IN QUANTITY
If you publish printed copies (or copies in media that commonly have printed covers) of the Document,
numbering more than 100, and the Document’s license notice requires Cover Texts, you must enclose the
copies in covers that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front cover,
and Back-Cover Texts on the back cover. Both covers must also clearly and legibly identify you as the
publisher of these copies. The front cover must present the full title with all words of the title equally
prominent and visible. You may add other material on the covers in addition. Copying with changes
limited to the covers, as long as they preserve the title of the Document and satisfy these conditions, can
be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed
(as many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must either
include a machine-readable Transparent copy along with each Opaque copy, or state in or with each
Opaque copy a computer-network location from which the general network-using public has access to
download using public-standard network protocols a complete Transparent copy of the Document, free of
added material. If you use the latter option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this Transparent copy will remain thus accessible
at the stated location until at least one year after the last time you distribute an Opaque copy (directly or
through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before redistributing
any large number of copies, to give them a chance to provide you with an updated version of the
Document.

4. MODIFICATIONS
You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and
3 above, provided that you release the Modified Version under precisely this License, with the Modified
Version filling the role of the Document, thus licensing distribution and modification of the Modified
Version to whoever possesses a copy of it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and
from those of previous versions (which should, if there were any, be listed in the History section of
the Document). You may use the same title as a previous version if the original publisher of that
version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of the
modifications in the Modified Version, together with at least five of the principal authors of the
Document (all of its principal authors, if it has fewer than five), unless they release you from this
requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the publisher.

D. Preserve all the copyright notices of the Document.

214 / 218 Chapter 11. GNU Free Documentation License | Uyuni 2023.10

E. Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public permission to
use the Modified Version under the terms of this License, in the form shown in the Addendum
below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given in
the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled "History", Preserve its Title, and add to it an item stating at least the
title, year, new authors, and publisher of the Modified Version as given on the Title Page. If there is
no section Entitled "History" in the Document, create one stating the title, year, authors, and
publisher of the Document as given on its Title Page, then add an item describing the Modified
Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to a Transparent
copy of the Document, and likewise the network locations given in the Document for previous
versions it was based on. These may be placed in the "History" section. You may omit a network
location for a work that was published at least four years before the Document itself, or if the
original publisher of the version it refers to gives permission.

K. For any section Entitled "Acknowledgements" or "Dedications", Preserve the Title of the section,
and preserve in the section all the substance and tone of each of the contributor acknowledgements
and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles.
Section numbers or the equivalent are not considered part of the section titles.

M. Delete any section Entitled "Endorsements". Such a section may not be included in the Modified
Version.

N. Do not retitle any existing section to be Entitled "Endorsements" or to conflict in title with any
Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary
Sections and contain no material copied from the Document, you may at your option designate some or
all of these sections as invariant. To do this, add their titles to the list of Invariant Sections in the
Modified Version’s license notice. These titles must be distinct from any other section titles.

You may add a section Entitled "Endorsements", provided it contains nothing but endorsements of your
Modified Version by various parties—for example, statements of peer review or that the text has been
approved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as a
Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of
Front-Cover Text and one of Back-Cover Text may be added by (or through arrangements made by) any
one entity. If the Document already includes a cover text for the same cover, previously added by you or
by arrangement made by the same entity you are acting on behalf of, you may not add another; but you
may replace the old one, on explicit permission from the previous publisher that added the old one.

215 / 218 Chapter 11. GNU Free Documentation License | Uyuni 2023.10

The author(s) and publisher(s) of the Document do not by this License give permission to use their names
for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS
You may combine the Document with other documents released under this License, under the terms
defined in section 4 above for modified versions, provided that you include in the combination all of the
Invariant Sections of all of the original documents, unmodified, and list them all as Invariant Sections of
your combined work in its license notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invariant Sections
may be replaced with a single copy. If there are multiple Invariant Sections with the same name but
different contents, make the title of each such section unique by adding at the end of it, in parentheses, the
name of the original author or publisher of that section if known, or else a unique number. Make the same
adjustment to the section titles in the list of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled "History" in the various original documents,
forming one section Entitled "History"; likewise combine any sections Entitled "Acknowledgements", and
any sections Entitled "Dedications". You must delete all sections Entitled "Endorsements".

6. COLLECTIONS OF DOCUMENTS
You may make a collection consisting of the Document and other documents released under this License,
and replace the individual copies of this License in the various documents with a single copy that is
included in the collection, provided that you follow the rules of this License for verbatim copying of each
of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under this
License, provided you insert a copy of this License into the extracted document, and follow this License
in all other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS
A compilation of the Document or its derivatives with other separate and independent documents or
works, in or on a volume of a storage or distribution medium, is called an "aggregate" if the copyright
resulting from the compilation is not used to limit the legal rights of the compilation’s users beyond what
the individual works permit. When the Document is included in an aggregate, this License does not apply
to the other works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the
Document is less than one half of the entire aggregate, the Document’s Cover Texts may be placed on
covers that bracket the Document within the aggregate, or the electronic equivalent of covers if the
Document is in electronic form. Otherwise they must appear on printed covers that bracket the whole
aggregate.

8. TRANSLATION

216 / 218 Chapter 11. GNU Free Documentation License | Uyuni 2023.10

Translation is considered a kind of modification, so you may distribute translations of the Document
under the terms of section 4. Replacing Invariant Sections with translations requires special permission
from their copyright holders, but you may include translations of some or all Invariant Sections in
addition to the original versions of these Invariant Sections. You may include a translation of this License,
and all the license notices in the Document, and any Warranty Disclaimers, provided that you also include
the original English version of this License and the original versions of those notices and disclaimers. In
case of a disagreement between the translation and the original version of this License or a notice or
disclaimer, the original version will prevail.

If a section in the Document is Entitled "Acknowledgements", "Dedications", or "History", the
requirement (section 4) to Preserve its Title (section 1) will typically require changing the actual title.

9. TERMINATION
You may not copy, modify, sublicense, or distribute the Document except as expressly provided for under
this License. Any other attempt to copy, modify, sublicense or distribute the Document is void, and will
automatically terminate your rights under this License. However, parties who have received copies, or
rights, from you under this License will not have their licenses terminated so long as such parties remain
in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE
The Free Software Foundation may publish new, revised versions of the GNU Free Documentation
License from time to time. Such new versions will be similar in spirit to the present version, but may
differ in detail to address new problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies that a
particular numbered version of this License "or any later version" applies to it, you have the option of
following the terms and conditions either of that specified version or of any later version that has been
published (not as a draft) by the Free Software Foundation. If the Document does not specify a version
number of this License, you may choose any version ever published (not as a draft) by the Free Software
Foundation.

ADDENDUM: How to use this License for your documents

Copyright (c) YEAR YOUR NAME.
 Permission is granted to copy, distribute and/or modify this document
 under the terms of the GNU Free Documentation License, Version 1.2
 or any later version published by the Free Software Foundation;
 with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
 A copy of the license is included in the section entitled{ldquo}GNU
 Free Documentation License{rdquo}.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the “ with…Texts.” line
with this:

217 / 218 Chapter 11. GNU Free Documentation License | Uyuni 2023.10

http://www.gnu.org/copyleft/

with the Invariant Sections being LIST THEIR TITLES, with the
 Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combination of the three, merge those
two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing these examples
in parallel under your choice of free software license, such as the GNU General Public License, to permit
their use in free software.

218 / 218 Chapter 11. GNU Free Documentation License | Uyuni 2023.10

	Uyuni 2023.10: Client Configuration Guide
	Table of Contents
	Client Configuration Guide Overview
	Chapter 1. Supported Clients and Features
	1.1. Supported Client Systems
	1.2. Supported Tools Packages
	1.3. Supported SUSE and openSUSE Client Features
	1.4. Supported SLE Micro Client Features
	1.5. openSUSE Leap Micro Client Features
	1.6. Supported Alibaba Cloud Linux Features
	1.7. Supported AlmaLinux Features
	1.8. Supported Amazon Linux Features
	1.9. Supported CentOS Features
	1.10. Supported Debian Features
	1.11. Supported Oracle Features
	1.12. Supported Red Hat Enterprise Linux Features
	1.13. Supported Rocky Linux Features
	1.14. Supported Ubuntu Features

	Chapter 2. Configuration Basics
	2.1. Software Channels
	2.1.1. Packages Provided by SUSE Package Hub
	2.1.2. Packages Provided by AppStream
	2.1.3. Packages Provided by EPEL
	2.1.4. Unified Installer Updates Channels on SUSE Linux Enterprise Clients
	2.1.5. Software Repositories
	2.1.6. Software Products

	2.2. Bootstrap Repository
	2.2.1. Prepare to Create a Bootstrap Repository
	2.2.2. Options for Automatic Mode
	2.2.3. Manually Generate a Bootstrap Repository
	2.2.4. Bootstrap and Custom Channels

	2.3. Activation Keys
	2.3.1. Combining Multiple Activation Keys
	2.3.2. Reactivation Keys
	2.3.3. Activation Key Best Practices

	2.4. GPG Keys
	2.4.1. Trust GPG Keys on Clients

	Chapter 3. Client Management Methods
	3.1. Contact Methods for Salt Clients
	3.1.1. Onboarding Details
	3.1.2. Push via Salt SSH
	3.1.3. Salt Bundle

	Contact Methods for Traditional Clients
	SUSE Manager Daemon (rhnsd)
	Push via SSH

	3.2. Migrate traditional clients to Salt clients
	3.2.1. Create bootstrap script
	3.2.2. Modify bootstrap script
	3.2.3. Run bootstrap script

	Chapter 4. Client Registration
	4.1. Client Registration Methods
	4.1.1. Register Clients with the Web UI
	4.1.2. Register Clients with a Bootstrap Script
	4.1.3. Register on the Command Line (Salt)

	4.2. SUSE Client Registration
	4.2.1. Registering SUSE Linux Enterprise Clients
	4.2.2. Registering SLE Micro Clients

	4.3. openSUSE Client Registration
	4.3.1. Registering openSUSE Leap Clients
	4.3.2. Registering openSUSE Leap Micro Clients

	4.4. Alibaba Cloud Linux Client Registration
	4.4.1. Registering Alibaba Cloud Linux Clients

	4.5. AlmaLinux Client Registration
	4.5.1. Registering AlmaLinux Clients

	4.6. Amazon Linux Client Registration
	4.6.1. Registering Amazon Linux Clients

	4.7. CentOS Client Registration
	4.7.1. Registering CentOS Clients

	4.8. Debian Client Registration
	4.8.1. Registering Debian Clients

	4.9. Oracle Client Registration
	4.9.1. Registering Oracle Linux Clients

	4.10. Red Hat Client Registration
	4.10.1. Registering Red Hat Enterprise Linux Clients with CDN
	4.10.2. Registering Red Hat Enterprise Linux Clients with RHUI

	4.11. Rocky Linux Client Registration
	4.11.1. Registering Rocky Linux Clients

	4.12. Ubuntu Client Registration
	4.12.1. Registering Ubuntu 20.04 and 22.04 Clients
	4.12.2. Registering Ubuntu 18.04 Clients

	4.13. Register Clients to a Proxy
	4.13.1. Move Clients between Proxies
	4.13.2. Move Clients from Proxies to the Server
	4.13.3. Register Clients to a Proxy with the Web UI
	4.13.4. Registering with a Bootstrap Script (Salt and Traditional)

	4.14. Registering clients on a public cloud
	4.14.1. Add Products and Synchronize Repositories
	4.14.2. Prepare on-demand images
	4.14.3. Register clients
	4.14.4. Activation keys
	4.14.5. Automatic registration of clients created by Terraform

	Chapter 5. Client Upgrades
	5.1. Client - Major Version Upgrade
	5.1.1. Prepare to Migrate
	5.1.2. Create an Autoinstallation Profile
	5.1.3. Migration

	5.2. Upgrade Using the Content Lifecycle Manager
	5.2.1. Prepare to Upgrade
	5.2.2. Upgrade

	5.3. Product Migration
	5.3.1. Single System Migration
	5.3.2. Product Mass Migration

	5.4. Upgrade Uyuni Clients
	5.4.1. Prepare to Upgrade
	5.4.2. Upgrade

	Chapter 6. Client Deletion
	6.1. Delete a Client with the Web UI
	6.2. Delete a Salt Client on the Command Line (with API Call)
	6.3. Delete a Client from the Command Line
	6.3.1. Salt Client

	Chapter 7. Client Operations
	7.1. Package Management
	7.1.1. Verify Packages
	7.1.2. Compare Packages

	7.2. Patch Management
	7.2.1. Create Patches
	7.2.2. Apply Patches to Clients

	7.3. System Locking
	7.3.1. System Locks on Traditional Clients
	7.3.2. System Locks on Salt Clients
	7.3.3. Package Locks

	7.4. Configuration Management
	7.4.1. Prepare Traditional Clients for Configuration Management
	7.4.2. Create Configuration Channels
	7.4.3. Add Configuration Files, Directories, or Symbolic Links
	7.4.4. Subscribe Clients to Configuration Channels
	7.4.5. Compare Configuration Files
	7.4.6. Jinja templating on Salt clients
	7.4.7. Configuration file macros on traditional clients

	7.5. Power Management
	7.5.1. Power Management and Cobbler

	7.6. Configuration Snapshots
	7.6.1. Snapshot Tags
	7.6.2. Snapshots on Large Installations

	7.7. Custom System Information
	7.8. System Set Manager
	7.8.1. Change Base Channels in SSM

	7.9. System Groups
	7.9.1. Create Groups
	7.9.2. Add Clients to Groups
	7.9.3. Work with Groups

	7.10. System Types
	7.10.1. Change a Traditional Client to Salt Using the Web UI
	7.10.2. Change a Traditional Client to Salt at the Command Prompt

	Chapter 8. Operating System Installation
	8.1. Reinstall Registered Systems
	8.2. Install via the Network (PXE Boot)
	8.2.1. Prepare the DHCP Server
	8.2.2. Synchronize the TFTP Tree with Proxies
	8.2.3. GRUB EFI binary names for different architectures

	8.3. Install via a CD-ROM or a USB Key
	8.3.1. Build an ISO Image With Cobbler
	8.3.2. Build a SUSE ISO Image With KIWI
	8.3.3. Build a Red Hat ISO Image With Cobbler

	8.4. Autoinstallable Distributions
	8.4.1. Distribution Based on an ISO Image
	8.4.2. Distribution Based on a RPM Package
	8.4.3. Declare an Autoinstallable Distribution

	8.5. Autoinstallation Profiles
	8.5.1. Declare the Profile
	8.5.2. AutoYaST Profiles
	8.5.3. Kickstart Profiles
	8.5.4. Templates Syntax

	8.6. Unattended Provisioning
	8.6.1. Bare Metal Provisioning
	8.6.2. Create a System Record Manually

	8.7. Use Your Own GPG Key
	8.7.1. Own GPG Key for PXE Boot
	8.7.2. Own GPG key in a CD-ROM

	Chapter 9. Virtualization
	9.1. Manage Virtualized Hosts
	9.2. Create Virtual Guests
	9.3. Virtualization with Xen and KVM
	9.3.1. Host Setup
	9.3.2. Autoinstallation
	9.3.3. Manage VM Guests

	Chapter 10. Virtual Host Managers
	10.1. VHM and Amazon Web Services
	10.1.1. Create an Amazon EC2 VHM
	10.1.2. AWS Permissions for Virtual Host Manager

	10.2. VHM and Azure
	10.2.1. Prerequisites
	10.2.2. Create an Azure VHM
	10.2.3. Assigning permissions
	10.2.4. Azure UUID

	10.3. VHM and Google Compute Engine
	10.3.1. Prerequisites
	10.3.2. Create a GCE VHM
	10.3.3. Assigning Permissions
	10.3.4. GCE UUID

	10.4. VHM and Kubernetes
	10.4.1. Create a Kubernetes VHM
	10.4.2. Retrieve Image Runtime Data
	10.4.3. Permissions and Certificates

	10.5. Virtualization with Nutanix
	10.5.1. VHM Setup

	10.6. Virtualization with VMWare
	10.6.1. VHM Setup
	10.6.2. Troubleshooting SSL Errors on VMWare

	10.7. Virtualization with Other Third Party Providers

	Chapter 11. GNU Free Documentation License

