€

LI Y LIN |

Uyuni 2022.11

Client Configuration Guide

November 18 2022

Table of Contents

Client Configuration Guide Overview 1
1. Supported Clients and Features 2
1.1. Supported CLent SySteMS. oottt e e e e e 2
1.2. Supported Tools Packages 4
1.3. Supported SUSE and openSUSE Client Features 4
1.4. Supported SUSE Linux Enterprise Server with Expanded Support Features 7
1.5. Supported SLE Micro and openSUSE MicroOS Client Features 9
1.6. Supported Alibaba Cloud Linux Features. 12
1.7. Supported Almalinux Features e 14
1.8. Supported Amazon Linux Features, 17
1.9. Supported CentOS Featuresot e e 19
1.10. Supported Debian Features. i e 21
1.11. Supported Oracle Features e 23
1.12. Supported Red Hat Enterprise Linux Features 26
1.13. Supported Rocky Linux Features i 29
1.14. Supported Ubuntu Features i 31

2. Configuration Basics 34
2.1. Software Channels e 34
2.1.1. Packages Provided by SUSE Package Hub. 34
2.1.2. Packages Provided by AppStream 35
2.1.3. Packages Provided by EPEL. 35
2.1.4. Unified Installer Updates Channels on SUSE Linux Enterprise Clients 36
2.1.5. Software RepoSitOries.ottt 36
2.1.6. Software Productst 37

2.2. BOOtStrap RepOSItOTY . . . oottt e e 38
2.2.1. Prepare to Create a Bootstrap Repository., 38
2.2.2. Options for Automatic Modet 38
2.2.3. Manually Generate a Bootstrap Repository 39
2.2.4. Bootstrap and Custom Channels. 40

230 Activation Keyso 41
2.3.1. Combining Multiple Activation Keys i 42
2.3.2. Reactivation Keyso 43
2.3.3. Activation Key Best Practices. i 44

24, GPG KeYS . oottt 45
2.4.1. Trust GPG Keys on CHENtsooiuin e 45

3. Client Management Methods 48
3.1. Contact Methods for Salt Clients i 48
3.1.1. Onboarding Details. e 48
3.1.2.Push via Salt SSH.o 49
3.13.SaltBundle. 51

3.2. Contact Methods for Traditional Clients., 54
3.2.1. SUSE Manager Daemon (thnsd) 55
32.2.Push via SSH . ..o 59

4. Client Registration 63
4.1. Client Registration Methods e 63

4.1.1. Register Clients withthe Web UL. i 63

4.1.2. Register Clients with a Bootstrap Script. i 65

4.1.3. Register on the Command Line (Salt). 69
4.2. SUSE Client Registrationottt it ettt e 71
4.2.1. Registering SUSE Linux Enterprise Clients, 72
4.2.2. Registering SLE Micro CHENtso vt it e e e e 75
4.2.3. Registering SUSE Linux Enterprise Server with Expanded Support Clients. 77
4.3. openSUSE Client Registrationttt 81
4.3.1. Registering openSUSE Leap Clients. 82
4.3.2. Registering openSUSE MicroOS CHentsttt ininnnnenenen.. 84
4.4. Alibaba Cloud Linux Client Registrationt .. 87
4.4.1. Registering Alibaba Cloud Linux Clients 87
4.5. AlmaLinux Client Registration. e 89
4.5.1. Registering AlmaLinux Clients. i 89
4.6. Amazon Linux Client Registration i 92
4.6.1. Registering Amazon Linux Clients. i, 92
4.7. CentOS Client Registration.ottt e 94
4.7.1. Registering CentOS CHEntsuititi it 94
4.8. Debian Client Registrationttt ettt n 99
4.8.1. Registering Debian CHentsu ittt 99
4.9. Oracle Client Registration.ttt e et et ens 102
4.9.1. Registering Oracle Linux Clientsttt 102
4.10. Red Hat Client Registrationttt i 105
4.10.1. Registering Red Hat Enterprise Linux Clients with CDN 105
4.10.2. Registering Red Hat Enterprise Linux Clients with RHUI 114
4.11. Rocky Linux Client Registration.t 121
4.11.1. Registering Rocky Linux Clients 122
4.12. Ubuntu Client Registration.ottt 124
4.12.1. Registering Ubuntu 20.04 and 22.04 Clients oieienena... 125
4.12.2. Registering Ubuntu 18.04 Clients. v it 128
4.13. Register Clients to @ ProxXyot 131
4.13.1. Move Clients between Proxies 131
4.13.2. Move Clients from Proxies tothe Server 132
4.13.3. Register Clients to a Proxy withthe Web Ul 132
4.13.4. Registering with a Bootstrap Script (Salt and Traditional) 134
4.14. Registering clientson apubliccloud. 134
4.14.1. Add Products and Synchronize Repositories 134
4.14.2. Prepare on-demand IMages.vtnt it e 135
4143 RegiSter CHENLS . . . oo v ettt e e 135
4144, Activation KeYS oot 136
4.14.5. Automatic Registration of Clients Created by Terraform 136

5. Client Upgrades 139
5.1. Client - Major Version Upgradettt 139
S5.1.1.Prepare to MAGrateottt e 139
5.1.2. Create an Autoinstallation Profile. 141
SA3UMIZIation . . .o et e 142
5.2. Upgrade Using the Content Lifecycle Manager 142
5.2.1. Prepare to Upgrade.ot e 142
5.2.2.Upgrade . . .o 144

5.3. Product MAGrationttt e e 144

5.3.1. Perform a MIgration.ot
5.3.2. Product Mass Migrationttt e
5.4. Upgrade Uyuni CHEnts.ottt e et
S54.1.Prepare to Upgrade.ottt
5.A42.UpGrade . . .o
6. Client Deletion
7. Client Operations
7.1. Package Management.ottt ettt e
7.1.1. Verify Packageso
7.1.2. Compare Packages
7.2.Patch Management.t
7.2.1.Create Patches
7.2.2. Apply Patches to Clients.
7.3.System Lockingo
7.3.1. System Locks on Traditional Clients
7.3.2. System Locks on Salt Clientsttt
7.3.3.Package LOCKS oo
7.4. Configuration Managementuutt ettt ettt e
7.4.1. Prepare Traditional Clients for Configuration Management
7.4.2. Create Configuration Channels. i,
7.4.3. Add Configuration Files, Directories, or Symbolic Links
7.4.4. Subscribe Clients to Configuration Channels
7.4.5. Compare Configuration Files
7.4.6. Configuration File Macros on Traditional Clients.
7.5. Power Managementttt e e
7.5.1. Power Management and Cobbler
7.6. Configuration Snapshots. e
7.6.1. Snapshot Tags.t
7.6.2. Snapshots on Large Installations. i
7.7. Custom System Information.
7.8. System Set Manager. oottt e
7.8.1. Change Base Channels in SSM. i
7.9, SYStEM GIOUPS . . . o oottt e et et e e e e e e e e e
T.9.1. Create GrOUPS. . . v ottt et e et e e e e e e e e e e
7.9.2. Add CHents to GIOUPS . . . ot ottt e et e e e ettt e
7.9.3. Work with Groupsot e
710, System TYPES . . v o ve e
7.10.1. Change a Traditional Client to Salt Using the Web UL
7.10.2. Change a Traditional Client to Salt at the Command Prompt...................
8. Operating System Installation
8.1. Reinstall Registered Systems.t
8.2. Install via the Network (PXE Boot) i
8.2.1. Prepare the DHCP Server. e
8.2.2. Synchronize the TFTP Tree with Proxies.
83.Install viaaCD-ROMora USB Key e
8.3.1. Build an ISO Image With Cobbler
8.3.2. Build a SUSE ISO Image With KIWL.
8.3.3. Build a RedHat ISO Image With mkisofs.,
8.4. Autoinstallable Distributions. i e

8.4.1. Distribution Basedonan ISOImage
8.4.2. Distribution Based on a RPM Package.
8.4.3. Declare an Autoinstallable Distribution
8.5. Autoinstallation Profiles
8.5.1. Declare the Profile o
8.5.2. AutoYast Profileso
8.5.3. Kickstart Profiles
8.5.4. Templates SYNAXottt ettt et e e
8.6. Unattended Provisioning.« e e
8.6.1. Bare Metal Provisioningt
8.6.2. Create a System Record Manually
8.7.Use Your Own GPG Key
8.7.1. Own GPG Key for PXE Boot
8.72.0wn GPG key ina CD-ROM.. e
9. Virtualization
9.1. Manage Virtualized HOStS.o
9.2. Create Virtual GUESESot e e
9.3. Virtualization with Xenand KVM
0.3 1 HOSt SEtUP . . oot
9.3.2. Autoinstallation
9.3.3. Manage VIM GUESESo vttt e e e e e
10. Virtual Host Managers
10.1. VHM and Amazon Web ServiCes. vu ittt et
10.1.1. Create an Amazon EC2 VHM i
10.1.2. AWS Permissions for Virtual Host Manager.
10.2. VHM and AZUTE. oottt e
10.2.1. PrereqUiSiteso vttt et e e e e e
10.2.2. Create an Azure VHM
10.2.3. AsSSIZNINg PErmMISSIONS v vttt ettt e et e et e e e
10.2.4. Azure UUID.o
10.3. VHM and Google Compute Engine
10.3.1. PrereqUisites . . . o oo vt e et e e e e e e e e e e e
10.3.2.Create a GCE VHM
10.3.3. Assigning Permissionsuutuutntir e
1034, GCE UUID . ..o e e e e
10.4. VHM and KUbernetesttt et et
10.4.1. Create a Kubernetes VHM e
10.4.2. Retrieve Image Runtime Data.
10.4.3. Permissions and Certificates.ottt
10.5. Virtualization with Nutanix et
T05. 1. VHM Setup . ..o oo
10.6. Virtualization with VMWare
10.6.1. VHM Setup . . . oo
10.6.2. Troubleshooting SSL. Errors on VMWare.
10.7. Virtualization with Other Third Party Providers.
11. GNU Free Documentation License

Client Configuration Guide Overview
Updated: 2022-11-18

Registering clients is the first step after installing Uyuni, and most of the time you spend with Uyuni is
spent on maintaining those clients.

Uyuni is compatible with a range of client technologies: you can install traditional or Salt clients, running
SUSE Linux Enterprise or another Linux operating system, with a range of hardware options.

For a complete list of supported clients and features, see Client-configuration > Supported-features.

This guide discusses how to register and configure different clients, both manually and automatically.

1/219 [Uyuni 2022.11

Chapter 1. Supported Clients and Features

Uyuni is compatible with a range of client technologies. You can install traditional or Salt clients, running
SUSE Linux Enterprise or another Linux operating system, with a range of hardware options.

This section contains summary of supported client systems. For a detailed list of features available on each
client, see the following pages.

1.1. Supported Client Systems

Supported operating systems for traditional and Salt clients are listed in this table.
The icons in this table indicate:

* «/ clients running this operating system are supported by SUSE
* X clients running this operating system are not supported by SUSE

* ? clients are under consideration, and may or may not be supported at a later date.

(normal or LTSS) to be supported with Uyuni. For details on supported product

0 Client operating system versions and SP levels must be under general support
versions, see https://www.suse.com/lifecycle.

The operating system running on a client is supported by the organization that
supplies the operating system.
Table 1. Supported Client Systems
Operating System Architecture Traditional Clients Salt Clients
SUSE Linux Enterprise x86-64, ppc64le, IBM Z, v
15 ARM
SUSE Linux Enterprise x86-64, ppc64le, IBM Z, v/ v
12 ARM
SUSE Linux Enterprise x86-64, ppc64le v v
Server for SAP 15
SUSE Linux Enterprise x86-64, ppc64le v v
Server for SAP 12
SLE Micro x86-64, ppc6dle, X v
aarch64

openSUSE Leap 15 x86-64, aarch64 v v

https://www.suse.com/lifecycle

Operating System Architecture Traditional Clients Salt Clients

SUSE Linux Enterprise ~ x86-64 X v

Server ES 8

SUSE Linux Enterprise ~ x86-64 v v

Server ES 7

Alibaba Cloud Linux 2 x86-64, aarch64 b ¢ v

AlmaLinux 9 x86-64, ppcodle, IBM Z, X v
aarch64

AlmaLinux 8 x86-64, aarch64 X v

Amazon Linux 2 x86-64, aarch64 b ¢ v

CentOS 7 x86-64, ppc64le, v v
aarch64

Debian 11 x86-64 X v

Debian 10 x86-64 X v

Oracle Linux 9 x86-64, aarch64 X v

Oracle Linux 8 x86-64, aarch64 X v

Oracle Linux 7 x86-64, aarch64 v v

Red Hat Enterprise x86-64 X v

Linux 9

Red Hat Enterprise x86-64 X v

Linux 8

Red Hat Enterprise x86-64 v v

Linux 7

Rocky Linux 9 x86-64, aarch64, X v
ppcb4le, s390x

Rocky Linux 8 x86-64, aarch64 X v

Ubuntu 22.04 amd64 X v

Ubuntu 20.04 amd64 X v

Ubuntu 18.04 amd64 X v

o Debian and Ubuntu list the x86-64 architecture as amd64.

When the distibution reaches end-of-life, it enters grace period of 3 months when the support is

considered deprecated. After that period, the product is considered unsupported. Any support may only
be available on the best-effort basis.

For more information about end-of-life dates, see https://endoflife.software/operating-systems.

1.2. Supported Tools Packages

The spacewalk-utils and spacewalk-utils-extras packages can provide additional services
and features.

Table 2. Spacewalk Utilities

Tool Name Description Supported?
spacewalk-common- Add channels not provided by v
channels SUSE Customer Center
spacewalk-hostname- Change the hostname of the v

rename Uyuni Server

spacewalk-clone-by-date Clone channels by a specific date v

spacewalk-sync-setup Set up ISS master and slave v
organization mappings

spacewalk-manage- Manage channel lifecycles v
channel-1lifecycle

1.3. Supported SUSE and openSUSE Client Features

This table lists the availability of various features on SUSE and openSUSE clients. This table covers all
variants of the SUSE Linux Enterprise operating system, including SLES, SLED, SUSE Linux Enterprise
Server for SAP, and SUSE Linux Enterprise Server for HPC.

supplies the operating system. SUSE Linux Enterprise is supported by SUSE.

o The operating system you run on a client is supported by the organization that
openSUSE is supported by the SUSE community.

The icons in this table indicate:

* V the feature is available on both Salt and traditional clients

* X the feature is not available

* ? the feature is under consideration, and may or may not be made available at a later date
* Traditional the feature is supported only on traditional clients

e Salt the feature is supported only on Salt clients.

https://endoflife.software/operating-systems

Table 3. Supported Features on SUSE and openSUSE Operating Systems

Feature

Client

System packages
Registration

Install packages
Apply patches
Remote commands
System package states
System custom states
Group custom states

Organization custom
states

System set manager
(SSM)

Product migration

Basic Virtual Guest
Management 3K

Advanced Virtual Guest

Management 3K

Virtual Guest Installation
(AutoYaST), as Host OS

Virtual Guest Installation

(image template), as
Host OS

Virtual Guest
Management

System deployment
(PXE/AutoYaST)

System redeployment
(AutoYaST)

SUSE Linux
Enterprise 12

v

SUSE

Salt
Salt
Salt

Salt

< L

Salt

Traditional

Salt

Salt

SUSE Linux
Enterprise 15

v

SUSE

Salt
Salt
Salt

Salt

Salt

Traditional

Salt

Salt

openSUSE 15

v

openSUSE Community
Salt

Salt

Salt

Salt

Salt

Salt

Salt

Salt

Salt

Salt

Salt

Salt

Salt

Salt

Salt

Feature

Contact methods

Works with Uyuni Proxy
Action chains

Staging (pre-download
of packages)

Duplicate package
reporting

CVE auditing

SCAP auditing
Package verification
Package locking
System locking
Maintenance Windows
System snapshot

Configuration file
management

Package profiles

Power management
Monitoring
Docker buildhost

Build Docker image with
oS

Kiwi buildhost

Build Kiwi image with
(ON)

Recurring Actions

SUSE Linux
Enterprise 12

Traditional: OSAD,
RHNSD, SSH-push. Salt:
ZeroMQ, Salt-SSH

v
v

v

v
Traditional
Salt
Traditional
v
Traditional

v

Traditional. Salt: Profiles
supported, Sync not
supported

v
Salt
Salt

Salt

Salt

Salt

Salt

SUSE Linux
Enterprise 15

Traditional: OSAD,
RHNSD, SSH-push. Salt:
ZeroMQ, Salt-SSH

v
v

v

v
Traditional
Salt
Traditional
v
Traditional

v

Traditional. Salt: Profiles
supported, Sync not
supported

v
Salt
Salt

Salt

)

Salt

openSUSE 15

Salt: ZeroMQ, Salt-SSH

Salt

Salt

Salt

Salt

Salt

Salt

Salt

Salt

Salt: Profiles supported,
Sync not supported

v

Salt

Salt

(N

Salt

Feature SUSE Linux SUSE Linux openSUSE 15

Enterprise 12 Enterprise 15
AppStreams N/A N/A N/A
Yomi X v v

XK Virtual Guest Management:
In this table, virtual guest management is split into basic and advanced.

Basic virtual guest management includes listing VMs, slow refresh, VM lifecycle actions (start, stop,
resume, pause), and modifying VM vCPU and Memory.

Advanced virtual guest management includes all features of Basic virtual guest management plus fast
refresh, VM lifecycle actions (delete, reset, power off), modifying VM disk, network, graphical display,
and graphical display configuration.

1.4. Supported SUSE Linux Enterprise Server with Expanded Support
Features

This table lists the availability of various features on SUSE Linux Enterprise Server with Expanded
Support clients.

supplies the operating system. SUSE Linux Enterprise Server with Expanded

o The operating system you run on a client is supported by the organization that
Support is supported by SUSE.

The icons in this table indicate:

* «/ the feature is available on both Salt and traditional clients

* X the feature is not available

? the feature is under consideration, and may or may not be made available at a later date

Traditional the feature is supported only on traditional clients

Salt the feature is supported only on Salt clients.

Table 4. Supported Features on SUSE Linux Enterprise Server with Expanded Support Operating Systems

Feature SLES ES 7 SLES ES 8
Client v Salt
System packages SUSE SUSE

Registration v Salt

Feature

Install packages

Apply patches

Remote commands
System package states
System custom states
Group custom states
Organization custom states
System set manager (SSM)
Product migration

Basic Virtual Guest Management

X

Advanced Virtual Guest
Management 3K

Virtual Guest Installation
(Kickstart), as Host OS

Virtual Guest Installation (image
template), as Host OS

System deployment
(PXE/Kickstart)

System redeployment (Kickstart)

Contact methods

Works with Uyuni Proxy
Action chains

Staging (pre-download of
packages)

Duplicate package reporting
CVE auditing

SCAP auditing

SLES ES 7

Salt
Salt
Salt
Salt
Salt
N/A

v

Salt

Traditional

v

v

v

Traditional: OSAD, RHNSD,
SSH-push. Salt: ZeroMQ, Salt-
SSH

v
v

SLES ES 8

Salt

Salt

Salt

Salt

Salt

Salt

Salt

Salt

N/A

Salt

Salt

Salt

Salt

X

Salt

Salt

Salt

Salt

Salt

Salt

Salt

: ZeroMQ, Salt-SSH

Feature

Package verification

Package locking

System locking

Maintenance Windows

System snapshot
Configuration file management

Snapshots and profiles

Power management
Monitoring

Docker buildhost

Build Docker image with OS
Kiwi buildhost

Build Kiwi image with OS
Recurring Actions
AppStreams

Yomi

K Virtual Guest Management:

In this table, virtual guest management is split into basic and advanced.

SLES ES 7
Traditional
v
Traditional
v
Traditional
v

Traditional. Salt: Profiles
supported, Sync not supported

v

Salt

Salt
N/A

N/A

SLES ES 8

v
Salt
Salt

Salt: Profiles supported, Sync not
supported

Salt
Salt

X

Salt

N/A

Basic virtual guest management includes listing VMs, slow refresh, VM lifecycle actions (start, stop,
resume, pause), and modifying VM vCPU and Memory.

Advanced virtual guest management includes all features of Basic virtual guest management plus fast
refresh, VM lifecycle actions (delete, reset, power off), modifying VM disk, network, graphical display,

and graphical display configuration.

1.5. Supported SLE Micro and openSUSE MicroOS Client Features

Support for SLE Micro and openSUSE MicroOS clients is provided as a
technology preview for testing purposes, and not all features are fully functional
at this stage. This feature is expected to be fully supported in a later version of
Uyuni. Do not use this feature on production systems.

The operating system you run on a client is supported by the organization that
supplies the operating system. SLE Micro is supported by SUSE.
openSUSE MicroOS is supported by the SUSE community.

The icons in this table indicate:

* « the feature is available on both Salt and traditional clients

* X the feature is not available

Table 5. Supported Featur

? the feature is under consideration, and may or may not be made available at a later date
Traditional the feature is supported only on traditional clients

Salt the feature is supported only on Salt clients.

'es on SLE Micro and openSUSE MicroOS Operating Systems

Feature SLE Micro openSUSE MicroOS
Client Salt Salt
Operating system packages Salt Salt
Registration Salt Salt
Install packages Salt Salt
Apply patches (requires CVE ID) Salt Salt
Remote commands Salt Salt
System package states Salt Salt
System custom states Salt Salt
Group custom states Salt Salt
Organization custom states Salt Salt
System set manager (SSM) Salt Salt
Product migration ? Salt
Basic Virtual Guest Management 2 Salt

X

Feature SLE Micro openSUSE MicroOS

Advanced Virtual Guest ? Salt
Management *

Virtual Guest Installation X Salt
(Kickstart), as Host OS

Virtual Guest Installation (image ~ ? Salt

template), as Host OS

System deployment ? Salt
(PXE/Kickstart)
System redeployment (Kickstart) X Salt
Contact methods Salt: ZeroMQ Salt: ZeroMQ
Works with Uyuni Proxy Salt Salt
Action chains ? ?
Staging (pre-download of ? ?
packages)
Duplicate package reporting Salt Salt
CVE auditing (requires CVE ID) Salt Salt
SCAP auditing ? ?
Package verification ? ?
Package locking Salt Salt
System locking ? ?
Maintenance Windows ? ?
System snapshot X X
Configuration file management Salt Salt
Snapshots and profiles Salt: Profiles supported, Sync not Salt: Profiles supported, Sync not
supported supported
Power management Salt Salt
Monitoring Salt Salt
Docker buildhost X X
Build Docker image with OS X X

Kiwi buildhost X X

Feature SLE Micro openSUSE MicroOS

Build Kiwi image with OS Salt Salt
Recurring Actions Salt Salt
AppStreams N/A N/A
Yomi ? ?

K Virtual Guest Management:
In this table, virtual guest management is split into basic and advanced.

Basic virtual guest management includes listing VMs, slow refresh, VM lifecycle actions (start, stop,
resume, pause), and modifying VM vCPU and Memory.

Advanced virtual guest management includes all features of Basic virtual guest management plus fast
refresh, VM lifecycle actions (delete, reset, power off), modifying VM disk, network, graphical display,
and graphical display configuration.

1.6. Supported Alibaba Cloud Linux Features

This table lists the availability of various features on Alibaba Cloud Linux clients.

supplies the operating system. Alibaba Cloud Linux is supported by Alibaba

o The operating system you run on a client is supported by the organization that
Cloud.

The icons in this table indicate:

* «/ the feature is available on both Salt and traditional clients

* X the feature is not available

* ? the feature is under consideration, and may or may not be made available at a later date
* Traditional the feature is supported only on traditional clients

* Salt the feature is supported only on Salt clients

Table 6. Supported Features on Alibaba Cloud Linux Operating Systems

Feature Alibaba Cloud Linux 2
Client Salt
Operating system packages Salt

Registration Salt

Feature Alibaba Cloud Linux 2

Install packages Salt
Apply patches (requires CVE ID) Salt
Remote commands Salt
System package states Salt
System custom states Salt
Group custom states Salt
Organization custom states Salt
System set manager (SSM) Salt
Product migration N/A
Basic Virtual Guest Management Xk ?

Advanced Virtual Guest Management 3K ?

Virtual Guest Installation (Kickstart), as Host OS

X
Virtual Guest Installation (image template), as Host ?

oS

System deployment (PXE/Kickstart) ?
System redeployment (Kickstart) ?
Contact methods Salt: ZeroMQ, Salt-SSH
Works with Uyuni Proxy Salt
Action chains Salt
Staging (pre-download of packages) Salt
Duplicate package reporting Salt
CVE auditing (requires CVE ID) Salt
SCAP auditing Salt
Package verification X

Package locking X
System locking b4
v

Maintenance Windows

Feature Alibaba Cloud Linux 2

System snapshot X
Configuration file management Salt
Snapshots and profiles Salt: Profiles supported, Sync not supported
Power management ?
Monitoring Salt
Docker buildhost Salt
Build Docker image with OS Salt
Kiwi buildhost Salt
Build Kiwi image with OS Salt
Recurring Actions Salt
AppStreams N/A
Yomi N/A

K Virtual Guest Management:
In this table, virtual guest management is split into basic and advanced.

Basic virtual guest management includes listing VMs, slow refresh, VM lifecycle actions (start, stop,
resume, pause), and modifying VM vCPU and Memory.

Advanced virtual guest management includes all features of Basic virtual guest management plus fast
refresh, VM lifecycle actions (delete, reset, power off), modifying VM disk, network, graphical display,

and graphical display configuration.

3K The traditional stack is available on Alibaba Cloud Linux but it is unsupported.

1.7. Supported AlmaLinux Features

This table lists the availability of various features on AlmaLinux clients.

The operating system you run on a client is supported by the organization that
o supplies the operating system. AlmaLinux is supported by the AlmaLinux
community.

The icons in this table indicate:

* « the feature is available on both Salt and traditional clients

* X the feature is not available

* ? the feature is under consideration, and may or may not be made available at a later date

* Traditional the feature is supported only on traditional clients

Salt the feature is supported only on Salt clients.

Table 7. Supported Features on AlmaLinux Operating Systems

Feature

Client

System packages
Registration

Install packages

Apply patches

Remote commands
System package states
System custom states
Group custom states
Organization custom states
System set manager (SSM)
Product migration

Basic Virtual Guest Management

X

Advanced Virtual Guest
Management 3K

Virtual Guest Installation
(Kickstart), as Host OS

Virtual Guest Installation (image
template), as Host OS

System deployment
(PXE/Kickstart)

System redeployment (Kickstart)
Contact methods

Works with Uyuni Proxy

AlmaLinux 9

Salt

(plain AlmaLinux)

AlmaLinux Community

Salt

Salt

Salt

Salt

Salt

Salt

Salt

Salt

Salt

N/A

Salt

Salt

Salt

Salt

Salt

Salt

Salt

: ZeroMQ, Salt-SSH

AlmaLinux 8

Salt

(plain AlmalL.inux)

AlmaLinux Community

Salt

Salt

Salt

Salt

Salt

Salt

Salt

Salt

Salt

N/A

Salt

Salt

Salt

Salt

Salt

Salt

Salt

: ZeroMQ, Salt-SSH

Feature
Action chains

Staging (pre-download of
packages)

Duplicate package reporting
CVE auditing

SCAP auditing

Package verification

X

X

v

X

Salt

Salt: Profiles supported, Sync not
supported

Salt
Salt

X

Salt

v

% Virtual Guest Management:

In this table, virtual guest management is split into basic and advanced.

AlmaLinux 9

Salt

Salt

Salt

Salt

Salt

X ¢ X X X

Salt

Salt: Profiles supported, Sync not
supported

Salt
Salt

X

Salt

AlmaLinux 8
Salt

Salt

Salt

Salt

Salt

Package locking

System locking

Maintenance Windows

System snapshot
Configuration file management
Snapshots and profiles

Power management

Monitoring

Docker buildhost

Build Docker image with OS
Kiwi buildhost

Build Kiwi image with OS
Recurring Actions
AppStreams

Yomi

Basic virtual guest management includes listing VMs, slow refresh, VM lifecycle actions (start, stop,

resume, pause), and modifying VM vCPU and Memory.

Advanced virtual guest management includes all features of Basic virtual guest management plus fast

refresh, VM lifecycle actions (delete, reset, power off), modifying VM disk, network, graphical display,

and graphical display configuration.

1.8. Supported Amazon Linux Features

This table lists the availability of various features on Amazon Linux clients.

The icons in this table indicate:

The operating system you run on a client is supported by the organization that
supplies the operating system. Amazon Linux is supported by Amazon.

* / the feature is available on both Salt and traditional clients

* X the feature is not available

* ? the feature is under consideration, and may or may not be made available at a later date

* Traditional the feature is supported only on traditional clients

e Salt the feature is supported only on Salt clients

Table 8. Supported Features on Amazon Linux Operating Systems

Feature

Client

Operating system packages
Registration

Install packages

Apply patches (requires CVE ID)
Remote commands

System package states

System custom states

Group custom states

Organization custom states

System set manager (SSM)

Product migration

Basic Virtual Guest Management 3K
Advanced Virtual Guest Management k

Virtual Guest Installation (Kickstart), as Host OS

Amazon Linux 2

Salt

Salt

Salt

Salt

Salt

Salt

Salt

Salt

Salt

Salt

Salt

N/A

RN

X

Feature

Virtual Guest Installation (image template), as Host

oS

System deployment (PXE/Kickstart)
System redeployment (Kickstart)
Contact methods

Works with Uyuni Proxy

Action chains

Staging (pre-download of packages)
Duplicate package reporting
CVE auditing (requires CVE ID)
SCAP auditing

Package verification

Package locking

System locking

Maintenance Windows

System snapshot

Configuration file management
Snapshots and profiles

Power management

Monitoring

Docker buildhost

Build Docker image with OS
Kiwi buildhost

Build Kiwi image with OS
Recurring Actions

AppStreams

Yomi

Amazon Linux 2

?

?

Salt: ZeroMQ, Salt-SSH
Salt

Salt

Salt

Salt

Salt

Salt
X
X

b
v
X

Salt

Salt: Profiles supported, Sync not supported

?

Salt
Salt
Salt
Salt
Salt
Salt
N/A

N/A

K Virtual Guest Management:
In this table, virtual guest management is split into basic and advanced.

Basic virtual guest management includes listing VMs, slow refresh, VM lifecycle actions (start, stop,
resume, pause), and modifying VM vCPU and Memory.

Advanced virtual guest management includes all features of Basic virtual guest management plus fast
refresh, VM lifecycle actions (delete, reset, power off), modifying VM disk, network, graphical display,
and graphical display configuration.

3K The traditional stack is available on Amazon Linux but it is unsupported.

1.9. Supported CentOS Features

This table lists the availability of various features on CentOS clients.

The operating system you run on a client is supported by the organization that
supplies the operating system. CentOS is supported by the CentOS community.

The icons in this table indicate:

* V/ the feature is available on both Salt and traditional clients

* X the feature is not available

* ? the feature is under consideration, and may or may not be made available at a later date
* Traditional the feature is supported only on traditional clients

* Salt the feature is supported only on Salt clients.

Table 9. Supported Features on CentOS Operating Systems

Feature CentOS 7

Client v (plain CentOS)

System packages CentOS Community

Registration v

Install packages v

Apply patches (requires CVE ID) V/ (third-party service required for errata)
Remote commands v

System package states Salt

System custom states Salt

Feature CentOS 7

Group custom states Salt
Organization custom states Salt
System set manager (SSM) v
Product migration N/A
Basic Virtual Guest Management 3K v
Advanced Virtual Guest Management 3K Salt

Virtual Guest Installation (Kickstart), as Host OS Traditional

Virtual Guest Installation (image template), as Host +

oS

System deployment (PXE/Kickstart) v

System redeployment (Kickstart) v

Contact methods Traditional: OSAD, RHNSD, SSH-push. Salt:
ZeroMQ, Salt-SSH

Works with Uyuni Proxy

Action chains v

Staging (pre-download of packages) v

Duplicate package reporting v

CVE auditing (requires CVE ID) v

SCAP auditing

Package verification Traditional

Package locking v

System locking Traditional

Maintenance Windows v

System snapshot Traditional

Configuration file management v

Snapshots and profiles Traditional. Salt: Profiles supported, Sync not
supported

Power management v

Feature CentOS 7

Monitoring Salt
Docker buildhost X
Build Docker image with OS X
Kiwi buildhost X
Build Kiwi image with OS X
Recurring Actions Salt
AppStreams N/A
Yomi N/A

%K Virtual Guest Management:
In this table, virtual guest management is split into basic and advanced.

Basic virtual guest management includes listing VMs, slow refresh, VM lifecycle actions (start, stop,
resume, pause), and modifying VM vCPU and Memory.

Advanced virtual guest management includes all features of Basic virtual guest management plus fast
refresh, VM lifecycle actions (delete, reset, power off), modifying VM disk, network, graphical display,
and graphical display configuration.

1.10. Supported Debian Features

This table lists the availability of various features on Debian clients.

The operating system you run on a client is supported by the organization that
supplies the operating system. Debian is supported by the Debian community.

The icons in this table indicate:

* / the feature is available on both Salt and traditional clients

* X the feature is not available

* ? the feature is under consideration, and may or may not be made available at a later date
* Traditional the feature is supported only on traditional clients

e Salt the feature is supported only on Salt clients.

Table 10. Supported Features on Debian Operating Systems

Feature

Client

System packages
Registration

Install packages

Apply patches

Remote commands
System package states
System custom states
Group custom states
Organization custom states
System set manager (SSM)
Product migration

Basic Virtual Guest Management

X

Advanced Virtual Guest
Management 3K

Virtual Guest Installation
(Kickstart), as Host OS

Virtual Guest Installation (image
template), as Host OS

System deployment
(PXE/Kickstart)

System redeployment (Kickstart)
Contact methods

Works with Uyuni Proxy

Action chains

Staging (pre-download of
packages)

Duplicate package reporting

CVE auditing

Debian 10

v

Debian Community
Salt

Salt

?

Salt
Salt
Salt
Salt
Salt
Salt
N/A

Salt

Salt

Salt

X

Salt: ZeroMQ, Salt-SSH
Salt

Salt

Salt

Salt

?

Debian 11

v

Debian Community

Salt

Salt

?

Salt

Salt

Salt

Salt

Salt

Salt

N/A

Salt

Salt

Salt

Salt

Salt

Salt

Salt

Salt

: ZeroMQ, Salt-SSH

Feature

SCAP auditing

Package verification

Package locking

System locking

Maintenance Windows

System snapshot

Configuration file management

Package profiles

Power management
Monitoring

Docker buildhost

Build Docker image with OS
Kiwi buildhost

Build Kiwi image with OS
Recurring Actions
AppStreams

Yomi

K Virtual Guest Management:

In this table, virtual guest management is split into basic and advanced.

Debian 10

X & X & X

Salt

Salt: Profiles supported, Sync not
supported

v

Salt

Salt

Salt

N/A

N/A

Debian 11

X < X & X

Salt

Salt: Profiles supported, Sync not
supported

v

Salt

Salt

Salt

N/A

N/A

Basic virtual guest management includes listing VMs, slow refresh, VM lifecycle actions (start, stop,
resume, pause), and modifying VM vCPU and Memory.

Advanced virtual guest management includes all features of Basic virtual guest management plus fast

refresh, VM lifecycle actions (delete, reset, power off), modifying VM disk, network, graphical display,

and graphical display configuration.

1.11. Supported Oracle Features

This table lists the availability of various features on Oracle Linux clients.

The operating system you run on a client is supported by the organization that
supplies the operating system. Oracle Linux is supported by Oracle.

The icons in this table indicate:

«/ the feature is available on both Salt and traditional clients

* X the feature is not available

? the feature is under consideration, and may or may not be made available at a later date

Traditional the feature is supported only on traditional clients

Salt the feature is supported only on Salt clients

Table 11. Supported Features on Oracle Linux Operating Systems

Feature Oracle Linux 7 Oracle Linux 8 Oracle Linux 9
Client v Salt Salt
Operating system v Salt Salt
packages

Registration v Salt Salt
Install packages v Salt Salt
Apply patches (requires Salt Salt
CVE ID)

Remote commands v Salt Salt
System package states Salt Salt Salt
System custom states Salt Salt Salt
Group custom states Salt Salt Salt
Organization custom Salt Salt Salt
states

System set manager v Salt Salt
(SSM)

Product migration N/A N/A N/A
Basic Virtual Guest v Salt Salt
Management 3K

Advanced Virtual Guest Salt Salt Salt

Management *

Feature

Virtual Guest Installation
(Kickstart), as Host OS

Virtual Guest Installation
(image template), as
Host OS

System deployment
(PXE/Kickstart)

System redeployment
(Kickstart)

Contact methods

Works with Uyuni Proxy
Action chains

Staging (pre-download
of packages)

Duplicate package
reporting

CVE auditing (requires
CVEID)

SCAP auditing
Package verification
Package locking
System locking
Maintenance Windows
System snapshot

Configuration file
management

Snapshots and profiles

Power management

Oracle Linux 7

Traditional

v

v

v

Traditional: OSAD,
RHNSD, SSH-push. Salt:
ZeroMQ, Salt-SSH

v
v

v

v
Traditional
v
Traditional
v
Traditional

v

Traditional. Salt: Profiles
supported, Sync not
supported

v

Oracle Linux 8

X

Salt

Salt

Salt

Salt: ZeroMQ, Salt-SSH

Salt

Salt

Salt

Salt

Salt

Salt

Salt

Salt: Profiles supported,
Sync not supported

Salt

Oracle Linux 9

X

Salt

Salt

Salt

Salt: ZeroMQ, Salt-SSH

Salt

Salt

Salt

Salt

Salt

Salt

Salt

Salt: Profiles supported,
Sync not supported

Salt

Feature Oracle Linux 7 Oracle Linux 8 Oracle Linux 9

Monitoring Salt Salt Salt
Docker buildhost X X X
Build Docker image with X X X
OS

Kiwi buildhost X X X
Build Kiwi image with X X X
oS

Recurring Actions Salt Salt Salt
AppStreams N/A v v
Yomi N/A N/A N/A

K Virtual Guest Management:
In this table, virtual guest management is split into basic and advanced.

Basic virtual guest management includes listing VMs, slow refresh, VM lifecycle actions (start, stop,
resume, pause), and modifying VM vCPU and Memory.

Advanced virtual guest management includes all features of Basic virtual guest management plus fast
refresh, VM lifecycle actions (delete, reset, power off), modifying VM disk, network, graphical display,
and graphical display configuration.

1.12. Supported Red Hat Enterprise Linux Features

This table lists the availability of various features on native Red Hat Enterprise Linux clients (without
Expanded Support).

supplies the operating system. Red Hat Enterprise Linux is supported by Red

o The operating system you run on a client is supported by the organization that
Hat.

The icons in this table indicate:

* «/ the feature is available on both Salt and traditional clients
* X the feature is not available
* ? the feature is under consideration, and may or may not be made available at a later date

* Traditional the feature is supported only on traditional clients

* Salt the feature is supported only on Salt clients.

Table 12. Supported Features on Red Hat Enterprise Linux Operating Systems

Feature RHEL 7 RHEL 8 RHEL 9
Client v Salt Salt
System packages Red Hat Red Hat Red Hat
Registration v Salt Salt
Install packages v Salt Salt
Apply patches v Salt Salt
Remote commands v Salt Salt
System package states Salt Salt Salt
System custom states Salt Salt Salt
Group custom states Salt Salt Salt
Organization custom Salt Salt Salt
states

System set manager Salt Salt Salt
(SSM)

Product migration N/A N/A N/A
Basic Virtual Guest v Salt Salt
Management 3K

Advanced Virtual Guest Salt Salt Salt
Management *

Virtual Guest Installation Traditional X X

(Kickstart), as Host OS

Virtual Guest Installation « Salt Salt

(image template), as

Host OS

System deployment v Salt Salt

(PXE/Kickstart)

System redeployment v Salt Salt

(Kickstart)

Contact methods Traditional: OSAD, Salt: ZeroMQ, Salt-SSH Salt: ZeroMQ, Salt-SSH

RHNSD, SSH-push. Salt:
ZeroMQ, Salt-SSH

Feature

Works with Uyuni Proxy

Action chains

Staging (pre-download
of packages)

Duplicate package
reporting

CVE auditing

SCAP auditing
Package verification
Package locking
System locking
Maintenance Windows
System snapshot

Configuration file
management

Snapshots and profiles

Power management
Monitoring

Docker buildhost

Build Docker image with

oS
Kiwi buildhost

Build Kiwi image with
oS

Recurring Actions
AppStreams

Yomi

RHEL 7

v

v
v
Traditional
v
Traditional
v
Traditional

v

Traditional. Salt: Profiles
supported, Sync not
supported

v
Salt

X
?

X

X

Salt
N/A

N/A

%K Virtual Guest Management:

RHEL 8
Salt
Salt

Salt

Salt

Salt

Salt

Salt

Salt: Profiles supported,
Sync not supported

Salt
Salt

X

Salt

N/A

RHEL 9

Salt

Salt

Salt

Salt

Salt

) X

X & X

Salt: Profiles supported,
Sync not supported

Salt
Salt

X

Salt

N/A

In this table, virtual guest management is split into basic and advanced.

Basic virtual guest management includes listing VMs, slow refresh, VM lifecycle actions (start, stop,
resume, pause), and modifying VM vCPU and Memory.

Advanced virtual guest management includes all features of Basic virtual guest management plus fast
refresh, VM lifecycle actions (delete, reset, power off), modifying VM disk, network, graphical display,
and graphical display configuration.

1.13. Supported Rocky Linux Features

This table lists the availability of various features on Rocky Linux clients.

The operating system you run on a client is supported by the organization that
o supplies the operating system. Rocky Linux is supported by the Rocky Linux

community.

The icons in this table indicate:

* V/ the feature is available on both Salt and traditional clients

* X the feature is not available

* ? the feature is under consideration, and may or may not be made available at a later date
* Traditional the feature is supported only on traditional clients

o Salt the feature is supported only on Salt clients.

Table 13. Supported Features on Rocky Linux Operating Systems

Feature Rocky Linux 8 Rocky Linux 9

Client Salt (plain Rocky Linux) Salt (plain Rocky Linux)
System packages Rocky Linux Community Rocky Linux Community
Registration Salt Salt

Install packages Salt Salt

Apply patches Salt Salt

Remote commands Salt Salt

System package states Salt Salt

System custom states Salt Salt

Group custom states Salt Salt

Organization custom states Salt Salt

Feature Rocky Linux 8 Rocky Linux 9

System set manager (SSM) Salt Salt
Product migration N/A N/A
Basic Virtual Guest Management Salt Salt
*

Advanced Virtual Guest Salt Salt
Management *

Virtual Guest Installation X X

(Kickstart), as Host OS

Virtual Guest Installation (image Salt Salt
template), as Host OS

System deployment Salt Salt

(PXE/Kickstart)

System redeployment (Kickstart) Salt Salt

Contact methods Salt: ZeroMQ, Salt-SSH Salt: ZeroMQ, Salt-SSH

Works with Uyuni Proxy Salt Salt

Action chains Salt Salt

Staging (pre-download of Salt Salt

packages)

Duplicate package reporting Salt Salt

CVE auditing Salt Salt

SCAP auditing Salt Salt

Package verification X X

Package locking ? ?

System locking X X

Maintenance Windows v v

System snapshot X X

Configuration file management Salt Salt

Snapshots and profiles Salt: Profiles supported, Sync not Salt: Profiles supported, Sync not
supported supported

Power management Salt Salt

Feature Rocky Linux 8 Rocky Linux 9

Monitoring Salt Salt
Docker buildhost X X
Build Docker image with OS X X
Kiwi buildhost X X
Build Kiwi image with OS X X
Recurring Actions Salt Salt
AppStreams v v
Yomi N/A N/A

%K Virtual Guest Management:
In this table, virtual guest management is split into basic and advanced.

Basic virtual guest management includes listing VMs, slow refresh, VM lifecycle actions (start, stop,
resume, pause), and modifying VM vCPU and Memory.

Advanced virtual guest management includes all features of Basic virtual guest management plus fast
refresh, VM lifecycle actions (delete, reset, power off), modifying VM disk, network, graphical display,
and graphical display configuration.

1.14. Supported Ubuntu Features

This table lists the availability of various features on Ubuntu clients.

The operating system you run on a client is supported by the organization that
supplies the operating system. Ubuntu is supported by Canonical.

The icons in this table indicate:

* / the feature is available on both Salt and traditional clients

* X the feature is not available

* ? the feature is under consideration, and may or may not be made available at a later date
* Traditional the feature is supported only on traditional clients

e Salt the feature is supported only on Salt clients.

Table 14. Supported Features on Ubuntu Operating Systems

Feature Ubuntu 18.04 Ubuntu 20.04
Client v v
System packages Canonical Canonical
Registration Salt Salt
Install packages Salt Salt
Apply patches v v
Remote commands Salt Salt
System package states Salt Salt
System custom states Salt Salt
Group custom states Salt Salt
Organization custom Salt Salt
states

System set manager Salt Salt
(SSM)

Product migration N/A N/A
Basic Virtual Guest Salt Salt
Management 3K

Advanced Virtual Guest Salt Salt
Management *

Virtual Guest Installation X X
(Kickstart), as Host OS

Virtual Guest Installation Salt Salt
(image template), as

Host OS

System deployment X X
(PXE/Kickstart)

System redeployment X X

(Kickstart)

Contact methods

Works with Uyuni Proxy

Action chains

Salt: ZeroMQ, Salt-SSH Salt: ZeroMQ, Salt-SSH
Salt Salt

Salt Salt

Ubuntu 22.04
v

Canonical

Salt

Salt

v

Salt

Salt

Salt

Salt

Salt

Salt

N/A

Salt

Salt

Salt

Salt: ZeroMQ, Salt-SSH

Salt

Salt

Feature

Staging (pre-download
of packages)

Duplicate package
reporting

CVE auditing
SCAP auditing
Package verification
Package locking
System locking
System snapshot

Configuration file
management

Package profiles

Power management
Monitoring

Docker buildhost

Ubuntu 18.04

Salt

Salt

)

X
v
X
X

Salt

Salt: Profiles supported,
Sync not supported

v
Salt

?

Build Docker image with Salt

oS
Kiwi buildhost

Build Kiwi image with
oS

X

X

XK Virtual Guest Management:

Ubuntu 20.04

Salt

Salt

(N

X X & X

Salt

Salt: Profiles supported,
Sync not supported

v

Salt

Salt

In this table, virtual guest management is split into basic and advanced.

Ubuntu 22.04

Salt

Salt

N

(N

X X < X

Salt

Salt: Profiles supported,
Sync not supported

v

Salt

Salt

Basic virtual guest management includes listing VMs, slow refresh, VM lifecycle actions (start, stop,
resume, pause), and modifying VM vCPU and Memory.

Advanced virtual guest management includes all features of Basic virtual guest management plus fast
refresh, VM lifecycle actions (delete, reset, power off), modifying VM disk, network, graphical display,

and graphical display configuration.

Chapter 2. Configuration Basics

Uyuni requires a number of steps to prepare the environment for clients registration before a wide range
of its operations can be utilized.

This section contains summary of the initial configuration steps that are necessary to support environment
operations following successful Uyuni installation and setting up.

* For more information about installing Uyuni, see Installation-and-upgrade > Install-uyuni.

* For more information about setting up Uyuni, see Installation-and-upgrade > Uyuni-server-setup.

2.1. Software Channels

Channels are a method of grouping software packages. Software packages are provided by repositories,
and repositories are associated with channels. Subscribing a client to a software channel allows the client
to install and update any of the software associated with it.

In Uyuni, channels are divided into base channels and child channels. Organizing channels in this way
ensures that only compatible packages are installed on each system. A client must be subscribed to only
one base channel, assigned during registration based on the client operating system and architecture. For
paid channels provided by a vendor, you must have an associated subscription.

A base channel consists of packages built for a specific operating system type, version, and architecture.
For example, the SUSE Linux Enterprise Server 15 x86-64 base channel contains only software
compatible with that operating system and architecture.

A child channel is associated with a base channel and provides only packages that are compatible with the
base channel. A system can be subscribed to multiple child channels of its base channel. When a system
has been assigned to a base channel, it is only possible for that system to install the related child channels.
For example, if a system has been assigned to the SUSE Linux Enterprise Server 15 X86_64 base
channel, they can only install or update packages made available through the compatible base channel, or
any of its associated child channels.

In the Uyuni Web UI you can browse your available channels by navigating to Software > Channel List »
All. You can modify or create new channels by navigating to Software > Manage > Channels.

For more on using channels, including custom channels, see Administration > Channel-management.

2.1.1. Packages Provided by SUSE Package Hub

SUSE Package Hub is an extension to SUSE Linux Enterprise products that provides additional open
source software provided by the openSUSE community.

The packages in SUSE Package Hub are provided by the openSUSE community.
They are not supported by SUSE.

If you are using SUSE Linux Enterprise operating systems on your clients, you can enable the SUSE
Package Hub extension to access these additional packages. This provides the SUSE Package Hub
channels, which you can subscribe your clients to.

SUSE Package Hub provides a large number of packages, which can take a long time to synchronize and
consume a large amount of disk space. Do not enable SUSE Package Hub unless you require the packages
it provides.

To avoid unintentionally installing or updating unsupported packages, we recommend that you implement
a content lifecycle management strategy that initially denies all SUSE Package Hub packages. You can
then explicitly enable the specific packages you require. For more information about content lifecycle
management, see Administration > Content-lifecycle.

2.1.2. Packages Provided by AppStream

For Red Hat based clients, additional packages are available through AppStream. In most cases, the
AppStream packages are required to ensure that you have all the software you need.

When you are managing AppStream packages in the Uyuni Web Ul, you might notice that you see
contradicting suggestions for package updates. This is due to the Uyuni not being able to interpret the
modular metadata correctly. You can use the content lifecycle management (CLM) AppStream filter to
transform AppStream repositories into non-modular repositories for use with some upgrade operations.
For more information about the CLM AppStream filters, see Administration > Content-lifecycle-
examples.

2.1.3. Packages Provided by EPEL

For Red Hat based clients, additional packages are available through EPEL (extra packages for enterprise
Linux). EPEL is an optional package repository that provides additional software.

The packages in EPEL are provided by the Fedora community. They are not
supported by SUSE.

If you are using Red Hat operating systems on your clients, you can enable the EPEL extension to access
these additional packages. This provides the EPEL channels, which you can subscribe your clients to.

EPEL provides a large number of packages, which can take a long time to synchronize and consume a
large amount of disk space. Do not enable the EPEL repositories unless you require the packages it
provides.

To avoid unintentionally installing or updating unsupported packages, we recommended that you
implement a content lifecycle management (CLM) strategy that initially denies all EPEL packages. You
can then explicitly enable the specific packages you require. For more information about content lifecycle
management, see Administration > Content-lifecycle.

2.1.4. Untified Installer Updates Channels on SUSE Linux Enterprise Clients

This channel is used by the Unified Installer to ensure it is up to date before it installs the operating
system. All SUSE Linux Enterprise products should have access to the installer updates channel during
installation.

For SUSE Linux Enterprise Server clients the installer updates channel is synchronized by default when
you add a product that contains them, and are enabled when you create an autoinstallable distribution with
these product channels.

For all other SUSE Linux Enterprise variants, including SUSE Linux Enterprise for SAP, you must add
the installer updates channel manually. To do this, clone the appropriate SUSE Linux Enterprise Server
installer updates channel below the base channel of these SUSE Linux Enterprise variants. When creating
an autoinstallable distribution for these SUSE Linux Enterprise variants after the channel was cloned, it is
used automatically.

2.1.5. Software Repositories

Repositories are used to collect software packages. When you have access to a software repository, you
can install any of the software that the repository provides. You must have at least one repository
associated with your software channels in Uyuni to assign clients to the channel and install and update
packages on the client.

Most default channels in Uyuni are already associated with the correct repositories. If you are creating
custom channels, you need to associate a repository that you have access to, or that you have created

yourself.

For more information about custom repositories and channels, see Administration > Custom-channels.

2.1.5.1. Local Repository Locations

You can configure local repositories on Salt clients, to provide packages that are not supplied by Uyuni
channels.

In most cases, client systems do not require local repositories. Local repositories
can lead to problems knowing which packages are available on the client. This
can lead to installing unexpected packages.

Local repositories are disabled during onboarding.

For Salt clients, local repositories will be disabled each time a channel state is executed. For example
when applying the highstate or performing a package action.

In case local repositories should stay enabled after onboarding the following pillar should be set for the
affected Salt client:

Edit the /srv/pillar/top.sls file:

base:
'minionid’:
- localrepos

Edit the /srv/pillar/localrepos.sls file:

mgr_disable_local_repos: False

After a client has completed onboarding, you can add local repositories to these locations:

Table 15. Local Repository Locations

Client Operating System Local Repository Directory
SUSE Linux Enterprise Server /etc/zypp/repos.d
openSUSE /etc/zypp/repos.d

SUSE Linux Enterprise Server Expanded Support /etc/ yum.repos. d/

Red Hat Enterprise Linux /etc/yum.repos.d/
CentOS /etc/yum.repos.d/
Ubuntu /etc/apt/sources.list.d/
Debian /etc/apt/sources.list.d/

2.1.6. Software Products

In Uyuni, software is made available in products. Your SUSE subscription allows you to access a range of
different products, which you can browse and select in the Uyuni Web UI by navigating to Admin >
Setup Wizard > Products.

Products contain any number of software channels. Click the Show product’s channels icon to see
the channels included in the product. When you have added a product and synchronized successfully, you
have access to the channels provided by the product, and can use the packages in the product on your
Uyuni Server and clients.

Procedure: Adding Software Channels
1. In the Uyuni Web UlI, navigate to Admin > Setup Wizard > Products.

2. Locate the appropriate products for your client operating system and architecture using the search
bar, and check the appropriate product. This will automatically check all mandatory channels. Also
all recommended channels are checked as long as the include recommended toggle is turned on.
Click the arrow to see the complete list of related products, and ensure that any extra products you
require are checked.

3. Click [Add Product s] and wait until the products have finished synchronizing.

For more information, see Installation-and-upgrade > Setup-wizard.

2.2. Bootstrap Repository

A bootstrap repository contains required packages for registering Salt or traditional clients during
bootstrapping, as well as packages for installing Salt on clients. When products are synchronized,
bootstrap repositories are automatically created and regenerated on the Uyuni Server.

2.2.1. Prepare to Create a Bootstrap Repository

When you select a product for synchronization, the bootstrap repository is automatically created as soon
as all mandatory channels are fully mirrored.

Procedure: Checking Synchronization Progress from the Web Ul

1. In the Uyuni Web UI, navigate to Software > Manage > Channels, then click the channel associated
to the repository.

2. Navigate to the Repositories tab, then click Sync and check Sync Status.

Procedure: Checking Synchronization Progress from the Command Prompt

. At the command prompt on the Uyuni Server, as root, use the tail command to check the
synchronization log file:

tail -f /var/log/rhn/reposync/<channel-label>.1log

2. Each child channel generates its own log during the synchronization progress. You need to check all
the base and child channel log files to be sure that the synchronization is complete.

2.2.2. Options for Automatic Mode

You can change how the automated bootstrap repository creation works. This section details the various
settings.

Flush Mode: :
Flush Mode

By default, existing repositories are updated only with the latest packages. You can configure it to
always start with an empty repository instead. To enable this behavior, add or edit this value in

/etc/rhn/rhn.conf:

server.susemanager.bootstrap_repo_flush = 1

Automatic Mode: :

2.2. Bootstrap Repository

Automatic Mode

By default, automated regeneration of the bootstrap repositories is enabled. To disable it, add or edit
this value in /etc/rhn/rhn.conf:

server.susemanager.auto_generate_bootstrap_repo = 0

2.2.2.1. Configure Bootstrap Data File

The tool uses a data file with information about which packages are required for each distribution. The
data file is stored at /usr/share/susemanager/mgr_bootstrap_data.py. SUSE updates this file
regularly. If you want to makes changes to this file, do not edit it directly. Instead, create a copy in the
same directory and edit your copy:

cd /usr/share/susemanager/
cp mgr_bootstrap_data.py my_data.py

When you have made your changes, configure Uyuni to use the new file. Add or edit this value in

/etc/rhn/rhn.conf:

[server.susemanager .bootstrap_repo_datamodule = my_data

not the new one. You need to keep the new file up to date with changes provided

o On the next update, the new data from SUSE overwrites the original data file,
by SUSE.

2.2.3. Manually Generate a Bootstrap Repository

By default, bootstrap repositories are regenerated daily. You can manually create the bootstrap repository
from the command prompt.

Procedure: Generating the Bootstrap Repository for SUSE Linux Enterprise

1. At the command prompt on the Uyuni Server, as root, list the available distributions to create
bootstrap repositories for:

[mgr-create-bootstrap-repo -1 J

2. Create the bootstrap repository, using the appropriate repository name as the product label:

[mgr-create-bootstrap-repo -c SLE-version-x86_64 J

3. Alternatively, use the number shown next to the distribiution name in the list of available
distributions.

39/219 2.2. Bootstrap Repository | Uyuni 2022.11

The client repository is located in /srv/www/htdocs/pub/repositories/.

If you have mirrored more than one product (for example, SLES and SLES for SAP), or if you use
custom channels, you might need to specify the parent channel to use when creating the bootstrap
repository. This is not required in every situation. For example, some SLES 15 versions have common
code bases, so there is no need to specify a parent channel. Use this procedure only if your environment
requires it.

OPTIONAL Procedure: Specifying a Parent Channel for a Bootstrap Repository

1. Check which parent channels you have available:

mgr-create-bootstrap-repo -c SLE-15-x86_64

Multiple options for parent channel found. Please use option
--with-parent-channel <label> and choose one of:

- sle-product-sles15-pool-x86_64

- sle-product-sles_sap15-pool-x86_64

- sle-product-sled15-pool-x86_64

2. Specify the appropriate parent channel:

mgr-create-bootstrap-repo -c SLE-15-x86_64 --with-parent-channel sle-product-sled15-
pool-x86_64

2.2.3.1. Repositories with Multiple Architectures

If you are creating bootstrap repositories that include multiple different architectures, you need to be
careful that all architectures are updated correctly. For example, the x86-64 and IBM Z architectures for
SLE use the same bootstrap repository URL at
/srv/www/htdocs/pub/repositories/sle/15/2/bootstrap/.

When the flush option is enabled, and you attempt to generate the bootstrap repository for multiple
architectures, only one architecture is generated. To avoid this, use the --no-flush option at the
command prompt when creating additional architectures. For example:

mgr-create-bootstrap-repo -c SLE-15-SP2-x86_64
mgr-create-bootstrap-repo --no-flush -c SLE-15-SP2-s390x

2.2.4. Bootstrap and Custom Channels

If you are using custom channels, you can use the --with-custom-channels option with the mgr -
create-bootstrap-repo command. In this case, you also need to specify the parent channel to use.

Automatic creation of a bootstrap repository might fail if you are using custom channels. In this case, you
need to create the repository manually.

For more information about custom channels, see Administration > Custom-channels.

2.3. Activation Keys

Activation keys are used with traditional and Salt clients to ensure that your clients have the correct
software entitlements, are connecting to the appropriate channels, and are subscribed to the relevant
groups. Each activation key is bound to an organization, which you can set when you create the key.

In Uyuni, an activation key is a group of configuration settings with a label. You can apply all
configuration settings associated with an activation key by adding its label as a parameter to a bootstrap
script. We recommend you use an activation key label in combination with a bootstrap script. When the
bootstrap script is executed all configuration settings associated with the label are applied to the system

the script is run on.

An activation key can specify:

Channel assignment

* System types or add-on entitlements

Contact method

Configuration files

Packages to be installed

* System group assignment

Activation keys are used at the time a client is registered, and not used again. After the client has been
registered, the client can be changed in any way, regardless of what the activation key specifies. The
association between the activation key and the client is recorded only for historical purposes.

w

Configuration
Channels

o

Software
Faclkages

<>

Software
Channels

——

e

Sener Group A

e —
-l
-

T _
L=

=enver Group B

Server Group C

Activation
Key

Procedure: Creating an Activation Key
1. In the Uyuni Web Ul, as an administrator, navigate to Systems > Activation Keys.

2. Click the [Cr eat e Key] button.

3. On the Activation Key Details page, in the Description field, enter a description of the
activation key.

4. In the Key field, enter a name for the activation key. For example, SLEST5-SP4 for SUSE Linux
Enterprise Server 15 SP4.

Do not use commas in the Key field for any SUSE products. However, you
must use commas for Red Hat Products. For more information, see

Reference > Systems.

5. In the Base Channels drop-down box, select the appropriate base software channel, and allow the
relevant child channels to populate. For more information, see reference:admin/setup-wizard.pdf and
Administration > Custom-channels.

6. Select the child channels you need (for example, the mandatory SUSE Manager tools and updates
channels).

7. Check the Add-0n System Types check box if you need to enable any of the options.
8. We recommend you leave the Contact Method set to Default.

9. We recommend you leave the Universal Default setting unchecked.

10. Click [Creat e Activati on Key] to create the activation key.

1. Check the Configuration File Deployment check box to enable configuration management
for this key, and click [Updat e Acti vati on Key] to save this change.

until after you have created the activation key. Ensure you go back and

e The Configuration File Deployment check box does not appear

check the box if you need to enable configuration management.

2.3.1. Combining Multiple Activation Keys

You can combine activation keys when executing the bootstrap script on your traditional clients.
Combining keys allows for more control on what is installed on your systems and reduces duplication of
keys for large or complex environments.

support combined activation keys. If you use a combined key with a Salt client,

e Combining activation keys works only on traditional clients. Salt clients do not
only the first key is used.

You can specify multiple activation keys at the command prompt, or in a single autoinstallation profile.

reference:admin/setup-wizard.pdf#vle.webui.admin.wizard.products

At the command prompt on the Uyuni Server, use the rhnreg_ks command, and separate the key
names with a comma. To specify multiple keys in a Kickstart profile, navigate to Systems >
Autoinstallation and edit the profile you want to use.

Be careful when combining activation keys, as conflicts between some values could cause client
registration to fail. Check that these values do not have conflicting information before you begin:

* Software packages

* Software child channels

* Configuration channels.
If conflicts are detected, they are handled like this:

* Conflicts in base software channels: registration fails.
 Conflicts in system types: registration fails.
* Conflicts in the enable configuration flag: configuration management is enabled.

* If one key is system-specific: registration fails.

2.3.2. Reactivation Keys

Reactivation keys can be used once only to re-register a client and regain all Uyuni settings. Reactivation
keys are client-specific, and include the system ID, history, groups, and channels.

To create a reactivation key, navigate to Systems, click the client to create a reactivation key for, and
navigate to the Details > Reactivation tab. Click [Gener at e New Key] to create the reactivation
key. Record the details of the key for later use. Unlike typical activation keys, which are not associated
with a specific system ID, keys created here do not show up on the Systems > Activation Keys page.

For Salt clients, after you have created a reactivation key, you can use it as the management_key grain
in /etc/salt/minion.d/susemanager.conf. For example:

grains:
susemanager :
management_key: "re-1-daf44db90c0853edbb5db@3f2b37986e"

Restart the Salt-minion process to apply the reactivation key.

You can use a reactivation key with a bootstrap script. For more information about bootstrap scripts, see
Client-configuration > Registration-bootstrap.

For traditional clients, after you have created a reactivation key, you can use it with the rhnreg_ks
command line utility. This command re-registers the client and restore its Uyuni settings. On traditional
clients, you can combine reactivation keys with activation keys to aggregate the settings of multiple keys
for a single system profile. For example:

rhnreg_ks --server=<server-url>/XMLRPC \
--activationkey=<reactivation-key>,<activationkey> \
--force

If you autoinstall a client with its existing Uyuni profile, the profile uses the
reactivation key to re-register the system and restore its settings. Do not
regenerate, delete, or use this key while a profile-based autoinstallation is in
progress. Doing so causes the autoinstallation to fail.

2.3.3. Activation Key Best Practices

Default Parent Channel

Avoid using the SUSE Manager Default parent channel. This setting forces Uyuni to choose a parent
channel that best corresponds to the installed operating system, which can sometimes lead to unexpected
behavior. Instead, we recommend you create activation keys specific to each distribution and architecture.

Bootstrapping with Activation Keys

If you are using bootstrap scripts, consider creating an activation key for each script. This helps you align
channel assignments, package installation, system group memberships, and configuration channel
assignments. You also need less manual interaction with your system after registration.

Bandwidth Requirements

Using activation keys might result in automatic downloading of software at registration time, which might
not be desirable in environments where bandwidth is constrained.

These options create bandwidth usage:

* Assigning a SUSE Product Pool channel results in the automatic installation of the corresponding
product descriptor package.

* Any package in the Packages section is installed.

* Any Salt state from the Configuration section might trigger downloads depending on its
contents.

Key Label Naming

If you do not enter a human-readable name for your activation keys, the system automatically generates a
number string, which can make it difficult to manage your keys.

Consider a naming scheme for your activation keys to help you keep track of them. Creating names which
are associated with your organization’s infrastructure makes it easier for you when performing more
complex operations.

When creating key labels, consider these tips:

* OS naming (mandatory): Keys should always refer to the OS they provide settings for

* Architecture naming (recommended): Unless your company is running on one architecture only, for
example x86_64, then providing labels with an architecture type is a good idea.

* Server type naming: What is this server being used for?
* Location naming: Where is the server located? Room, building, or department?
* Date naming: Maintenance windows, quarter, etc.

e Custom naming: What naming scheme suits your organizations needs?

Example activation key label names:

sles15-sp4-web_server-room_129-x86_64

sles15-sp4-test_packages-blg_502-room_21-ppcbdle

Do not use commas in the Key field for any SUSE products. However, you must
use commas for Red Hat Products. For more information, see Reference >
Systems.

Included Channels

When creating activation keys you also need to keep in mind which software channels are associated with
it. Keys should have a specific base channel assigned to them. Using the default base channel is not
recommended. For more information, see the client operating system you are installing at Client-
configuration > Registration-overview.

2.4. GPG Keys

Clients use GPG keys to check the authenticity of software packages before they are installed. Only
trusted software can be installed on clients.

In most cases, you do not need to adjust the GPG settings to be able to install software on your clients.

RPM packages can be signed directly, while Debian based systems sign only the metadata and use a chain
of checksums to secure the packages. Most RPM based systems use signed metadata in addition to signed
packages.

2.4.1. Trust GPG Keys on Clients

Operating systems either trust their own GPG keys directly or at least ship them installed with the minimal
system. But third party packages signed by a different GPG key need manual handling. The clients can be
successfully bootstrapped without the GPG key being trusted. However, you cannot install new client tool
packages or update them until the keys are trusted.

Salt clients use now GPG key information entered for a software channel to manage the trusted keys.
When a software channel with GPG key information is assigned to a client, the key gets trusted as soon as

the channel is refreshed or the first package gets installed from this channel.

The GPG key URL which is set of a software channel must exist. In case it is a file URL, the GPG key
file must be deployed on the client before the software channel is used.

The GPG keys for the Client Tools Channels of Red Hat based clients are deployed on the client into
/etc/pki/rpm-gpg/ and can be referenced with file URLs. Same is the case with the GPG keys of
Expanded Support clients. Only in case a software channel is assigned to the client they will be imported
and trusted by the system.

Because Debian based systems sign only metadata, there is no need to specify
extra keys for single channels. If a user configures an own GPG key to sign the
metadata as described in "Use Your Own GPG Key" in Administration >
Repo-metadata the deployment and trust of that key is executed automatically.

2.4.1.1. User defined GPG keys

Users can define their own GPG keys to be deployed to the client.

By providing some pillar data and providing the GPG key files in the Salt filesystem, they are
automatically deployed to the client.

These keys are deployed into /etc/pki/rpm-gpg/ on RPM based operating systems and to
/usr/share/keyrings/ on Debian systems:

Define the pillar key [literalcustom_gpgkeys for the client you want to deploy the key to and list the
names of the key file.

cat /srv/pillar/mypillar.sls
custom_gpgkeys:

- my_first_gpg.key

- my_second_gpgkey.gpg

Additionally in the Salt filesystem create a directory named gpg and store there the GPG key files with
the name specified in the custom_gpgkeys pillar data.

1s -la /srv/salt/gpg/
/srv/salt/gpg/my_first_gpg.key
/srv/salt/gpg/my_second_gpgkey.gpg

The keys are now deployed to the client at /etc/pki/rpm-gpg/my_first_gpg.key and
/etc/pki/rpm-gpg/my_second_gpgkey.gpg.

The last step is to add the URL to the GPG key URL field of the software channel. Navigate to Software
> Manage > Channels and select the channel you want to modify. Add to GPG key URL the value
file:///etc/pki/rpm-gpg/my_first_gpg.key

file:///etc/pki/rpm-gpg/my_first_gpg.key
file:///etc/pki/rpm-gpg/my_first_gpg.key
file:///etc/pki/rpm-gpg/my_first_gpg.key
file:///etc/pki/rpm-gpg/my_first_gpg.key
file:///etc/pki/rpm-gpg/my_first_gpg.key
file:///etc/pki/rpm-gpg/my_first_gpg.key
file:///etc/pki/rpm-gpg/my_first_gpg.key
file:///etc/pki/rpm-gpg/my_first_gpg.key
file:///etc/pki/rpm-gpg/my_first_gpg.key

2.4. GPG Keys

2.4.1.2. GPG Keys in Bootstrap Scripts

Procedure: Trusting GPG Keys on Clients Using a Bootstrap Script

1. On the Uyuni Server, at the command prompt, check the contents of the /srv/www/htdocs/pub/
directory. This directory contains all available public keys. Take a note of the key that applies to the
channel assigned to the client you are registering.

2. Open the relevant bootstrap script, locate the 0RG_GPG_KEY= parameter and add the required key.
For example:

(uyuni-gpg-pubkey-0d20833e.key

You do not need to delete any previously stored keys.

Trusting a GPG key is important for security on clients. It is the task of the
admin to decide which keys are needed and can be trusted. Because a software
channel cannot be used when the GPG key is not trusted, the decision of
assigning a channel to a client depends on the decision of trusting the key.

47/219 2.4. GPG Keys | Uyuni 2022.11

Chapter 3. Client Management Methods

There are a number of ways that the Uyuni Server can communicate with clients. Which one you use
depends on the type of client, and your network architecture:

Salt

is the default choice and recommended unless there are specific needs. For more information, see
contact-methods-salt.pdf.

Salt SSH

is useful only if network restrictions make it impossible for clients to establish contact to the server.
This contact method has serious limitations. For more information, see contact-methods-saltssh.pdf.

Traditional

is available for backwards compatibility only. This contact method has serious limitations. It does not
scale as well as Salt.

Newer operating systems are not supported and will not be added in the
future. The traditional contact method is deprecated and will be removed in
the next version. Use it only when a needed feature is still not covered by
Salt. For feature comparison, see Client-configuration > Supported-
features.

For more information, see Client-configuration > Contact-methods-traditional.

3.1. Contact Methods for Salt Clients

The Salt contact method is the default choice and recommended unless there are specific needs. For more
information about Salt in general, see Salt > Salt-overview.

The Salt Contact Method is the best scaling method. All new Uyuni features are supported and it has the
widest variety of supported operating systems. All new operating systems are always supported with this
contact method.

Software updates are generally pushed from the server to the client. Connections are initiated from the
client. This means you must open ports on the server, not on clients. The Salt clients are also known as
Salt minions. Uyuni Server installs a daemon on every client.

If you need to use Salt clients in a disconnected setup you can configure Push via Salt SSH as a contact
method. With this contact method, clients can be located in a firewall-protected zone called a DMZ. For
more information about Push via Salt SSH, see Client-configuration > Contact-methods-saltssh.

3.1.1. Onboarding Details

Salt has its own database to keep the keys for the minions. This needs to be kept in sync with the Uyuni
database. As soon as the key is accepted in Salt, the onboarding process in Uyuni starts. The onboarding

contact-methods-salt.pdf
contact-methods-saltssh.pdf

process will look for existing systems in the Uyuni database by searching for the minion_id and the
machine-1d. If nothing is found, the new system gets created. In case an entry with the minion_id or
the machine-1d is found, that system will be migrated to match the new system. In case there is a match
for both entries, and they are not the same system, the onboarding will be aborted with an error. In this
case the administrator needs to resolve the conflict by removing at least on of the systems.

3.1.2. Push via Salt SSH

Push via Salt SSH is used in environments where Salt clients cannot reach the Uyuni Server directly. In
this environment, clients are located in a firewall-protected zone called a DMZ. No system within the
DMZ is authorized to open a connection to the internal network where the Uyuni Server is located.

Push via Salt SSH is also to use if installing a daemon agent on clients is not possible.

The Push via Salt SSH method has serious limitations. It does not scale well, and
consumes more Server resources and network bandwidth than the plain Salt
method. The Push via Salt SSH method is not at all supported with large setups
(1000 clients and more).

The Push via Salt SSH method creates an encrypted tunnel from the Uyuni Server on the internal network
to the clients located in the DMZ. After all actions such as updates and events are pushed and executed,
the tunnel is closed.

The server uses the Salt SSH to contact the clients at regular intervals, checking in and performing
scheduled actions and events.

This image demonstrates the Push via Salt SSH process path. All items left of the Taskomatic block
represent processes running on the Uyuni client.

&

Web browser

Salt API

Apache httpd

Taskomatic

sshd

ssh-push-default

Apache Tomcat

Database

To use Push via Salt SSH, you must have the SSH daemon running on the client, and reachable by the
salt-api daemon running on the Uyuni Server. Additionally, the required Python version will be
installed with the salt-bundle on the remote system.

Red Hat Enterprise Linux 5, CentOS 5, and earlier are not supported, as they use
unsupported versions of Python.
Procedure: Registering Clients with Push via Salt SSH

1. In the Uyuni Web UlI, navigate to Systems > Bootstrapping and complete the appropriate fields.

2. Select an activation key with the Push via SSH contact method configured. For more information
about activation keys, see Client-configuration > Activation-keys.

3. Check the Manage system completely via SSH checkbox.
4. Click [Boot st rap] to begin registration.

5. Confirm that the system has been registered correctly by navigating to Systems > Overview.

3.1.2.1. Available Parameters

When you are configuring Push via Salt SSH, you can modify parameters that are used when a system is
registered, including the host, activation key, and password. The password is used only for bootstrapping,
it is not saved anywhere. All future SSH sessions are authorized via a key/certificate pair. These
parameters are configured in Systems > Bootstrapping.

You can also configure persistent parameters that are used system-wide, including the sudo user. For more
information on configuring the sudo user, see Client-configuration > Contact-methods-pushssh.

3.1.2.2. Action Execution

The Push via Salt SSH feature uses taskomatic to execute scheduled actions using Salt-ssh. The
taskomatic job periodically checks for scheduled actions and executes them. Unlike Push via SSH on
traditional clients, the Push via Salt SSH feature executes a complete Salt-ssh call based on the
scheduled action.

By default, twenty Salt SSH actions can be executed at a time. You can increase the number of actions
that can be executed in parallel, by adding these lines to your configuration file, and adjusting the value of
parallel_threads upwards. We recommend you keep the number of parallel actions low, to avoid
problems:

taskomatic.com.redhat.rhn.taskomatic.task.SSHMinionActionExecutor.parallel_threads = <number>
org.quartz.threadPool.threadCount = <value of parallel_threads + 20>

This adjusts the number of actions that can run in parallel on any one client and the total number of
worker threads used by taskomatic. If actions needs to be run on multiple clients, actions are always
executed sequentially on each client.

If the clients are connected through a proxy, you need to adjust the MaxSessions settings on the proxy.
In this case, set the number of parallel connections to be three times the total number of clients.

3.1.2.3. Future Features

There are some features that are not yet supported on Push via Salt SSH. These features do not work on
Salt SSH clients:

* OpenSCAP auditing
 Beacons, resulting in:
° Installing a package on a system using Zypper does not invoke the package refresh.
o Virtual Host functions (for example, a host to guests) does not work if the virtual host system is

Salt SSH-based.

For more information about Salt SSH, see Salt > Salt-ssh and https://docs.saltstack.com/en/latest/topics/
ssh/.

3.1.3. Salt Bundle

3.1.3.1. What is Salt Bundle?

The Salt Bundle is a single binary package containing Salt Minion, Python 3, required Python modules,
and libraries.

The Salt Bundle is shipped with Python 3 and all the requirements for Salt to run. Thus Salt Bundle does
not use the Python version install on the client as system software. The Salt Bundle can be installed on
clients that do not meet the requirements for a given Salt version.

It is also possible to use the Salt Bundle on systems that run a Salt Minion connected to a Salt Master
other than the Uyuni Salt Master.

3.1.3.2. Client Registration with Salt Bundle as a Minion

The registration method with the Salt Bundle is the recommended registration method. This section
explains the advantages and limitations of the current implementation. The Salt Bundle is provided as the
venv-salt-minion that consists of Salt, Python 3, and the Python modules Salt depends on.
Bootstrapping with Web Ul is using Salt Bundle as well, so bootstrapping with Web UI is not Python
dependant. Using the Salt Bundle, it is no longer needed that the client provides any Python interpreter or
modules.

If you bootstrap new clients, registration with the Salt Bundle is the default method. You can switch
existing clients to the Salt Bundle method. If you switch, the salt-minion package and its
dependencies will stay installed.

https://docs.saltstack.com/en/latest/topics/ssh/
https://docs.saltstack.com/en/latest/topics/ssh/

3.1.3.2.1. Using the Salt Bundle with the Salt Minion

The Salt Bundle can be used with the Salt Minion managed by the Salt Master other than Uyuni Server at
the same time. If the Salt Bundle is installed on a client Uyuni Server will manage the configuration files
of the Salt Bundle, the configuration files of Salt-minion will not be managed in this case. For more
information, see Salt Bundle configuration.

To bootstrap a client with the Salt Minion managed by the Salt Master other
than Uyuni Server it is recommended to use mgr-bootstrap --force

-bundle when generating the bootstrap script, or to set
FORCE_VENV_SALT_MINION to 1 in the bootstrap script. For bootstrapping
with Web UI mgr_force_venv_salt_minion set to true pillar can be
specified globally. For more information, see Specialized-guides > Salt.

3.1.3.2.2. Switching from Salt Minion to Salt Bundle

The Salt state util.mgr_switch_to_venv_minion is available to switch from salt-minion to
venv-salt-minion. It is recommended to switch to venv-salt-minion in two steps to avoid
trouble with shifting processes:

Procedure: Switching with Ut11.mgr_switch_to_venv_minion swe o venv-salt-minion

1. Apply util.mgr_switch_to_venv_minion with no pillar specified first. This will result in the
switch to venv-salt-minion with copying configuration files etc. It will not clean up the original
salt-minion configurations and its packages.

salt <minion_id> state.apply util.mgr_switch_to_venv_minion

2. Apply util.mgr_switch_to_venv_minion with mgr_purge_non_venv_salt set to True
to remove Salt-minion and with mgr_purge_non_venv_salt_files set to True to remove
all the files related to Salt-minion. This second step ensures the first step was processed, and then
removes the old configuration files and the now obsolete Salt-minion package.

salt <minion_id> state.apply util.mgr_switch_to_venv_minion
pillar="{"mgr_purge_non_venv_salt_files": True, "mgr_purge_non_venv_salt": True}'

In case of running the second step of switching with skipping the first step, state

apply process could fail as it requires stopping the salt-minion which is used
to execute the command on the client side.

On the other hand, it is also possible to avoid installing the Salt Bundle and keep using salt-minion
instead. In this case, specify one of these options:

* Execute Mgr-bootstrap with --no-bundle option.

client-configuration:registration-cli.pdf#_salt_bundle_configuration

* Set AVOID_VENV_SALT_MINION to 1 in the generated bootstrap script.

* For bootstrap state set the mgr_avoid_venv_salt_minion pillar to True.

3.1.3.3. Salt SSH with the Salt Bundle

The Salt Bundle is also used when performing Salt SSH actions to clients.

A shell script deploys the Salt Bundle onto the target system without installing venv-salt-minion
before any Salt command is executed. Since the Salt Bundle contains the whole Salt code base, no salt-
thin is deployed. Salt SSH (including bootstrapping using the Web UI) uses the Python 3 interpreter

within the bundle. The target system does not need to have any other Python interpreter installed.

The Python 3 deployed with the Bundle is used to handle Salt SSH session on the client, so Salt SSH

(including bootstrapping with Web UI) is not dependant on Python installed on the system.

The bootstrap repository must be created before bootstrapping the client with
Web UL Salt SSH is using the Salt Bundle taken from the bootstrap repository
based on the detected target operating system. For more information, see Prepare
to Create a Bootstrap Repository

Salt SSH is using /var/tmp to deploy Salt Bundle to and execute Salt
commands on the client with the bundled Python. Therefore you must not mount
/var/tmp with the noexec option. It is not possible to bootstrap the clients,

which have /var/tmp mounted with noexec option, with the Web UI because
the bootstrap process is using Salt SSH to reach a client.

Using salt-thin can be enabled as a fallback method, but it requires Python 3
to be installed on the client. This method is not recommended nor supported and

exists for development purposes only. Set web.ssh_use_salt_thinto true
in the /etc/rhn/rhn.conf configuration file.

3.1.3.4. Extend Salt Bundle with Python packages using pip

The Salt Bundle includes pip to make it possible to extend the functionality of the bundled Salt Minion

with extra Python packages.

By default, salt <minion_id> pip.install <package-name> installs the Python package

specified by <package_name> into /var/lib/venv-salt-minion/local.

client-configuration:bootstrap-repository.pdf#_prepare_to_create_a_bootstrap_repository
client-configuration:bootstrap-repository.pdf#_prepare_to_create_a_bootstrap_repository

If needed, the path /var/lib/venv-salt-minion/local can be
overridden by setting the VENV_PIP_TARGET environment variable for the
venv-salt-minion.service. It is recommended to use a systemd drop-in
configuration file for the service. It could be done with the configuration file

e /etc/systemd/system/venv-salt-minion.service.d/10-pip-
destination.conf:

[Service]
Environment=VENV_PIP_TARGET=/new/path/local/venv-salt-minion/pip

The Python packages installed through pip are not changing on updating the
Salt Bundle. To ensure that such packages are available and functional after an
update, it is recommended to install them with a Salt state that is applied after
Salt Bundle updates.

3.2. Contact Methods for Traditional Clients

Traditional clients can communicate with the Uyuni Server using a range of methods.

The lightweight Uyuni daemon (rhnsd) runs on traditional client systems. The daemon periodically
connects with Uyuni to check for new updates and notifications.

The rhnsd method has serious limitations. It does not scale as well as Salt.
Newer operating systems are not supported and will not be added in the future.

For more information, see Client-configuration > Contact-methods-rhnsd.

Traditional with OSAD

is the same as traditional but allows the server to push updates to clients. OSAD is an enhancement to

rhnsd OSAD allows traditional clients to execute scheduled actions immediately. It does not apply to
Salt clients.

Traditional SSH Push

is same as traditional but allows the server to push updates to clients, using the SSH protocol as a
transport layer.

Push via SSH is used in environments where clients cannot reach the Uyuni Server directly. In this
environment, clients are located in a firewall-protected zone called a DMZ. No system within the DMZ is
authorized to open a connection to the internal network, including the Uyuni Server.

Traditional SSH Push with Tunnel
The same as SSH Push, but tunnels HTTP/HTTPS traffic (for package download) via SSH.

With SUSE Manager 4.3 release, traditional clients have been deprecated. The
release following SUSE Manager 4.3 will not support traditional clients and
traditional proxies, and it is planned for the year 2023. We encourage all new
deployments to use Salt clients and Salt proxies exclusively, and to migrate
existing traditional clients and proxies to Salt.

+ Be aware that when migrating from traditional clients to Salt minions you do
not have to delete the registered clients before. You can just register them as Salt
minions and Salt will do the necessary steps with the traditional client. If you
already deleted the traditional client and the registration as Salt minion is not
possible anymore, see Administration > Troubleshooting.

3.2.1. SUSE Manager Daemon (rhnsd)

The Uyuni daemon (rhnsd) runs on traditional client systems and periodically connects with Uyuni to
check for new updates and notifications. It does not apply to Salt clients.

3.2.1.1. Start rhnsd

A systemd timer (rhnsd. timer) is used and controlled by rhnsd.service.

By default, rhnsd checks every four hours for new actions. This means it can take some time for clients
to execute scheduled actions.

To check for updates, rhnsd runs the external mgr _check program located in /usr/sbin/. This is a
small application that establishes the network connection to Uyuni. The Uyuni daemon does not listen on

any network ports or talk to the network directly. All network activity is performed by the mgr_check
utility.

This figure provides an overview of the default rhnsd process path. All items left of the Python
XMLRPC server block represent processes running on the Uyuni client.

Web browser

time

XMLRPC

File

system

Apache httpd

» images
» fonts
» RPMs

Python XML RPC Server Apache Tomcat

RHN servlet (Ul)

Database

3.2.1.2. Configure rhnsd

On SUSE Linux Enterprise 12 and later, the default time interval is set
/etc/systemd/system/timers.target.wants/rhnsd.timer, in this section:

[Timer]
OnCalendar=00/4:00
RandomizedDelaySec=30min

You can create an overriding drop-in file for rhnsd. timer using systemctl:
systemctl edit rhnsd.timer
For example, if you want configure a two hour time interval:

[Timer]
OnCalendar=00/2:00

The file is saved as /etc/systemd/system/rhnsd.timer.d/override.conf.

For more information about systemd timers, see the Systemd.timer and systemct1 manpages.

3.2.1.3. OSAD

n

OSAD is an alternative contact method between Uyuni and traditional clients. By default, Uyuni uses

rhnsd, which contacts the server every four hours to execute scheduled actions. OSAD allows traditional

clients to execute scheduled actions immediately.

Use OSAD in addition to rhnsd. If you disable rhnsd your client is shown as
not checking in after 24 hours.

OSAD has several distinct components:

The 0sa-dispatcher service runs on the server, and uses database checks to determine if clients
need to be pinged, or if actions need to be executed.

* The 0sad service runs on the client. It responds to pings from 0sa-dispatcher and runs
mgr_check to execute actions when directed to do so.

* The jabberd service is a daemon that uses the XMPP protocol for communication between the
client and the server. The jabberd service also handles authentication.

* The mgr_check tool runs on the client to execute actions. It is triggered by communication from the
osa-dispatcher service.

The 0sa-dispatcher periodically runs a query to check when clients last showed network activity. If it
finds a client that has not shown activity recently, it uses jabberd to ping all 05ad instances running on
all clients registered with your Uyuni server. The 05ad instances respond to the ping using jabberd,
which is running in the background on the server. When the 0sa-dispatcher receives the response, it

marks the client as online. If the 0Sa-dispatcher fails to receive a response within a certain period of
time, it marks the client as offline.

When you schedule actions on an OSAD-enabled system, the task is carried out immediately. The 0Sa-
dispatcher periodically checks clients for actions that need to be executed. If an outstanding action is
found, it uses jabberd to execute mgr_check on the client, which then executes the action.

OSAD clients use the fully qualified domain name (FQDN) of the server to communicate with the 0Sa-
dispatcher service.

SSL is required for 05Sad communication. If SSL certificates are not available, the daemon on your client
systems fails to connect. Make sure your firewall rules are set to allow the required ports. For more
information, see Installation-and-upgrade > Ports.

Procedure: Enabling OSAD

1. At the command prompt on the Uyuni Server, as root, start the 05a-dispatcher service:

systemctl start osa-dispatcher

2. On each client, install the mgr-0sad package from the ToOlS child channel. The mgr-osad
package should be installed on clients only. If you install the mgr-0sad package on your Uyuni
Server, it conflicts with the 0sa-dispatcher package.

3. On each client, as root, start the 0Sad service:

systemctl start osad

Because 0sad and 0sa-dispatcher are run as services, you can use standard commands to
manage them, including stop, restart, and status.

Each OSAD component is configured using local configuration files. We recommend you keep the default
configuration parameters for all OSAD components.

Component Location Path to Configuration File

osa-dispatcher Server /etc/rhn/rhn.conf Section:
0SA configuration

osad Client /etc/sysconfig/rhn/osad.
conf

o0sad log file Client /var/log/osad

jabberd log file Both /var/log/messages

Troubleshooting OSAD

If your OSAD clients cannot connect to the server, or if the jabberd service takes a lot of time
responding to port 5552, it could be because you have exceeded the open file count.

Every client needs one always-open TCP connection to the server, which consumes a single file handler. If
the number of file handlers currently open exceeds the maximum number of files that jabberd is
allowed to use, jabberd queues the requests, and refuses connections.

To resolve this issue, you can increase the file limits for jabberd by editing the
/etc/security/limits.conf configuration file and adding these lines:

jabber soft nofile 5100
jabber hard nofile 6000

Calculate the limits required for your environment by adding 100 to the number of clients for the soft
limit, and 1000 to the current number of clients for the hard limit.

In the example above, we have assumed 500 current clients, so the soft limit is 5100, and the hard limit is
6000.

You also need to update the max_fds parameter in the /etc/jabberd/c2s.xml file with your chosen
hard limit:

<max_fds>6000</max_fds>

3.2.2. Push via SSH

Push via SSH is used in environments where traditional clients cannot reach the Uyuni Server directly. In
this environment, clients are located in a firewall-protected zone called a DMZ. No system within the
DMZ is authorized to open a connection to the internal network, including the Uyuni Server.

The Push via SSH method creates an encrypted tunnel from the Uyuni Server on the internal network to
the clients located on the DMZ. After all actions and events are executed, the tunnel is closed.

The server uses SSH to contact the clients at regular intervals, checking in and performing scheduled
actions and events.

This contact method works for traditional clients only. For Salt clients, use Push via Salt SSH.

Re-installing systems using the provisioning model is not currently supported on
clients managed with push via SSH.

This image demonstrates the push via SSH process path. All items left of the Taskomatic block
represent processes running on the Uyuni client.

&

Web browser

mgr_check Taskomatic Apache httpd

ssh-push-default

Apache Tomcat

Database

For tunneling connections via SSH, two available port numbers are required, one for tunneling HTTP and
the second for tunneling via HTTPS (HTTP is only necessary during the registration process). The port
numbers used by default are 1232 and 1233. To overwrite these, you can add two custom port numbers
greater than 1024 to /etc/rhn/rhn.conf:

ssh_push_port_http = high_port_1
ssh_push_port_https = high_port_2

If you would like your clients to be contacted using their hostnames instead of an IP address, set this

3.2. Contact Methods for Traditional Clients

option:

[ssh_push_use_hostname = true]

It is also possible to adjust the number of threads to use for opening client connections in parallel. By
default two parallel threads are used. Set taskomatic.ssh_push_workers in
/ete/rhn/rhn.conf:

[taskomatic.ssh_push_workers = number J

For security reasons, you might want to use sudo with SSH, to access the system as an unprivileged user
instead of as root.

Procedure: Configuring Unprivileged SSH Access

1. Ensure you have the latest spacewalk-taskomatic and spacewalk-certs-tools packages
installed on the Uyuni Server.

2. On each client system, create an appropriate unprivileged user.

3. On each client system, open the /etc/sudoers file and comment out these lines:

#Defaults targetpw # ask for the password of the target user i.e. root
#ALL ALL=(ALL) ALL # WARNING! Only use this together with 'Defaults targetpw'!

4. On each client system, in the User privilege specification section, add these lines:

<user> ALL=(ALL) NOPASSWD:/usr/sbin/mgr_check
<user> ALL=(ALL) NOPASSWD:/home/<user>/enable.sh
<user> ALL=(ALL) NOPASSWD:/home/<user>/bootstrap.sh

5. On each client system, in the /home/<user>/.bashrc file, add these lines:

PATH=$PATH: /usr/sbin
export PATH

6. On the Uyuni Server, in the /etc/rhn/rhn.conf configuration file, add or amend this line to
include the unprivileged username:

ssh_push_sudo_user = <user>

Because clients are in the DMZ and cannot reach the server, you need to use the mgr-ssh-push-init
tool to register them with the Uyuni Server.

60/219 3.2. Contact Methods for Traditional Clients | Uyuni 2022.11

To use the tool, you need the client hostname or IP address, and the path to a valid bootstrap script on the
Uyuni Server. For more information about bootstrapping, see Client-configuration > Registration-
bootstrap.

The bootstrap script needs to have an activation key associated with it that is configured for Push via
SSH. For more information on activation keys, see Client-configuration > Activation-keys.

Before you begin, you need to ensure that you have specified which ports to use for SSH tunneling. If you
have registered clients before changing the port numbers, they need to be registered again.

Clients that are managed with Push via SSH cannot reach the server directly.
When you use the mgr-ssh-push-init tool, the rhnsd daemon is disabled.

Procedure: Registering Clients with Push via SSH

1. At the command prompt on the Uyuni Server, as root, execute this command:

mgr-ssh-push-init --client <client> --register \
/srv/www/htdocs/pub/bootstrap/bootstrap_script --tunnel

OPTIONAL: You can remove the --tunnel option, if you do not want to use tunneling.

2. OPTIONAL: When you have defined ssh_push_sudo_user, you can allow use of the root
password by adding the --notty option.

3. Verify that the SSH connection is active:

ssh -i /root/.ssh/id_susemanager -R <high_port>:<susemanager>:443 \
<client> zypper ref

Example: API Access to Push via SSH
You can use the API to manage which contact method to use. This example Python code sets the contact
method to Ssh-push.

Valid values are:

* default (pull)
* ssh-push

* ssh-push-tunnel

client = xmlrpclib.Server (SUMA_HOST + "/rpc/api", verbose=0)
key = client.auth.login(SUMA_LOGIN, SUMA_PASSWORD)
client.system.setDetails(key, 1000012345, {'contact_method' : 'ssh-push'})

If you have a client that has already been registered, and you want to migrate it to use Push via SSH,

3.2. Contact Methods for Traditional Clients

some extra steps are required. You can use the mgr-ssh-push-init tool to set up your client.

Procedure: Migrating Registered Systems to Push via SSH

1. At the command prompt on the Uyuni Server, as root, set up the client:

mgr-ssh-push-init --client <client> \
/srv/www/htdocs/pub/bootstrap/bootstrap_script --tunnel

2. Using the Uyuni Web UI, change the client’s contact method to SSh-push or ssh-push-tunnel.

3. OPTIONAL.: If you need to edit an existing activation key, you can do so with this command:

client.activationkey.setDetails(key, '1-mykey', {'contact_method' : 'ssh-push'})

You can also use Push via SSH for clients that connect using a proxy. Ensure your proxy is updated before
you begin.

Procedure: Registering Clients with Push via SSH to a Proxy

1. At the command prompt on the Uyuni Proxy, as root, set up the client:

mgr-ssh-push-init --client <client> \
/srv/www/htdocs/pub/bootstrap/bootstrap_script --tunnel

2. At the command prompt on the Uyuni Server, copy the SSH key to the proxy:

mgr-ssh-push-init --client <proxy>

62/219 3.2. Contact Methods for Traditional Clients | Uyuni 2022.11

Chapter 4. Client Registration

There are several ways to register clients to your Uyuni Server. This section covers the various available
methods. It also contains information specific to the operating system you intend to run on the client.

Before you begin, check that:

* The client has the date and time synchronized correctly with the Uyuni Server before registration.

* You have created an activation key. For more information about creating activation keys, see Client-
configuration > Activation-keys.

Do not register the Uyuni Server to itself. The Uyuni Server must be managed
individually or by using another separate Uyuni Server. For more information

about using multiple servers, see Specialized-guides > Large-deployments.

4.1. Client Registration Methods

There are several ways to register clients to your Uyuni Server.
e For Salt clients, we recommend that you register clients using the Uyuni Web Ul. For more
information, see Client-configuration > Registration-webui.

* If you want more control over the process, have to register many clients, or are registering traditional
clients, we recommend that you create a bootstrap script. For more information, see Client-
configuration > Registration-bootstrap.

* For Salt clients and even more control over the process, executing single commands on the command
line can be useful. For more information, see Client-configuration > Registration-cli.

The client must have the date and time synchronized correctly with the Uyuni Server before registration.

You must create an activation key first, to use bootstrap script or command line method. For more
information about creating activation keys, see Client-configuration > Activation-keys.

Do not register the Uyuni Server to itself. The Uyuni Server must be managed
individually or by using another separate Uyuni Server. For more information

about using multiple servers, see Specialized-guides » Large-deployments.

4.1.1. Register Clients with the Web UI

Registering clients with the Uyuni Web UI works for Salt clients only.

If you are bootstrapping Salt clients using the Web Ul, it is using Specialized-guides > Salt to execute the
bootstrap process on the client. Salt SSH uses the Salt Bundle and its included Python interpreter.
Therefore, no other Python interpreter needs to be installed on the client.

As Salt Bundle is shipped with the bootstrap repository, the repository must be
created before starting the bootstrap process for the client. A shell script detects

o the operating system on the client and deploys the Salt Bundle from the
appropriate bootstrap repository, using the same logic as the bootstrap script. For
more information, see Prepare to Create a Bootstrap Repository.

Do not register the Uyuni Server to itself. The Uyuni Server must be managed
individually or by using another separate Uyuni Server. For more information
about using multiple servers, see Specialized-guides » Large-deployments.

Procedure: Registering Clients with the Web Ul

1

[\

10.

11.

In the Uyuni Web UI, navigate to Systems > Bootstrapping.
In the Host field, type the fully qualified domain name (FQDN) of the client to be bootstrapped.

In the SSH Port field, type the SSH port number to use to connect and bootstrap the client. By
default, the SSH port is 22.

In the User field, type the username to log in to the client. By default, the username is root.

To bootstrap the client with SSH, in the Authentication field, check SSH Private Key, and
upload the SSH private key to use to log in to the client. If your SSH private key requires a
passphrase, type it into the SSH Private Key Passphrase field, or leave it blank for no
passphrase.

To bootstrap the client with a password, in the Authentication field, check Password, and type
the password to log in to the client.

In the Activation Key field, select the activation key that is associated with the software channel
you want to use to bootstrap the client. For more information, see Client-configuration >
Activation-keys.

- OPTIONAL: In the Proxy field, select the proxy to register the client to.

By default, the Disable SSH Strict Key Host Checking checkbox is selected. This allows
the bootstrap process to automatically accept SSH host keys without requiring you to manually
authenticate.

OPTIONAL: Check the Manage System Completely via SSH checkbox. If you check this
option, the client is configured to use SSH for its connection to the server, and no other connection
method is configured.

Click [Boot st r ap] to begin registration.

When the bootstrap process has completed, your client is listed at Systems > System List.

SSH private keys are stored only for the duration of the bootstrapping process.
They are deleted from the Uyuni Server as soon as bootstrapping is complete.

client-configuration:bootstrap-repository.pdf#_prepare_to_create_a_bootstrap_repository

When new packages or updates are installed on the client using Uyuni, any end
user license agreements (EULAs) are automatically accepted. To review a
package EULA, open the package details page in the Web UL

To register and use CentOS 6, Oracle Linux 6, Red Hat Enterprise Linux 6, or
SUSE Linux Enterprise Server with Expanded Support 6 clients, you need to
configure the Uyuni Server to support older types of SSL encryption. For more
information, see Registering Older Clients at Administration >
Troubleshooting.

4.1.1.1. Handling of Locally assigned Repositories

Having repositories assigned directly to clients not served by Uyuni is not a common use case. It can
cause trouble. Therfore bootstrapping via Salt disables all local repositories at the beginning of the
bootstrap process.

Later, during every use of the channel state, for example when executing a Highstate or a package
installation, all locally assigned repositories are disabled again.

All software packages which are used on the clients should come from channels served by Uyuni. For

more information about creating a custom channel, see Custom Channels at Administration >
Custom-channels.

4.1.2. Register Clients with a Bootstrap Script

Registering clients with a bootstrap script gives you control over parameters, and can help if you have to
register a large number of clients at once. This method works for both Salt and traditional clients.

To register clients using a bootstrap script, we recommend you create a template bootstrap script to begin,
which can then be copied and modified. The bootstrap script you create is executed on the client when it
is registered, and ensures all the necessary packages are deployed to the client. There are some parameters
contained in the bootstrap script, which ensure the client system can be assigned to its base channel,
including activation keys and GPG keys.

It is important that you check the repository information carefully, to ensure it matches the base channel
repository. If the repository information does not match exactly, the bootstrap script cannot download the
correct packages.

A bootstrap repository is needed for all clients. It is automatically created and
regenerated on the SUSE Manager Server when products are synchronized. A
0 bootstrap repository includes packages for installing Salt on clients and for
registering Salt or traditional clients. For more information about creating a
bootstrap repository, see Client-configuration > Bootstrap-repository.

GPG Keys and Uyuni Client Tools

The GPG key used by Uyuni Client Tools is not trusted by default. When you
create your bootstrap script, add a path to the file containing the public key
fingerprint with the ORG_GPG_KEY parameter.

openSUSE Leap 15 and SLES 15 and Python 3

openSUSE Leap 15 and SLE 15 use Python 3 by default. Bootstrap scripts based

e on Python 2 must be re-created for openSUSE Leap 15 and SLE 15 systems. If
you register openSUSE Leap 15 or SLE 15 systems using Python 2, the
bootstrap script fails.

4.1.2.1. Create a Bootstrap Script with mgr-bootstrap

The mgr-bootstrap command generates custom bootstrap scripts. A bootstrap script is used by Uyuni
client systems for simplifying their initial registration and configuration.

The arguments --activation-keys and --script, are the only mandatory arguments. On the
Uyuni Server, as root at the command line execute it with the mandatory arguments. Replace

<ACTIVATION_KEYS and <EDITED_NAME> with your values:

mgr-bootstrap --activation-key=<ACTIVATION_KEYS> --script=bootstrap-<EDITED NAME>.sh

The mgr-bootstrap command offers several other options, including the ability to set a specific
hostname, set specific GPG keys, and set the registration method (traditional, salt-minion, or salt-bundle).

For more information, see the Mgr-bootstrap man page, or run mgr-bootstrap --help.

4.1.2.2. Create a Bootstrap Script from Web UI
You can use the Uyuni Web UI to create an editable bootstrap script.

Procedure: Creating a Bootstrap Script
1. In the Uyuni Web Ul, navigate to Admin > Manager Configuration > Bootstrap Script.

2. In the SUSE Manager Configuration - Bootstrap dialog, uncheck the Bootstrap
using Salt checkbox if you are installing a traditional client. For Salt clients, leave it checked.

3. The required fields are pre-populated with values derived from previous installation steps. For details
on each setting, see Reference > Admin.

4. Click [Updat e] to create the script.

5. The bootstrap script is generated and stored on the server in the
/srv/www/htdocs/pub/bootstrap directory. Alternatively, you can access the bootstrap script
over HTTPS. Replace <example.com> with the host name of your Uyuni Server:

https://<example.com>/pub/bootstrap/bootstrap.sh

Do not disable SSL in your bootstrap script. Ensure that Enable SSL is
o checked in the Web UI, or that the setting USING_SSL=1 exists in the bootstrap

script. If you disable SSL, the registration process requires custom SSL
certificates. For more about custom certificates, see Administration > Ssl-certs.

To register and use CentOS 6, Oracle Linux 6, Red Hat Enterprise Linux 6, or
SUSE Linux Enterprise Server with Expanded Support 6 clients, you need to
configure the Uyuni Server to support older types of SSL encryption. For more

information about how to resolve this error, see Registering Older
Clients at Administration > Troubleshooting.

4.1.2.3. Edit a Bootstrap Script

You can copy and modify the template bootstrap script you created to customize it. A minimal
requirement when modifying a bootstrap script for use with Uyuni is the inclusion of an activation key.
Most packages are signed with GPG, so you also need to have trusted GPG keys on your system to install
them.

In this procedure, you need to know the exact name of your activation keys. Navigate to Home >
Overview and, in the Tasks box, click Manage Activation Keys. All keys created for channels are
listed on this page. You must enter the full name of the key you wish to use in the bootstrap script exactly
as presented in the key field. For more information about activation keys, see Client-configuration >
Activation-keys.

Procedure: Modifying a Bootstrap Script
1. On your Uyuni Server, as root at the command line change to the bootstrap directory with:
cd /srv/www/htdocs/pub/bootstrap/

2. Create and rename two copies of the template bootstrap script for use with each of your clients.

cp bootstrap.sh bootstrap-slesl2.sh
cp bootstrap.sh bootstrap-sles15.sh

3. Open bootstrap-sles15.sh for modification. Scroll down until you can see the text shown
below. If exit 7T exists in the file, comment it out by typing a hash or pound sign (#) at the
beginning of the line. This activates the script. Enter the name of the key for this script in the

ACTIVATION_KEYS= field:

echo "Enable this script: comment (with #'s) this block (or, at least just"
echo "the exit below)"

echo

flexit 1

can be edited, but probably correct (unless created during initial install):
NOTE: ACTIVATION_KEYS *must* be used to bootstrap a client machine.
ACTIVATION_KEYS=1-sles15

ORG_GPG_KEY=

4. When you have finished, save the file, and repeat this procedure for the second bootstrap script.

By default, bootstrap script will try to install venv-salt-minion for Salt
clients if it’s available in the bootstrap repository and salt-minion if there is
0 no Salt bundle in the bootstrap repository. It is posible to avoid installing Salt
bundle and keep using salt-minion if you need it for some reason. See
Client-configuration > Contact-methods-saltbundle for details.

4.1.2.4. Connect Clients
When you have finished creating your script, you can use it to register clients.

Procedure: Running the Bootstrap Script

1. On the Uyuni Server, log in as root. At the command prompt, and change to the bootstrap directory:

cd /srv/www/htdocs/pub/bootstrap/

2. Run this command to execute the bootstrap script on the client; replace EXAMPLE . COM with the host
name of your client:

cat bootstrap-sles15.sh | ssh root@EXAMPLE.COM /bin/bash
3. Alternatively, on the client, run this command:

curl -Sks https://server_hostname/pub/bootstrap/bootstrap-sles15.sh | /bin/bash

o To avoid problems, make sure the bootstrap script is executed using bash.

This script downloads the required dependencies located in the repositories directory you created
earlier.

4. When the script has finished running, you can check that your client is registered correctly by
opening the Uyuni Web UI and navigating to Systems > Overview to ensure the new client is listed.

5. If you used the script to register the Salt client, open the Uyuni Web UI and navigate to Salt > Keys

to accept the client key.

When new packages or updates are installed on the client using Uyuni, any end
user license agreements (EULAs) are automatically accepted. To review a
package EULA, open the package detail page in the Web UL

4.1.3. Register on the Command Line (Salt)

4.1.3.1. Manual Salt client registration

In most cases, Salt clients are registered accurately with the default bootstrap methods. However, you can
use Salt to register the client to the Uyuni Server manually by editing the Salt minion file on the client,
and providing the fully qualified domain name (FQDN) of the server. This method uses ports 4505 and
4506 inbound to the server. This method requires no configuration on the Uyuni Server aside from
ensuring that these ports are open.

Registering on the command line is also possible with traditional clients, but it
requires more steps. It is not covered here. Use the bootstrap script procedure to

register traditional clients. For more information, see registration-bootstrap.pdf.

This procedure requires that you have installed the venv-salt-minion (Salt bundle) or the salt-

minion package on the Salt client before registration. Both use configuration files in different locations
and filenames remain the same. The systemd service filename is different.

Bootstrapping this way will only work if you use the Salt-minion being part
of the client tools channels or of an official SUSE distributions.

4.1.3.1.1. Salt Bundle configuration
Salt Bundle (venv-salt-minion)

* /etc/venv-salt-minion/

* /etc/venv-salt-minion/minion

* /etc/venv-salt-minion/minion.d/NAME.conf

* systemd service file: venv-salt-minion.service

For more information about the Salt bundle, see Client-configuration > Contact-methods-saltbundle.

Procedure: Registering Clients with Salt Bundle Configuration File

1. On the Salt client, open the minion configuration file. The configuration file is either located at:

/etc/venv-salt-minion/minion

or:

registration-bootstrap.pdf

4.1. Client Registration Methods

/etc/venv-salt-minion/minion.d/NAME.conf

2. In the file add or edit the FQDN of the Uyuni Server or Proxy, and the activation key if any. Also
add the other configuration parameters listed below.

s N

master: SERVER.EXAMPLE.COM

grains:
susemanager :
activation_key: "<Activation_Key_Name>"

server_id_use_crc: adler32
enable_legacy_startup_events: False
enable_fqdns_grains: False

3. Restart the venv-salt-minion service:

[systemctl restart venv-salt-minion]

4. On the Uyuni Server, accept the new client key; replace <c11ient> with the name of your client:

(salt-key -a '<client>']

4.1.3.1.2. Salt Minion configuration

Salt Minion (salt-minion)
* /etc/salt/
* /ete/salt/minion
* /etc/salt/minion.d/NAME. conf
* systemd service file: Salt-minion.service

Procedure: Registering Clients with Salt Minion Configuration File

1. On the Salt client, open the mini0n configuration file. The configuration file is either located at:

[/etc/salt/minion J
or:
[/etc/salt/minion.d/NAME.conf J

2. In the file add or edit the FQDN of the Uyuni Server or Proxy, and the activation key if any. Also
add the other configuration parameters listed below.

70/219 4.1. Client Registration Methods | Uyuni 2022.11

4.2. SUSE Client Registration

master: SERVER.EXAMPLE.COM

grains:
susemanager :
activation_key: "<Activation_Key_Name>"

server_id_use_crc: adler32
enable_legacy_startup_events: False
enable_fqdns_grains: False

3. Restart the salt-minion service:

systemctl restart salt-minion ’

4. On the Uyuni Server, accept the new client key; replace <c1ient> with the name of your client:

salt-key -a '<client>' ’

For more information about the Salt minion configuration file, see
https://docs.saltstack.com/en/latest/ref/configuration/minion.html.

To register and use CentOS 6, Oracle Linux 6, Red Hat Enterprise Linux 6, or
SUSE Linux Enterprise Server with Expanded Support 6 clients, you need to
configure the Uyuni Server to support older types of SSL encryption. For more
information about how to resolve this error, see Registering Older
(lients at Administration > Troubleshooting.

4.2. SUSE Client Registration

You can register SUSE Linux Enterprise and SUSE Linux Enterprise Server with Expanded Support
clients to your Uyuni Server. The method and details varies depending on the operating system of the
client.

Before you start, ensure that the client has the date and time synchronized correctly with the Uyuni
Server.

You must also have created an activation key. For more information about creating activation keys, see
Client-configuration > Activation-keys.

individually or by using another separate Uyuni Server. For more information

o Do not register a Uyuni Server to itself. The Uyuni Server must be managed
about using multiple servers, see Specialized-guides » Large-deployments.

71/219 4.2. SUSE Client Registration | Uyuni 2022.11

https://docs.saltstack.com/en/latest/ref/configuration/minion.html

4.2.1. Registering SUSE Linux Enterprise Clients

This section contains information about registering clients running these SUSE Linux Enterprise operating

systems:

* SUSE Linux Enterprise Server 15 SP1
» SUSE Linux Enterprise Server 15 SP2
* SUSE Linux Enterprise Server 15 SP3
* SUSE Linux Enterprise Server 15 SP4

Use the instructions in this chapter for preparing all SUSE Linux Enterprise products, including:

SUSE Linux Enterprise Desktop

SUSE Linux Enterprise

SUSE Linux Enterprise Server for SAP

SUSE Linux Enterprise Real Time

You can also use these instructions for older SUSE Linux Enterprise versions and service packs.

4.2.1.1. Add Software Channels

In the following section, descriptions often default to the X86_64 architecture.
Replace it with other architectures if appropriate.

Before you register SUSE Linux Enterprise clients to your Uyuni Server, you need to add the required
software channels, and synchronize them.

The products you need for this procedure are:

Table 16. SLE Products - WebUI

OS Version

SUSE Linux Enterprise Server 12 SP5
SUSE Linux Enterprise Server 15 SP1
SUSE Linux Enterprise Server 15 SP2
SUSE Linux Enterprise Server 15 SP3

SUSE Linux Enterprise Server 15 SP4

Procedure: Adding Software Channels

Product Name

SUSE Linux Enterprise Server 12 SP5 x86_64
SUSE Linux Enterprise Server 15 SP1 x86_64
SUSE Linux Enterprise Server 15 SP2 x86_64
SUSE Linux Enterprise Server 15 SP3 x86_64

SUSE Linux Enterprise Server 15 SP4 x86_64

1. In the Uyuni Web UlI, navigate to Admin > Setup Wizard > Products.

2. Locate the appropriate products for your client operating system and architecture using the search
bar, and check the appropriate product. This will automatically check all mandatory channels. Also
all recommended channels are checked as long as the include recommended toggle is turned on.

Click the arrow to see the complete list of related products, and ensure that any extra products you
require are checked.

3. Click [Add Product s] and wait until the products have finished synchronizing.

Alternatively, you can add channels at the command prompt. The channels you need for this procedure
are:

Table 17. SLE Products - CLI

OS Version Base Channel

SUSE Linux Enterprise Server 12 SP5 sle-product-sles12-sp5-pool-x86_64
SUSE Linux Enterprise Server 15 SP1 sle-product-sles15-sp1-pool-x86_64
SUSE Linux Enterprise Server 15 SP2 sle-product-sles15-sp2-pool-x86_64
SUSE Linux Enterprise Server 15 SP3 sle-product-sles15-sp3-pool-x86_64
SUSE Linux Enterprise Server 15 SP4 sle-product-sles15-sp4-pool-x86_64

To find channel names of older products, at the command prompt on the Uyuni
Server, as root, use the Mgr-sync command:

0 mgr-sync list --help
Then specify the argument you are interested in. For example, channels:

mgr-sync list channels [-c]

Procedure: Adding Software Channels at the Command Prompt

1. At the command prompt on the Uyuni Server, as root, use the Mgr-sync command to add the
appropriate channels:

mgr-sync add channel <channel_label_1>
mgr-sync add channel <channel_label_2>
mgr-sync add channel <channel_label_n>

2. Synchronization starts automatically. If you want to synchronize the channels manually, use:

mgr-sync sync --with-children <channel_name>

4.2. SUSE Client Registration

3. Ensure the synchronization is complete before continuing.

To add the client tools, add these channels from the command prompt:

Table 18. SUSE Linux Enterprise Channels - CLI

OS Version Client Channel

SUSE Linux Enterprise Server 12 SP5 sles12-spS-uyuni-client
SUSE Linux Enterprise Server 15 SP1 sles15-sp1-uyuni-client
SUSE Linux Enterprise Server 15 SP2 sles15-sp2-uyuni-client
SUSE Linux Enterprise Server 15 SP3 sles15-sp3-uyuni-client
SUSE Linux Enterprise Server 15 SP4 sles15-sp4-uyuni-client

Procedure: Adding Software Channels at the Command Prompt

1. At the command prompt on the Uyuni Server, as root, use the Spacewalk-common-channels
command to add the appropriate channels:

spacewalk-common-channels \
<base_channel_label>
<child_channel_label_1> \
<child_channel_label_2> \

. <child_channel_label_n>

2. If automatic synchronization is turned off, synchronize the channels:

spacewalk-repo-sync -p <base_channel_label>

3. Ensure the synchronization is complete before continuing.

4.2.1.2. Check Synchronization Status

Procedure: Checking Synchronization Progress from the Web Ul

1. In the Uyuni Web UI, navigate to Software » Manage > Channels, then click the channel associated
to the repository.

2. Navigate to the Repositories tab, then click Sync and check Sync Status.

Procedure: Checking Synchronization Progress from the Command Prompt

l. At the command prompt on the Uyuni Server, as root, use the tail command to check the
synchronization log file:

tail -f /var/log/rhn/reposync/<channel-label>.1log

74 /219 4.2. SUSE Client Registration | Uyuni 2022.11

administration:custom-channels.pdf#_custom_channel_synchronization

2. Each child channel generates its own log during the synchronization progress. You need to check all
the base and child channel log files to be sure that the synchronization is complete.

SUSE Linux Enterprise channels can be very large. Synchronization can
sometimes take several hours.

4.2.1.3. Manage GPG Keys

Clients use GPG keys to check the authenticity of software packages before they are installed. Only
trusted software can be installed on clients.

Trusting a GPG key is important for security on clients. It is the task of the
administrator to decide which keys are needed and can be trusted. Because a
software channel cannot be used when the GPG key is not trusted, the decision
of assigning a channel to a client depends on the decision of trusting the key.

For more information about GPG keys, see Client-configuration > Gpg-keys.

Use the same GPG key for both SUSE Linux Enterprise Server 15 and SUSE

Linux Enterprise Server 12 clients. The correct key is called sle12-gpg-
pubkey-39db7c82.key.

4.2.1.4. Register Clients

To register your SUSE Linux Enterprise clients, you need a bootstrap repository. By default, bootstrap
repositories are automatically created, and regenerated daily for all synchronized products. You can
manually create the bootstrap repository from the command prompt, using this command:

mgr-create-bootstrap-repo

For more information on registering your clients, see Client-configuration > Registration-overview.

4.2.2. Registering SLE Micro Clients

This section contains information about registering clients running these SLE Micro operating systems:

e SLE Micro 5.1, 5.2, and 5.3 x86-64
e SLE Micro 5.1, 5.2, and 5.3 ARM64
e SLE Micro 5.1, 5.2, and 5.3 IBM Z (s390x)

Support for SLE Micro clients is provided as a technology preview for testing
purposes, and not all features are fully functional at this stage. This feature is
expected to be fully supported in a later version of Uyuni. Do not use this feature
on production systems.

The SLE Micro is an ultra-reliable, lightweight operating system purpose built for edge computing. It
leverages the enterprise hardened security and compliance components of SUSE Linux Enterprise and
merges them with a modern, immutable, developer-friendly OS platform.

The SLE Micro uses transactional updates. Transactional updates are atomic (all updates are applied only
if all updates succeed) and support rollbacks. They do not affect a running system as no changes are
activated until after the system is rebooted. This information is displayed in the Systems > Details >
Overview subtab.

For more information on transactional updates and rebooting, see https://documentation.suse.com/sles/
html/SLES-all/cha-transactional-updates.html.

When you install from a DVD or ISO image, salt-transactional-update
and the dependencies such as Salt and python3 are not installed. These
packages are required to register a SLE Micro client to Uyuni. On the client,
before registering it, run as root:

transactional-update pkg install salt-transactional-update

4.2.2.1. Add Software Channels

Before you register SLE Micro clients to your Uyuni Server, you need to add the required software
channels, and synchronize them.

In the following section, descriptions often default to the X86_64 architecture.
Replace it with other architectures if appropriate.

4.2.2.2. Check Synchronization Status

Procedure: Checking Synchronization Progress from the Web Ul

1. In the Uyuni Web Ul, navigate to Software > Manage > Channels, then click the channel associated
to the repository.

2. Navigate to the Repositories tab, then click Sync and check Sync Status.

Procedure: Checking Synchronization Progress from the Command Prompt

1. At the command prompt on the Uyuni Server, as root, use the tail command to check the
synchronization log file:

https://documentation.suse.com/sles/html/SLES-all/cha-transactional-updates.html
https://documentation.suse.com/sles/html/SLES-all/cha-transactional-updates.html

tail -f /var/log/rhn/reposync/<channel-label>.1log

2. Each child channel generates its own log during the synchronization progress. You need to check all
the base and child channel log files to be sure that the synchronization is complete.

4.2.2.3. Register Clients

For more information on registering your clients, see Client-configuration > Registration-overview.

4.2.3. Registering SUSE Linux Enterprise Server with Expanded Support Clients

This section contains information about registering traditional and Salt clients running SUSE Linux
Enterprise Server with Expanded Support (Expanded Support) operating systems. Expanded Support
clients are based on Red Hat Enterprise Linux or CentOS. They are sometimes also called SLESES, RES
or Red Hat Expanded Support.

The Expanded Support software channels provided by SUSE only provide updates to packages, they do
not provide the packages themselves. To register Expanded Support clients, you need to register the
Expanded Support Product (outlined below) to create the necessary base channel, then import any
required Red Hat or CentOS packages as custom child channels. You must obtain the initial packages
directly from Red Hat or CentOS before you can apply the updates provided by the Expanded Support
software channels.

You are responsible for arranging access to Red Hat or CentOS base media
repositories and installation media.

o SUSE does not provide support for Expanded Support systems on Uyuni.

Traditional clients are not available on Expanded Support 8. Expanded Support 8 clients are only
supported as Salt clients.

4.2.3.1. Add Software Channels

For Expanded Support clients, some required packages are contained on the Red Hat Enterprise Linux or
CentOS installation media. You must have these packages installed before you can register a Expanded
Support client.

The Expanded Support product is provided by SUSE Customer Center. This also includes the client tools
package.

Before you register Expanded Support clients to your Uyuni Server, you need to add the required software
channels, and synchronize them.

You need to select two different sets of channels, one for Expanded Support and the other for the Client
Tools.

You need an activation key associated with the correct Expanded Support channels. For more information
about activation keys, see Client-configuration > Activation-keys.

The channels you need for this procedure are:

Table 19. ES Channels - CLI

OS Version Base Channel Client Channel Tools Channel

Expanded Support 7 rhel-x86_64-server-7 - res7-suse-manager-tools-
x86_64

Expanded Support 8 rhel8-pool-x86_64 - res8-manager-tools-pool-
x86_64

Procedure: Adding Software Channels at the Command Prompt

1. At the command prompt on the Uyuni Server, as root, use the Spacewalk-common-channels
command to add the appropriate channels:

spacewalk-common-channels \
<base_channel_label>
<child_channel_label_1> \
<child_channel_label_2> \

. <child_channel_label_n>

2. If automatic synchronization is turned off, synchronize the channels:
spacewalk-repo-sync -p <base_channel_label>

3. Ensure the synchronization is complete before continuing.

The AppStream repository provides modular packages. This results in the Uyuni

Web UI showing incorrect package information. You cannot perform package

operations such as installing or upgrading directly from modular repositories

using the Web UI or APL

You can use the AppStream filter with content lifecycle management (CLM) to
o transform modular repositories into regular repositories. Make sure to include

python:3.6 using an AppStream filter if you want to use Spacecmd on the
clients.

Alternatively, you can use Salt states to manage modular packages on Salt clients,
or use the dnf command on the client. For more information about CLM, see
Administration > Content-lifecycle.

administration:custom-channels.pdf#_custom_channel_synchronization

4.2.3.1.1. Add Base Media

The base Expanded Support channel does not contain any packages, because SUSE does not provide Red
Hat Enterprise Linux or CentOS base media. You need to obtain base media from Red Hat or CentOS,
which you can add as a child channel to the Expanded Support parent channel. To ensure you have all the
packages you need, use a full DVD image, not a minimal or JeOS image.

You can use Uyuni custom channels to set up the Red Hat Enterprise Linux or CentOS media. All
packages on the base media must be mirrored into a child channel.

You can freely choose the names for the channels.
Procedure: Creating Custom Channels
1. On the Uyuni Server Web Ul, navigate to Software > Manage > Channels.
2. Click [Creat e Channel] and set the appropriate parameters for the channels.
3. In the Parent Channel field, select the appropriate base channel.
4. Click [Creat e Channel].
5. Repeat for all channels you need to create. There should be one custom channel for each custom

repository.

You can check that you have created all the appropriate channels and repositories, by navigating to
Software > Channel List > All

packages from both channels. If you do not add both channels, you cannot create

o For Red Hat 8 clients, add both the Base and AppStream channels. You require
the bootstrap repository, due to missing packages.

If you are using modular channels, you must enable the Python 3.6 module stream on the client. If you do
not provide Python 3.6, the installation of the Spacecmd package will fail.

Procedure: Adding Base Media to Custom Channels

L. On the Uyuni Server, at the command prompt, as root, copy the base media image to the /tmp/
directory.

2. Create a directory to contain the media content. Replace <0S_name> with either Slesesb,
sleses7, or sleses8:

mkdir -p /srv/www/htdocs/pub/<os_name>
3. Mount the image:
mount -o loop /tmp/<iso_filename> /srv/www/htdocs/pub/<os_name>

4. Import the packages into the child channel you created earlier:

spacewalk-repo-sync -c¢ <channel-label> -u
file:///srv/www/htdocs/pub/<os_name>/<repopath>/

OPTIONAL: Add Base Media from a Content URL

Alternatively, if you have access to a content URL provided by Red Hat CDN or CentOS, you can create a
custom repository to mirror the packages.

The details you need for this procedure are:

Table 20. ES Custom Repository Settings

Option Parameter

Repository URL The content URL provided by Red Hat CDN or
CentOS

Has Signed Metadata? Uncheck all Red Hat Enterprise repositories

SSL CA Certificate redhat-uep (Red Hat only)

SSL Client Certificate Entitlement-Cert-date (Red Hat only)

SSL Client Key Entitlement-Key-date (Red Hat only)

Procedure: Creating Custom Repositories
1. On the Uyuni Server Web UI, navigate to Software > Manage > Repositories.
2. Click [Creat e Repository] and set the appropriate parameters for the repository.
3. Click[Creat e Repository].

4. Repeat for all repositories you need to create.

When you have created all the channels, you can associate them with the repositories you created:

Procedure: Associating Channels with Repositories

1. On the Uyuni Server Web UI, navigate to Software > Manage > Channels, and click the channel to
associate.

2. Navigate to the Repositories tab, and check the repository to associate with this channel.
3. Click [Updat e Reposi tori es] to associate the channel and the repository.
4. Repeat for all channels and repositories you need to associate.

5. OPTIONAL: Navigate to the Sync tab to set a recurring schedule for synchronization of this
repository.

6. Click [Sync Nowj to begin synchronization immediately.

4.2.3.2. Check Synchronization Status

Procedure: Checking Synchronization Progress from the Web Ul

1. In the Uyuni Web Ul, navigate to Software > Manage > Channels, then click the channel associated
to the repository.

2. Navigate to the Repositories tab, then click Sync and check Sync Status.

Procedure: Checking Synchronization Progress from the Command Prompt

l. At the command prompt on the Uyuni Server, as root, use the tail command to check the
synchronization log file:

tail -f /var/log/rhn/reposync/<channel-label>.1log

2. Each child channel generates its own log during the synchronization progress. You need to check all
the base and child channel log files to be sure that the synchronization is complete.

The Expanded Support channels can be very large. The initial channel
synchronization can sometimes take up to several hours.

0 When the initial synchronization is complete, we recommended you clone the

channel before you work with it. This gives you a backup of the original
synchronization data.

4.2.3.3. Register Expanded Support Clients

Your Expanded Support clients are now ready to be registered.

For more information on registering your clients, see Client-configuration > Registration-overview.

4.3. openSUSE Client Registration

You can register openSUSE clients to your Uyuni Server. The method and details varies depending on the
operating system of the client.

Before you start, ensure that the client has the date and time synchronized correctly with the Uyuni
Server.

You must also have created an activation key. For more information about creating activation keys, see
Client-configuration > Activation-keys.

Do not register a Uyuni Server to itself. The Uyuni Server must be managed
individually or by using another separate Uyuni Server. For more information

about using multiple servers, see Specialized-guides > Large-deployments.

4.3.1. Registering openSUSE Leap Clients

This section contains information about registering Salt clients running openSUSE operating systems.
Uyuni supports openSUSE Leap 15 clients using Salt. Traditional clients are not supported.

Bootstrapping is supported for starting openSUSE clients and performing initial state runs such as setting
repositories and performing profile updates.

4.3.1.1. Add Software Channels

Before you register openSUSE clients to your Uyuni Server, you need to add the required software
channels, and synchronize them.

The architectures currently supported are: X86_64 and aarch64. For full list of supported products and
architectures, see Client-configuration > Supported-features.

In the following section, descriptions often default to the x86_64 architecture.
Replace it with other architectures if appropriate.

For example, when working with X86_64 architecture, you need this product:

Table 21. OpenSUSE Channels - CLI

OS Version Base Channel Client Channel Updates Non-OSS Non-OSS
Channel Channel Updates
Channel

openSUSE Leap opensuse_leapl opensuse_leapl opensuse_leapl opensuse_leapl opensuse_leapl
15.1 5.1 5_1-uyuni-client 5_1-updates 5_1-non-oss 5_1-non-oss-
updates

openSUSE Leap opensuse_leapl opensuse_leapl opensuse_leapl opensuse_leapl opensuse_leapl
15.2 5.2 5_2-uyuni-client 5_2-updates 5_2-non-oss 5_2-non-oss-
updates

Table 22. OpenSUSE Channels - CLI

OS Versio Base Client Updates Non-OSS Non-OSS Backports SLE
n Channel Channel Channel Channel Updates Updates Updates
Channel Channel Channel

openSUSE opensuse_l opensuse_l opensuse_l opensuse_l opensuse_l opensuse | opensuse_l
Leap 15.3 eapl5_3 eapl5_3- eapl5_3- eapl5_3- eapl5_2- eapl5_3- eapl5_3-
uyuni-client updates non-oss non-o0ss- backports- sle-updates
updates updates

4.3. openSUSE Client Registration

OS Versio Base Client Updates Non-OSS Non-OSS Backports SLE
n Channel Channel Channel Channel Updates Updates Updates
Channel Channel Channel

openSUSE opensuse_l opensuse_l opensuse_l opensuse_| opensuse_| opensuse_l| opensuse_l
Leap 154 eapl5_4 eapl5_4- eapl5_4- eapl5_4- eapl5_4- eapl5_4- eaplS5_4-
uyuni-client updates non-oss non-o0ss- backports- sle-updates
updates updates

Procedure: Adding Software Channels at the Command Prompt

1. At the command prompt on the Uyuni Server, as root, use the spacewalk-common-channels
command to add the appropriate channels:

spacewalk-common-channels \
<base_channel_label>
<child_channel_label 1> \
<child_channel_label_2> \

. <child_channel_label_n>

2. If automatic synchronization is turned off, synchronize the channels:

spacewalk-repo-sync -p <base_channel_label>

3. Ensure the synchronization is complete before continuing.

4.3.1.2. Check Synchronization Status

Procedure: Checking Synchronization Progress from the Web Ul

1. In the Uyuni Web U, navigate to Software > Manage > Channels, then click the channel associated
to the repository.

2. Navigate to the Repositories tab, then click Sync and check Sync Status.

Procedure: Checking Synchronization Progress from the Command Prompt

. At the command prompt on the Uyuni Server, as root, use the tail command to check the
synchronization log file:

‘ tail -f /var/log/rhn/reposync/<channel-1label>.1log

2. Each child channel generates its own log during the synchronization progress. You need to check all
the base and child channel log files to be sure that the synchronization is complete.

openSUSE channels can be very large. Synchronization can sometimes take
several hours.

83/219 4.3. openSUSE Client Registration | Uyuni 2022.11

administration:custom-channels.pdf#_custom_channel_synchronization

4.3.1.3. Manage GPG Keys

Clients use GPG keys to check the authenticity of software packages before they are installed. Only
trusted software can be installed on clients.

Trusting a GPG key is important for security on clients. It is the task of the
administrator to decide which keys are needed and can be trusted. Because a
software channel cannot be used when the GPG key is not trusted, the decision
of assigning a channel to a client depends on the decision of trusting the key.

For more information about GPG keys, see Client-configuration > Gpg-keys.

4.3.1.4. Register Clients

To register your openSUSE clients, you need a bootstrap repository. By default, bootstrap repositories are
automatically created, and regenerated daily for all synchronized products. You can manually create the
bootstrap repository from the command prompt, using this command:

mgr-create-bootstrap-repo

For more information on registering your clients, see Client-configuration > Registration-overview.

4.3.2. Registering openSUSE MicroOS Clients

This section contains information about registering clients running these openSUSE MicroOS operating
systems:

* openSUSE MicroOS

Support for openSUSE MicroOS clients is provided as a technology preview for
testing purposes, and not all features are fully functional at this stage. This
feature is expected to be fully supported in a later version of Uyuni. Do not use
this feature on production systems.

The MicroOS uses transactional updates. Transactional updates are atomic (all updates are applied only if
all updates succeed) and support rollbacks. They do not affect a running system as no changes are
activated until after the system is rebooted. This information is displayed in the Systems > Details >
Overview subtab.

For more information on transactional updates and rebooting, see https://documentation.suse.com/sles/
html/SLES-all/cha-transactional-updates.html.

4.3.2.1. Add Software Channels

Before you register openSUSE MicroOS clients to your Uyuni Server, you need to add the required
software channels, and synchronize them.

https://documentation.suse.com/sles/html/SLES-all/cha-transactional-updates.html
https://documentation.suse.com/sles/html/SLES-all/cha-transactional-updates.html

4.3. openSUSE Client Registration

In the following section, descriptions often default to the X86_64 architecture.
Replace it with other architectures if appropriate.

The channels you need for this procedure are:

Table 23. openSUSE MicroOS Channels - CLI

OS Version Base Channel Client Channel Updates Channel
openSUSE MicroOS opensuse_tumbleweed opensuse_tumbleweed- opensuse_tumbleweed-
non-oss update

Procedure: Adding Software Channels at the Command Prompt

1. At the command prompt on the Uyuni Server, as root, use the Spacewalk-common-channels
command to add the appropriate channels:

spacewalk-common-channels \
<base_channel_label>
<child_channel_label_1> \
<child_channel_label_2> \

. <child_channel_label_n>

2. If automatic synchronization is turned off, synchronize the channels:

spacewalk-repo-sync -p <base_channel_label>

3. Ensure the synchronization is complete before continuing.

4.3.2.2. Check Synchronization Status

Procedure: Checking Synchronization Progress from the Web Ul

1. In the Uyuni Web UI, navigate to Software » Manage > Channels, then click the channel associated
to the repository.

2. Navigate to the Repositories tab, then click Sync and check Sync Status.

Procedure: Checking Synchronization Progress from the Command Prompt

l. At the command prompt on the Uyuni Server, as root, use the tail command to check the
synchronization log file:

tail -f /var/log/rhn/reposync/<channel-label>.1log

2. Each child channel generates its own log during the synchronization progress. You need to check all
the base and child channel log files to be sure that the synchronization is complete.

85/219 4.3. openSUSE Client Registration | Uyuni 2022.11

administration:custom-channels.pdf#_custom_channel_synchronization

4.3. openSUSE Client Registration

openSUSE MicroOS channels can be very large. Synchronization can sometimes
take several hours.
4.3.2.3. Trust Certificates Keys on Clients

openSUSE MicroOS is not yet fully enabled, so there are some manual steps to trust the Uyuni SSL
certificate on MicroOS clients.

Procedure: Installing and Configuring Salt

1. On the client, at the command prompt, as root, retrieve the SSL certificate file from the server:

curl -k https://uyuni-server.hispa-net.com/pub/RHN-ORG-TRUSTED-SSL-CERT -o
/etc/pki/trust/anchors/RHN-ORG-TRUSTED-SSL-CERT

2. Update the certificates on the client:

[update-ca-certificates]

3. Install the required packages:

[transactional-update pkg install salt-minion dmidecode]

4. Reboot the client. If a message is shown indicating that there is a conflict with busybox-
hostname, click [Dei nst al | ati on of busybox-host nane].

5. Create a new file called /etc/salt/minion.d/susemanager-transactional.conf with
this content:

module_executors:
- transactional_update
- direct_call

Your Uyuni Server will not show the true state of the client in the Web UI until after you have rebooted
the client. This feature is expected to be fully supported in a later version of Uyuni.

If Salt is failing to install any software, you could be using an old version of Salt.
Upgrade your Salt packages to the latest version to resolve this problem.

4.3.2.4. Register Clients

For more information on registering your clients, see Client-configuration > Registration-overview.

86/219 4.3. openSUSE Client Registration | Uyuni 2022.11

4.4. Alibaba Cloud Linux Client Registration

You can register Alibaba Cloud Linux clients to your Uyuni Server. The method and details vary
depending on the operating system of the client.

Before you start, ensure that the client has the date and time synchronized correctly with the Uyuni
Server.

You must also have created an activation key. For more information about creating activation keys, see
Client-configuration » Activation-keys.

4.4.1. Registering Alibaba Cloud Linux Clients

This section contains information about registering traditional and Salt clients running Alibaba Cloud
Linux operating systems.

The traditional stack is available on Alibaba Cloud Linux 2 but it is not supported. Alibaba Cloud Linux 2
clients are only supported as Salt clients.

Some Alibaba Cloud Linux 2 instances will need two tries to register
successfully.
4.4.1.1. Add Software Channels

Before you register Alibaba Cloud Linux clients to your Uyuni Server, you need to add the required
software channels, and synchronize them.

In the following section, descriptions often default to the X86_64 architecture.
Replace it with other architectures if appropriate.

The channels you need for this procedure are:
Table 24. Alibaba Cloud Linux Channels - CLI
OS Version Core Channel Updates Channel Client Channel

Alibaba Cloud Linux 2 alibaba-2 alibaba-2-updates alibaba-2-uyuni-client

Procedure: Adding Software Channels at the Command Prompt

1. At the command prompt on the Uyuni Server, as root, use the spacewalk-common-channels
command to add the appropriate channels:

spacewalk-common-channels \
<base_channel_label>
<child_channel_label 1> \
<child_channel_label_2> \

. <child_channel_label_n>

4.4. Alibaba Cloud Linux Client Registration

2. If automatic synchronization is turned off, synchronize the channels:

spacewalk-repo-sync -p <base_channel_label>

3. Ensure the synchronization is complete before continuing.

The client tools channel provided by spacewalk-common-channels is
sourced from Uyuni and not from SUSE.

4.4.1.2. Check Synchronization Status

Procedure: Checking Synchronization Progress from the Web Ul
1. In the Uyuni Web UI, navigate to Software > Manage > Channels, then click the channel associated
to the repository.

2. Navigate to the Repositories tab, then click Sync and check Sync Status.

Procedure: Checking Synchronization Progress from the Command Prompt

1. At the command prompt on the Uyuni Server, as root, use the tail command to check the
synchronization log file:

tail -f /var/log/rhn/reposync/<channel-label>.1log

2. Each child channel generates its own log during the synchronization progress. You need to check all
the base and child channel log files to be sure that the synchronization is complete.

4.4.1.3. Create an Activation Key

You need to create an activation key that is associated with your Alibaba Cloud Linux channels.
For more information on activation keys, see Client-configuration > Activation-keys.

4.4.1.4. Register Clients

Alibaba Cloud Linux clients are registered in the same way as all other clients.

Some Alibaba Cloud Linux 2 instances will fail to register on the first try.

This is due to a to a known bug in the Alibaba Cloud Linux 2 image.

The python-urlgrabber3 package is provided both as a Python pip package and an RPM package,
which can cause a conflict on the first attempt to register.

If your instance is based on one of the affected image versions, the client should register correctly on the
second registration attempt.

887219 4.4. Alibaba Cloud Linux Client Registration | Uyuni 2022.11

administration:custom-channels.pdf#_custom_channel_synchronization

For more information about client registration, see Client-configuration > Registration-overview.

4.5. AlmaLinux Client Registration

You can register AlmaLinux clients to your Uyuni Server. The method and details vary depending on the
operating system of the client.

Before you start, ensure that the client has the date and time synchronized correctly with the Uyuni
Server.

You must also have created an activation key. For more information about creating activation keys, see
Client-configuration » Activation-keys.

4.5.1. Registering AlmaLinux Clients

This section contains information about registering Salt clients running AlmaLinux operating systems.

Traditional clients are not available on AlmaLinux. AlmaLinux clients are only supported as Salt clients.

When created at AWS, AlmaLinux instances always have the same machine-

1d id at /etc/machine-1d. Make sure you regenerate the machine-1id after
the instance is created. For more information, see Administration >
Troubleshooting.

4.5.1.1. Add Software Channels

configuration of enforcing with a targeted policy. You do not need to

o Registering AlmaLinux clients to Uyuni is tested with the default SELinux
disable SELinux to register AlmaLinux clients to Uyuni.

Before you can register AlmaLinux clients to your Uyuni Server, you need to add the required software
channels, and synchronize them.

The architectures currently supported are: X86_64 and aarch64, on version 9 additionally ppc64le and
s390x. For full list of supported products and architectures, see Client-configuration > Supported-
features.

In the following section, descriptions often default to the X86_64 architecture.
Replace it with other architectures if appropriate.

The channels you need for this procedure are:

Table 25. AlmaLinux Channels - CLI

OS Version Base Channel Client Channel AppStream Channel
AlmaLinux 9 almalinux9 almalinux9-uyuni-client almalinux9-appstream

AlmaLinux 8 almalinux8 almalinux8-uyuni-client almalinux8-appstream

Procedure: Adding Software Channels at the Command Prompt

1. At the command prompt on the Uyuni Server, as root, use the spacewalk-common-channels
command to add the appropriate channels. Ensure you specify the correct architecture:

spacewalk-common-channels \
-a <architecture> \
<base_channel_name> \
<child_channel_name_1> \
<child_channel_name_2> \

. <child_channel_name_n>

2. If automatic synchronization is turned off, synchronize the channels:

spacewalk-repo-sync -p <base_channel_label>

3. Ensure the synchronization is complete before continuing.

The client tools channel provided by spacewalk-common-channels is
sourced from Uyuni and not from SUSE.

channels. You require packages from both channels. If you do not add both
channels, you cannot create the bootstrap repository, due to missing packages.

o For AlmaLinux 9 and AlmaLinux 8 clients, add both the Base and AppStream

If you are using modular channels, you must enable the Python 3.6 module stream on the AlmaLinux 8
client. If you do not provide Python 3.6, the installation of the Spacecmd package will fail.

You might notice some disparity in the number of packages available in the
AppStream channel between upstream and the Uyuni channel. You might also
see different numbers if you compare the same channel added at a different
point in time. This is due to the way that AlmalLinux manages their repositories.
AlmaLinux removes older version of packages when a new version is released,
while Uyuni keeps all of them, regardless of age.

administration:custom-channels.pdf#_custom_channel_synchronization

The AppStream repository provides modular packages. This results in the Uyuni
Web UI showing incorrect package information. You cannot perform package
operations such as installing or upgrading directly from modular repositories
using the Web UI or APL

You can use the AppStream filter with content lifecycle management (CLM) to
transform modular repositories into regular repositories. Make sure to include

python:3.6 using an AppStream filter if you want to use Spacecmd on the
clients.

Alternatively, you can use Salt states to manage modular packages on Salt clients,
or use the dNf command on the client. For more information about CLM, see
Administration > Content-lifecycle.

4.5.1.2. Check Synchronization Status

Procedure: Checking Synchronization Progress from the Web Ul

1. In the Uyuni Web UI, navigate to Software > Manage > Channels, then click the channel associated
to the repository.

2. Navigate to the Repositories tab, then click Sync and check Sync Status.

Procedure: Checking Synchronization Progress from the Command Prompt

I. At the command prompt on the Uyuni Server, as root, use the tail command to check the
synchronization log file:

tail -f /var/log/rhn/reposync/<channel-1label>.1log

2. Each child channel generates its own log during the synchronization progress. You need to check all
the base and child channel log files to be sure that the synchronization is complete.

4.5.1.3. Create an Activation Key

You need to create an activation key that is associated with your AlmaLinux channels.

For more information on activation keys, see Client-configuration > Activation-keys.

4.5.1.4. Manage GPG Keys

Clients use GPG keys to check the authenticity of software packages before they are installed. Only
trusted software can be installed on clients.

Trusting a GPG key is important for security on clients. It is the task of the
adminstrator to decide which keys are needed and can be trusted. Because a
software channel cannot be used when the GPG key is not trusted, the decision
of assigning a channel to a client depends on the decision of trusting the key.

For more information about GPG keys, see Client-configuration > Gpg-keys.

4.5.1.5. Register Clients

AlmaLinux clients are registered in the same way as all other clients. For more information, see Client-
configuration > Registration-overview.

4.5.1.6. Manage Errata

When you update AlmaLinux clients, the packages include metadata about the updates.

4.6. Amazon Linux Client Registration

You can register Amazon Linux clients to your Uyuni Server. The method and details vary depending on
the operating system of the client.

Before you start, ensure that the client has the date and time synchronized correctly with the Uyuni
Server.

You must also have created an activation key. For more information about creating activation keys, see
Client-configuration » Activation-keys.

4.6.1. Registering Amazon Linux Clients

This section contains information about registering traditional and Salt clients running Amazon Linux
operating systems.

Traditional clients are not available on Amazon Linux 2. Amazon Linux 2 clients are only supported as
Salt clients.

When created at AWS, Amazon Linux instances always have the same
machine-id id at /etc/machine-id. Make sure you regenerate the
machine-1id after the instance is created. For more information, see
Administration > Troubleshooting.

4.6.1.1. Add Software Channels

Before you register Amazon Linux clients to your Uyuni Server, you need to add the required software
channels, and synchronize them.

The architectures currently supported are: X86_64 and aarch64. For full list of supported products and
architectures, see Client-configuration > Supported-features.

In the following section, descriptions often default to the X86_64 architecture.
Replace it with other architectures if appropriate.

4.6. Amazon Linux Client Registration

The channels you need for this procedure are:

Table 26. Amazon Linux Channels - CLI

OS Version Core Channel Client Channel

Amazon Linux 2 amazonlinux2-core amazonlinux2-uyuni-client

Make sure you also add and sync amazonlinux2-extra-docker channel if
you plan to use Docker at your Amazon Linux instances.

Procedure: Adding Software Channels at the Command Prompt

1. At the command prompt on the Uyuni Server, as root, use the spacewalk-common-channels
command to add the appropriate channels:

spacewalk-common-channels \
<base_channel_label>
<child_channel_label_1> \
<child_channel_label 2> \

. <child_channel_label _n>

2. If automatic synchronization is turned off, synchronize the channels:

spacewalk-repo-sync -p <base_channel_label>

3. Ensure the synchronization is complete before continuing.

The client tools channel provided by spacewalk-common-channels is
sourced from Uyuni and not from SUSE.

4.6.1.2. Check Synchronization Status

Procedure: Checking Synchronization Progress from the Web Ul

1. In the Uyuni Web UI, navigate to Software > Manage > Channels, then click the channel associated
to the repository.

2. Navigate to the Repositories tab, then click Sync and check Sync Status.

Procedure: Checking Synchronization Progress from the Command Prompt

. At the command prompt on the Uyuni Server, as root, use the tail command to check the
synchronization log file:

tail -f /var/log/rhn/reposync/<channel-label>.1log

2. Each child channel generates its own log during the synchronization progress. You need to check all

93/219 4.6. Amazon Linux Client Registration | Uyuni 2022.11

administration:custom-channels.pdf#_custom_channel_synchronization

the base and child channel log files to be sure that the synchronization is complete.

4.6.1.3. Create an Activation Key

You need to create an activation key that is associated with your Amazon Linux channels.

For more information on activation keys, see Client-configuration > Activation-keys.

4.6.1.4. Manage GPG Keys

Clients use GPG keys to check the authenticity of software packages before they are installed. Only
trusted software can be installed on clients.

Trusting a GPG key is important for security on clients. It is the task of the
administrator to decide which keys are needed and can be trusted. Because a
software channel cannot be used when the GPG key is not trusted, the decision
of assigning a channel to a client depends on the decision of trusting the key.

For more information about GPG keys, see Client-configuration > Gpg-keys.

4.6.1.5. Register Clients

Amazon Linux clients are registered in the same way as all other clients. For more information, see
Client-configuration > Registration-overview.

4.7. CentOS Client Registration

You can register CentOS clients to your Uyuni Server. The method and details varies depending on the
operating system of the client.

Before you start, ensure that the client has the date and time synchronized correctly with the Uyuni
Server.

You must also have created an activation key. For more information about creating activation keys, see
Client-configuration > Activation-keys.

4.7.1. Registering CentOS Clients

This section contains information about registering traditional and Salt clients running CentOS operating
systems.

Traditional clients are not available on CentOS 8. CentOS 8 clients are only supported as Salt clients.

4.7. CentOS Client Registration

CentOS clients are based on CentOS and are unrelated to SUSE Linux
Enterprise Server with Expanded Support, RES, Red Hat, or Expanded Support.
You are responsible for arranging access to CentOS base media repositories and
CentOS installation media, as well as connecting Uyuni Server to the CentOS
content delivery network.

Registering CentOS clients to Uyuni is tested with the default SELinux
configuration of enforcing with a targeted policy. You do not need to
disable SELinux to register CentOS clients to Uyuni.

4.7.1.1. Add Software Channels

Before you can register CentOS clients to your Uyuni Server, you need to add the required software
channels, and synchronize them.

The architectures currently supported are: X86_64 and aarch64. For full list of supported products and
architectures, see Client-configuration > Supported-features.

In the following section, descriptions often default to the X86_64 architecture.
Replace it with other architectures if appropriate.

The channels you need for this procedure are:

Table 27. CentOS Channels - CLI

OS Version Base Channel Client Channel Updates/Appstream
Channel
CentOS 7 centos7 centos7-uyuni-client centos7-updates

Procedure: Adding Software Channels at the Command Prompt

1. At the command prompt on the Uyuni Server, as root, use the Spacewalk-common-channels
command to add the appropriate channels. Ensure you specify the correct architecture:

spacewalk-common-channels \
-a <architecture> \
<base_channel_name> \
<child_channel_name_1> \
<child_channel_name_2> \

. <child_channel_name_n>

2. If automatic synchronization is turned off, synchronize the channels:

spacewalk-repo-sync -p <base_channel_label>

95/219 4.7. CentOS Client Registration | Uyuni 2022.11

administration:custom-channels.pdf#_custom_channel_synchronization

3. Ensure the synchronization is complete before continuing.

The client tools channel provided by spacewalk-common-channels is
sourced from Uyuni and not from SUSE.

If you are using modular channels, you must enable the Python 3.6 module stream on the client. If you do

not provide Python 3.6, the installation of the Spacecmd package will fail.

You might notice some disparity in the number of packages available in the
AppStream channel between upstream and the Uyuni channel. You might also
see different numbers if you compare the same channel added at a different
point in time. This is due to the way that CentOS manages their repositories.
CentOS removes older version of packages when a new version is released, while
Uyuni keeps all of them, regardless of age.

The AppStream repository provides modular packages. This results in the Uyuni
Web UI showing incorrect package information. You cannot perform package
operations such as installing or upgrading directly from modular repositories
using the Web UI or APL.

You can use the AppStream filter with content lifecycle management (CLM) to
o transform modular repositories into regular repositories. Make sure to include

python:3.6 using an AppStream filter if you want to use Spacecmd on the
clients.

Alternatively, you can use Salt states to manage modular packages on Salt clients,

or use the dNf command on the client. For more information about CLM, see
Administration > Content-lifecycle.

4.7.1.2. Check Synchronization Status

Procedure: Checking Synchronization Progress from the Web Ul

1. In the Uyuni Web UI, navigate to Software > Manage > Channels, then click the channel associated
to the repository.

2. Navigate to the Repositories tab, then click Sync and check Sync Status.

Procedure: Checking Synchronization Progress from the Command Prompt

I. At the command prompt on the Uyuni Server, as root, use the tail command to check the
synchronization log file:

tail -f /var/log/rhn/reposync/<channel-label>.1log

2. Each child channel generates its own log during the synchronization progress. You need to check all
the base and child channel log files to be sure that the synchronization is complete.

4.7.1.3. Create an Activation Key

You need to create an activation key that is associated with your CentOS channels.

For more information on activation keys, see Client-configuration > Activation-keys.

4.7.1.4. Manage GPG Keys

Clients use GPG keys to check the authenticity of software packages before they are installed. Only
trusted software can be installed on clients.

Trusting a GPG key is important for security on clients. It is the task of the
administrator to decide which keys are needed and can be trusted. Because a
software channel cannot be used when the GPG key is not trusted, the decision
of assigning a channel to a client depends on the decision of trusting the key.

For more information about GPG keys, see Client-configuration > Gpg-keys.

4.7.1.5. Register Clients

CentOS clients are registered in the same way as all other clients. For more information, see Client-
configuration > Registration-overview.

To register and use CentOS 6 clients, you need to configure the Uyuni Server to
support older types of SSL encryption. For more information about how to
resolve this error, see Registering Older Clients at Administration >
Troubleshooting.

4.7.1.6. Manage Errata

When you update CentOS clients, the packages do not include metadata about the updates. You can use a
third-party errata service to obtain this information.

4.7. CentOS Client Registration

The authors of CEFS provide patches or errata on a best-effort basis, in the hope
they are useful but with no guarantees of correctness or currency. This could
mean that the patch dates could be incorrect, and in at least one case, the
published data was shown to be more than a month old. For more information
on these cases, see https://github.com/stevemeier/cefs/issues/28#issuecomment-
656579382 and https://github.com/stevemeier/cefs/issues/28#issuecomment-
656573607.

Any problems or delays with the patch data might result in unreliable patch
information being imported to your Uyuni Server. This would cause reports,
audits, CVE updates, or other patch-related information to also be incorrect.
Please consider alternatives to using this service, such as independently verifying
patch data, or choosing a different operating system, depending on your security-
related requirements and certifications criteria.

Procedure: Installing an Errata Service

1. On the Uyuni Server, from the command prompt, as root, add the sle-module-development-
tools module:

[SUSEConnect --product sle-module-development-tools/15.2/x86_64]

2. Install errata service dependencies:

[zypper in perl-Text-Unidecode]

3. Add or edit this line in /etc/rhn/rhn.conf:

java.allow_adding_patches_via_api = centos7-updates-x86_64,centos7-x86_64,centos7-
extras-x86_64

4. Restart Tomcat:

[systemctl restart tomcat]

5. Create a file for your errata script:

[touch /usr/local/bin/cent-errata.sh]

6. Edit the new file to include this script, editing the repository details as required. This script fetches
the errata details from an external errata service, unpacks it, and publishes the details:

98 /219 4.7. CentOS Client Registration | Uyuni 2022.11

https://github.com/stevemeier/cefs/issues/28#issuecomment-656579382
https://github.com/stevemeier/cefs/issues/28#issuecomment-656579382
https://github.com/stevemeier/cefs/issues/28#issuecomment-656573607
https://github.com/stevemeier/cefs/issues/28#issuecomment-656573607

#!/bin/bash

mkdir -p /usr/local/centos

cd /usr/local/centos

rm *.xml

wget -c http://cefs.steve-meier.de/errata.latest.xml

#fwget -c https://www.redhat.com/security/data/oval/com.redhat.rhsa-all.xml

wget -c https://www.redhat.com/security/data/oval/com.redhat.rhsa-RHEL7.xml.bz2
bzip2 -d com.redhat.rhsa-RHEL7.xml.bz2

wget -c http://cefs.steve-meier.de/errata-import.tar

tar xvf errata-import.tar

chmod +x /usr/local/centos/errata-import.pl

export SPACEWALK_USER='<adminname>';export SPACEWALK_PASS='<password>'
/usr/local/centos/errata-import.pl --server '<servername>' \

--errata /usr/local/centos/errata.latest.xml \
--include-channels=centos7-updates-x86_64,centos7-x86_64,centos7-extras-x86_64 \
--publish --rhsa-oval /usr/local/centos/com.redhat.rhsa-RHEL7.xml

7. Set up a cron job to run the script daily:

1n -s /usr/local/bin/cent-errata.sh /etc/cron.daily

For more information on this tool, see https://cefs.steve-meier.de/.

4.8. Debian Client Registration

You can register Debian clients to your Uyuni Server. The method and details varies depending on the
operating system of the client.

Before you start, ensure that the client has the date and time synchronized correctly with the Uyuni
Server.

You must also have created an activation key. For more information about creating activation keys, see
Client-configuration » Activation-keys.

Do not register the Uyuni Server to itself. The Uyuni Server must be managed
individually.

4.8.1. Registering Debian Clients

This section contains information about registering Salt clients running Debian operating systems.
Debian is supported for Salt clients only. Traditional clients are not supported.

Bootstrapping can be used with Debian clients for performing initial state runs, and for profile updates.

https://cefs.steve-meier.de/

SUSE does not provide support for Debian operating systems. Uyuni allows you

to manage Debian clients, but support is not provided. Using Uyuni to manage
Debian clients is experimental. These instructions have been tested on Debian 10

and Debian 11. Do not rely on Debian clients in a production environment.
4.8.1.1. Prepare to Register

Some preparation is required before you can register Debian clients to the Uyuni Server:

* Ensure DNS is correctly configured and provides an entry for the client. Alternatively, you can
configure the /etc/hosts files on both the Uyuni Server and the client with the appropriate
entries.

* The client must have the date and time synchronized with the Uyuni Server before registration.

4.8.1.2. Add Software Channels

Before you can register Debian clients to your Uyuni Server, you need to add the required software
channels, and synchronize them.

In the following section, descriptions often default to the X86_64 architecture.
Replace it with other architectures if appropriate.

The channels you need for this procedure are:

Table 28. Debian Channels - CLI

OS Version Base Channel Client Channel Updates Channel Security Channel

Debian 10 debian-10-pool- debian-10-amd64- debian-10-amd64- debian-10-amd64-
amd64-uyuni uyuni-client main-updates-uyuni main-security-uyuni

Debian 11 debian-11-pool- debian-11-amd64- debian-11-amd64- debian-11-amd64-
amd64-uyuni uyuni-client main-updates-uyuni main-security-uyuni

Procedure: Adding Software Channels at the Command Prompt

1. At the command prompt on the Uyuni Server, as root, use the Spacewalk-common-channels
command to add the appropriate channels:

spacewalk-common-channels \
<base_channel_label>
<child_channel_label_1> \
<child_channel_label_2> \

. <child_channel_label_n>

2. If automatic synchronization is turned off, synchronize the channels:

administration:custom-channels.pdf#_custom_channel_synchronization

4.8. Debian Client Registration

spacewalk-repo-sync -p <base_channel_label>

3. Ensure the synchronization is complete before continuing.

4.8.1.3. Check Synchronization Status

Procedure: Checking Synchronization Progress from the Web Ul

1. In the Uyuni Web UI, navigate to Software > Manage > Channels, then click the channel associated
to the repository.

2. Navigate to the Repositories tab, then click Sync and check Sync Status.

Procedure: Checking Synchronization Progress from the Command Prompt

l. At the command prompt on the Uyuni Server, as root, use the t3ail command to check the
synchronization log file:

tail -f /var/log/rhn/reposync/<channel-label>.1log

2. Each child channel generates its own log during the synchronization progress. You need to check all
the base and child channel log files to be sure that the synchronization is complete.

Debian channels can be very large. Synchronization can sometimes take several
hours.

4.8.1.4. Manage GPG Keys

Clients use GPG keys to check the authenticity of software packages before they are installed. Only
trusted software can be installed on clients.

Trusting a GPG key is important for security on clients. It is the task of the
administrator to decide which keys are needed and can be trusted. Because a
software channel cannot be used when the GPG key is not trusted, the decision
of assigning a channel to a client depends on the decision of trusting the key.

For more information about GPG keys, see Client-configuration > Gpg-keys.

o Debian clients can require multiple GPG keys to be installed.

4.8.1.5. Root Access

The root user on Debian is disabled by default for SSH access.

To be able to onboard using a regular user, you need to edit the Sudoers file.

101/219 4.8. Debian Client Registration | Uyuni 2022.11

4.9. Oracle Client Registration

Procedure: Granting Root User Access

1. On the client, edit the sudoers file:

sudo visudo

Grant sudo access to the user by adding this line at the end of the sudoers file. Replace <user>
with the name of the user that is bootstrapping the client in the Web UI:

<user> ALL=NOPASSWD: /usr/bin/python, /usr/bin/python2, /usr/bin/python3,
/var/tmp/venv-salt-minion/bin/python

This procedure grants root access without requiring a password, which is
required for registering the client. When the client is successfully installed it runs

0 with root privileges, so the access is no longer required. We recommend that you
remove the line from the sudoers file after the client has been successfully
installed.

4.8.1.6. Register Clients

To register your Debian clients, you need a bootstrap repository. By default, bootstrap repositories are
regenerated daily. You can manually create the bootstrap repository from the command prompt, using this
command:

mgr-create-bootstrap-repo

For Debian 10, select debian10-amd64-uyuni when prompted.

For more information on registering your clients, see Client-configuration > Registration-overview.

4.9. Oracle Client Registration

You can register Oracle Linux clients to your Uyuni Server. The method and details varies depending on
the operating system of the client.

Before you start, ensure that the client has the date and time synchronized correctly with the Uyuni
Server.

You must also have created an activation key. For more information about creating activation keys, see
Client-configuration > Activation-keys.

4.9.1. Registering Oracle Linux Clients

This section contains information about registering traditional and Salt clients running Oracle Linux

102 /219 4.9. Oracle Client Registration | Uyuni 2022.11

operating systems.

Traditional clients are not available on Oracle Linux 9 and 8. Oracle Linux 9 and Oracle Linux 8 clients
are only supported as Salt clients.

4.9.1.1. Add Software Channels

Before you register Oracle Linux clients to your Uyuni Server, you need to add the required software
channels, and synchronize them.

The architectures currently supported are: X86_64 and aarch64. For full list of supported products and
architectures, see Client-configuration > Supported-features.

In the following section, descriptions often default to the X86_64 architecture.
Replace it with other architectures if appropriate.

The channels you need for this procedure are:

Table 29. Oracle Channels - CLI

OS Version Base Channel Client Channel Updates Channel
Oracle Linux 9 oraclelinux9 oraclelinux9-uyuni-client oraclelinux9-appstream
Oracle Linux 8 oraclelinux8 oraclelinux8-uyuni-client oraclelinux8-appstream
Oracle Linux 7 oraclelinux7 oraclelinux7-uyuni-client -

Procedure: Adding Software Channels at the Command Prompt

1. At the command prompt on the Uyuni Server, as root, use the Spacewalk-common-channels
command to add the appropriate channels:

spacewalk-common-channels \
<base_channel_label>
<child_channel_label_1> \
<child_channel_label_2> \

. <child_channel_label_n>

2. If automatic synchronization is turned off, synchronize the channels:

spacewalk-repo-sync -p <base_channel_label>

3. Ensure the synchronization is complete before continuing.

The client tools channel provided by spacewalk-common-channels is
sourced from Uyuni and not from SUSE.

administration:custom-channels.pdf#_custom_channel_synchronization

For Oracle Linux 9 and Oracle Linux 8 clients, add both the Base and

AppStream channels. You require packages from both channels. If you do not
add both channels, you cannot create the bootstrap repository, due to missing
packages.

If you are using modular channels, you must enable the Python 3.6 module stream on the client. If you do
not provide Python 3.6, the installation of the Spacecmd package will fail.

The AppStream repository provides modular packages. This results in the Uyuni
Web UI showing incorrect package information. You cannot perform package
operations such as installing or upgrading directly from modular repositories
using the Web UI or APL

You can use the AppStream filter with content lifecycle management (CLM) to
o transform modular repositories into regular repositories. Make sure to include

python:3.6 using an AppStream filter if you want to use spacecmd on the
clients.

Alternatively, you can use Salt states to manage modular packages on Salt clients,

or use the dnf command on the client. For more information about CLM, see
Administration > Content-lifecycle.

4.9.1.2. Check Synchronization Status

Procedure: Checking Synchronization Progress from the Web Ul

1. In the Uyuni Web UI, navigate to Software > Manage > Channels, then click the channel associated
to the repository.

2. Navigate to the Repositories tab, then click Sync and check Sync Status.

Procedure: Checking Synchronization Progress from the Command Prompt

l. At the command prompt on the Uyuni Server, as root, use the tail command to check the
synchronization log file:

tail -f /var/log/rhn/reposync/<channel-label>.1log

2. Each child channel generates its own log during the synchronization progress. You need to check all
the base and child channel log files to be sure that the synchronization is complete.

4.9.1.3. Create an Activation Key

You need to create an activation key that is associated with your Oracle Linux channels.

For more information on activation keys, see Client-configuration > Activation-keys.

4.9.1.4. Manage GPG Keys

Clients use GPG keys to check the authenticity of software packages before they are installed. Only
trusted software can be installed on clients.

Trusting a GPG key is important for security on clients. It is the task of the
administrator to decide which keys are needed and can be trusted. Because a
software channel cannot be used when the GPG key is not trusted, the decision
of assigning a channel to a client depends on the decision of trusting the key.

For more information about GPG keys, see Client-configuration > Gpg-keys.

For Oracle Linux 9 and Oracle Linux 8 clients use

018-gpg-pubkey-82562EA9ADI86DA3 . key ’

0 For Oracle Linux 7 clients use

0167-gpg-pubkey-72F97B74EC551FQA3 . key ’

4.9.1.5. Register Clients

Oracle Linux clients are registered in the same way as all other clients. For more information, see Client-
configuration > Registration-overview.

4.10. Red Hat Client Registration

You can register Red Hat Enterprise Linux clients to your Uyuni Server using either the Red Hat content
delivery network (CDN), or Red Hat update infrastructure (RHUI). The method and details varies
depending on the operating system of the client.

Before you start, ensure that the client has the date and time synchronized correctly with the Uyuni
Server.

You must also have created an activation key. For more information about creating activation keys, see
Client-configuration > Activation-keys.

4.10.1. Registering Red Hat Enterprise Linux Clients with CDN

If you are running Red Hat Enterprise Linux clients directly, rather than using SUSE Linux Enterprise
Server with Expanded Support, you need to use Red Hat sources to retrieve and update packages. This
section contains information about using the Red Hat content delivery network (CDN) to register
traditional and Salt clients running Red Hat Enterprise Linux operating systems.

Traditional clients are available on Red Hat Enterprise Linux 7 only. Red Hat Enterprise Linux 8 and Red

Hat Enterprise Linux 9 clients are supported as Salt clients.

For information about using Red Hat update infrastructure (RHUI) instead, see Client-configuration >
Clients-rh-rhui.

Red Hat Enterprise Linux clients are based on Red Hat and are unrelated to
SUSE Linux Enterprise Server with Expanded Support, RES, or SUSE Linux
Enterprise Server. You are responsible for arranging access to Red Hat base

o media repositories and RHEL installation media, as well as connecting Uyuni
Server to the Red Hat content delivery network. You must obtain support from
Red Hat for all your RHEL systems. If you do not do this, you might be violating
your terms with Red Hat.

4.10.1.1. Import Entitlements and Certificates

Red Hat clients require a Red Hat certificate authority (CA) and entitlement certificate, and an entitlement
key.

Entitlement certificates are embedded with expiration dates, which match the length of the support
subscription. To avoid disruption, you need to repeat this process at the end of every support subscription
period.

Red Hat supplies a subscription manager tool to manage subscription assignments. It runs locally to track
installed products and subscriptions. Clients must be registered with the subscription manager to obtain
certificates.

Red Hat clients use a URL to replicate repositories. The URL changes depending on where the Red Hat
client is registered.

Red Hat clients can be registered in three different ways:

* Red Hat content delivery network (CDN) at redhat.com
¢ Red Hat Satellite Server
* Red Hat update infrastructure (RHUI) in the cloud

This guide covers clients registered to Red Hat CDN. You must have at least one system registered to the
CDN, with an authorized subscription for repository content.

For information about using Red Hat update infrastructure (RHUI) instead, see Client-configuration >
Clients-rh-rhui.

Satellite certificates for client systems require a Satellite server and subscription.
Clients using Satellite certificates are not supported with Uyuni Server.

Entitlement certificates are embedded with expiration dates, which match the
length of the support subscription. To avoid disruption, you need to repeat this
process at the end of every support subscription period.

Red Hat supplies the subscription-manager tool to manage subscription assignments. It runs locally on the
client system to track installed products and subscriptions. Register to redhat.com with subscription-
manager, then follow this procedure to obtain certificates.

Procedure: Registering Clients to Subscription Manager

1. On the client system, at the command prompt, register with the subscription manager tool:
subscription-manager register

Enter your Red Hat Portal username and password when prompted.

2. Run command:
subscription-manager activate

3. Copy your entitlement certificate and key from the client system, to a location that the Uyuni Server
can access:

cp /etc/pki/entitlement/ /<example>/entitlement/

Your entitlement certificate and key both have a file extension of . pem. The
key also has key in the filename.

4. Copy the Red Hat CA Certificate file from the client system, to the same web location as the
entitlement certificate and key:

cp /etc/rhsm/ca/redhat-uep.pem /<example>/entitlement

To manage repositories on your Red Hat client, you need to import the CA and entitlement certificates to
the Uyuni Server. This requires that you perform the import procedure three times, to create three entries:
one each for the entitlement certificate, the entitlement key, and the Red Hat certificate.

Procedure: Importing Certificates to the Server
1. On the Uyuni Server Web UI, navigate to Systems > Autoinstallation > GPG and SSL Keys.

2. Click[Create Stored Key/ Cert] and set these parameters for the entitlement certificate:

° In the Description field, type Entitlement-Cert-date.

° In the Type field, select SSL.

°In the Select file to upload field, browse to the location where you saved the
entitlement certificate, and select the . pem certificate file.

3. Click[Creat e Key].

4. Click[Create Stored Key/ Cert] and set these parameters for the entitlement key:
° In the Description field, type Entitlement-key-date.
° In the Type field, select SSL.

°In the Select file to upload field, browse to the location where you saved the
entitlement key, and select the . pem key file.

5. Click [Creat e Key].
6. Click [Create Stored Key/ Cert] and set these parameters for the Red Hat certificate:

° In the Description field, type redhat-uep.
° In the Type field, select SSL.

° In the Select file to upload field, browse to the location where you saved the Red Hat
certificate, and select the certificate file.

7. Click [Creat e Key].

4.10.1.2. Add Software Channels

Before you register Red Hat clients to your Uyuni Server, you need to add the required software channels,
and synchronize them.

In the following section, descriptions often default to the X86_64 architecture.
Replace it with other architectures if appropriate.

The channels you need for this procedure are:

Table 30. Red Hat Channels - CLI

OS Version Base Channel Client Channel Tools Channel

Red Hat 7 rhel-x86_64-server-7 - res7-suse-manager-tools-
x86_64

Red Hat 8 rhel8-pool-x86_64 - res8-manager-tools-pool-
x86_64

Red Hat 9 rhel9-pool-x86_64 - res9-suse-manager-tools-

x86_64

Procedure: Adding Software Channels at the Command Prompt

1. At the command prompt on the Uyuni Server, as root, use the spacewalk-common-channels
command to add the appropriate channels:

spacewalk-common-channels \
<base_channel_label>
<child_channel_label_1> \
<child_channel_label_2> \

. <child_channel_label_n>

2. If automatic synchronization is turned off, synchronize the channels:

spacewalk-repo-sync -p <base_channel_label>

3. Ensure the synchronization is complete before continuing.

o The client tools channel provided by spacewalk-common-channels is

sourced from Uyuni and not from SUSE.

The AppStream repository provides modular packages. This results in the Uyuni
Web Ul showing incorrect package information. You cannot perform package
operations such as installing or upgrading directly from modular repositories
using the Web UI or APL

You can use the AppStream filter with content lifecycle management (CLM) to
o transform modular repositories into regular repositories. Make sure to include

python:3.6 using an AppStream filter if you want to use Spacecmd on the
clients.

Alternatively, you can use Salt states to manage modular packages on Salt clients,

or use the dnf command on the client. For more information about CLM, see
Administration > Content-lifecycle.

4.10.1.3. Prepare Custom Repositories and Channels

To mirror the software from the Red Hat CDN, you need to create custom channels and repositories in
Uyuni that are linked to the CDN by a URL. You must have entitlements to these products in your Red
Hat Portal for this to work correctly. You can use the subscription manager tool to get the URLSs of the
repositories you want to mirror:

subscription-manager repos

You can use these repository URLs to create custom repositories. This allows you to mirror only the
content you need to manage your clients.

administration:custom-channels.pdf#_custom_channel_synchronization

You can only create custom versions of Red Hat repositories if you have the
correct entitlements in your Red Hat Portal.

The details you need for this procedure are:

Table 31. Red Hat Custom Repository Settings

Option Setting

Repository URL The content URL provided by Red Hat CDN
Has Signed Metadata? Uncheck all Red Hat Enterprise repositories
SSL CA Certificate redhat-uep

SSL Client Certificate Entitlement-Cert-date

SSL Client Key Entitlement-Key-date

Procedure: Creating Custom Repositories

1. On the Uyuni Server Web UI, navigate to Software > Manage > Repositories.
2. Click [Creat e Reposi tory] and set the appropriate parameters for the repository.
3. Click [Creat e Repository].

4. Repeat for all repositories you need to create.

The channels you need for this procedure are:

Table 32. Red Hat Custom Channels

OS Version Base Product Base Channel

Red Hat 7 RHEL7 Base x86_64 rhel7-pool-x86_64

Red Hat 8 RHEL or SLES ES or CentOS 8 rhel8-pool-x86_64
Base

Red Hat 9 RHEL 9 Base rhel9-pool-x86_64

Procedure: Creating Custom Channels

1. On the Uyuni Server Web UI, navigate to Software > Manage > Channels.
2. Click [Creat e Channel] and set the appropriate parameters for the channels.
3. In the Parent Channel field, select the appropriate base channel.

Click [Creat e Channel].

AR o

Repeat for all channels you need to create. There should be one custom channel for each custom
repository.

You can check that you have created all the appropriate channels and repositories, by navigating to
Software > Channel List > All

For Red Hat 8 clients, add both the Base and AppStream channels. You require
packages from both channels. If you do not add both channels, you cannot create
the bootstrap repository, due to missing packages.

If you are using modular channels, you must enable the Python 3.6 module stream on the client. If you do
not provide Python 3.6, the installation of the Spacecmd package will fail.

When you have created all the channels, you can associate them with the repositories you created:

Procedure: Associating Channels with Repositories

1. On the Uyuni Server Web Ul, navigate to Software > Manage > Channels, and click the channel to
associate.

2. Navigate to the Repositories tab, and check the repository to associate with this channel.
3. Click [Updat e Reposi tori es] to associate the channel and the repository.
4. Repeat for all channels and repositories you need to associate.

5. OPTIONAL: Navigate to the Sync tab to set a recurring schedule for synchronization of this
repository.

6. Click [Sync Now] to begin synchronization immediately.

4.10.1.4. Check Synchronization Status

Procedure: Checking Synchronization Progress from the Web Ul
1. In the Uyuni Web UI, navigate to Software > Manage > Channels, then click the channel associated
to the repository.

2. Navigate to the Repositories tab, then click Sync and check Sync Status.

Procedure: Checking Synchronization Progress from the Command Prompt

. At the command prompt on the Uyuni Server, as root, use the tail command to check the
synchronization log file:

tail -f /var/log/rhn/reposync/<channel-label>.1log

2. Each child channel generates its own log during the synchronization progress. You need to check all
the base and child channel log files to be sure that the synchronization is complete.

Red Hat Enterprise Linux channels can be very large. Synchronization can
sometimes take several hours.

Procedure: OPTIONAL: Creating a Salt State to Deploy Configuration Files

. On the Uyuni Server Web UI, navigate to Configuration > Channels.

. Click[Create State Channel].

° In the Name field, type subscription-manager: disable yum plugins.

° In the Label field, type subscription-manager-disable-yum-plugins.

° In the Description field, type subscription-manager: disable yum plugins.
° Inthe SLS Contents field, leave it empty.

. Click [Create Config Channel]

. Click[Create Configuration File]

°In the Filename/Path field type /etc/yum/pluginconf.d/subscription-
manager .conf.

° Inthe File Contents field type:

[main]
enabled=0

. Click[Create Configuration File]

. Take note of the value of the field Salt Filesystem Path.

. Click on the name of the Configuration Channel.
. Click on View/Edit "init.sls' File

° Inthe File Contents field, type:

configure_subscription-manager-disable-yum-plugins:
cmd.run:
- name: subscription-manager config --rhsm.auto_enable_yum_plugins=0
- watch:
- file: /etc/yum/pluginconf.d/subscription-manager.conf
file.managed:
- name: /etc/yum/pluginconf.d/subscription-manager.conf
- source: salt:///etc/yum/pluginconf.d/subscription-manager.conf

9. Click [Updat e Configuration File].

0 The Creating a Salt State to Deploy Configuration Files

procedure is optional.

Procedure: Creating a System Group for Red Hat Enterprise Linux Clients

1. On the Uyuni Server Web UI, navigate to Systems > System Groups.

2. Click[Create Group].

° In the Name field, type rhel-systems.

° In the Description field, type ALl RHEL systems.
3. Click[Create Goup].
4. Click States tab.
5. Click Configuration Channels tab.
6. Type subscription-manager: disable yum plugins at the search box.
7. Click [Sear ch] to see the state.
8. Click the checkbox for the state at the ASS1gn column.
9. Click [Save changes].
10. Click [Confirni.

If you already have RHEL systems added to Uyuni, assign them to the new system group, and then apply
the highstate.

Procedure: Adding the System Group to Activation Keys

You need to modify the activation keys you used for RHEL systems to include the system group created
above.

1. On the Uyuni Server Web UI, navigate to Systems > Activation Keys.

2. For each the Activation Keys you used for RHEL systems, click on it and:
3. Navigate to the Groups tab, and the JO1n subtab.

4. Check Select rhel-systems.

5. Click[Joi n Sel ected G oups].

4.10.1.5. Manage GPG Keys

Clients use GPG keys to check the authenticity of software packages before they are installed. Only
trusted software can be installed on clients.

Trusting a GPG key is important for security on clients. It is the task of the
administrator to decide which keys are needed and can be trusted. Because a
software channel cannot be used when the GPG key is not trusted, the decision
of assigning a channel to a client depends on the decision of trusting the key.

For more information about GPG keys, see Client-configuration > Gpg-keys.

4.10.1.6. Register Clients

To register your Red Hat clients, you need a bootstrap repository. By default, bootstrap repositories are
automatically created, and regenerated daily for all synchronized products. You can manually create the
bootstrap repository from the command prompt, using this command:

mgr-create-bootstrap-repo

For more information on registering your clients, see Client-configuration > Registration-overview.

4.10.2. Registering Red Hat Enterprise Linux Clients with RHUI

If you are running Red Hat Enterprise Linux clients directly, rather than using SUSE Linux Enterprise
Server with Expanded Support, you need to use Red Hat sources to retrieve and update packages. This
section contains information about using Red Hat update infrastructure (RHUI) to register traditional and
Salt clients running Red Hat Enterprise Linux operating systems.

Traditional clients are available on Red Hat Enterprise Linux 7 only. Red Hat Enterprise Linux 8 and Red
Hat Enterprise Linux 9 clients are supported as Salt clients.

If you are running your clients in a public cloud, such as Amazon EC2, use this method.

It is possible to use RHUI in conjunction with the Red Hat content delivery network (CDN) to manage
your Red Hat Enterprise Linux subscriptions. For information about using Red Hat CDN, see Client-
configuration > Clients-rh-cdn.

Red Hat Enterprise Linux clients are based on Red Hat and are unrelated to
SUSE Linux Enterprise Server with Expanded Support, RES, or SUSE Linux
Enterprise Server. You are responsible for connecting Uyuni Server to the Red
Hat update infrastructure. All clients that get updates using this RHUI certificate
need to be correctly licensed, please check with your cloud provider and the Red
Hat terms of service for more information.

When Red Hat Enterprise Linux clients registered with RHUI are switched off,
o Red Hat might declare the certificate invalid. In this case, you need to turn the

client on again, or get a new RHUI certificate.

4.10.2.1. Import Entitlements and Certificates

Red Hat clients require a Red Hat certificate authority (CA) and entitlement certificate, and an entitlement
key.

Red Hat clients use a URL to replicate repositories. The URL changes depending on where the Red Hat
client is registered.

Red Hat clients can be registered in three different ways:

* Red Hat content delivery network (CDN) at redhat.com
e Red Hat Satellite Server

* Red Hat update infrastructure (RHUI) in the cloud

This guide covers clients registered to Red Hat update infrastructure (RHUI). You must have at least one
system registered to RHUI, with an authorized subscription for repository content.

For information about using Red Hat content delivery network (CDN) instead, see Client-configuration >
Clients-rh-cdn.

Satellite certificates for client systems require a Satellite server and subscription.
Clients using Satellite certificates are not supported with Uyuni Server.

The entitlement certificates and keys need to be copied from the client system to a location that the Uyuni
Server can access.

The keys and certificates might have slightly different names to those shown here. Your entitlement
certificate and the Red Hat CA Certificate file have file extensions of .Crt. The key has a file extension
of .key.

Procedure: Copying Certificates to the Server

1. Copy your entitlement certificate and key from the client system, to a location that the Uyuni Server
can access:

Amazon EC2:

cp /etc/pki/rhui/product/content-<version>.crt /<example>/entitlement/
cp /etc/pki/rhui/content-<version>.key /<example>/entitlement/

Azure:

o Check the certificate chain using the command:
openssl s_client -connect rhui-1.microsoft.com:443 -showcerts

o A sample output will look like the following:

CONNECTED(00000003)
depth=2 C = US, 0 = DigiCert Inc, OU = www.digicert.com, CN = DigiCert Global Root
G2

verify return:1

depth=1 C = US, 0 = Microsoft Corporation, CN = Microsoft Azure TLS Issuing CA 06
verify return:1

depth=0 C = US, ST = WA, L = Redmond, 0 = Microsoft Corporation, CN = rhui-
1.microsoft.com

verify return+

° Check the second certificate (C(N = Microsoft Azure), if it is the same on your VM, note
the certificate name. Refer to the https://docs.microsoft.com/en-us/azure/active-directory/
fundamentals/certificate-authorities to download the certificate. Click the AIA link to download
the certificate. The certificate will be downloaded with the . cer suffix. Convert it to . Crt with

https://docs.microsoft.com/en-us/azure/active-directory/fundamentals/certificate-authorities
https://docs.microsoft.com/en-us/azure/active-directory/fundamentals/certificate-authorities

the command:
openssl x509 -inform DER -in <example.cer> -out <example.crt>
Google Cloud Platform:

cp /etc/pki/rhui/product/content.crt /<example>/entitlement/
cp /etc/pki/rhui/key.pem /<example>/entitlement/

2. Copy the Red Hat CA Certificate file from the client system, to the same location as the entitlement
certificate and key:

Amazon EC2:
cp /etc/pki/rhui/cdn.redhat.com-chain.crt /<example>/entitlement

Azure:
o Upload the converted certifcate to /<example>/entitlement

Google Cloud Platform:

cp /etc/pki/rhui/ca.crt /<example>/entitlement

To manage repositories on your Red Hat client, you need to import the CA and entitlement certificates to
the Uyuni Server. This requires that you perform the import procedure three times, to create three entries:
one each for the entitlement certificate, the entitlement key, and the Red Hat certificate.

Procedure: Importing Certificates to the Server
1. On the Uyuni Server Web UI, navigate to Systems > Autoinstallation > GPG and SSL Keys.
2. Click[Creat e Stored Key/ Cert] and set these parameters for the entitlement certificate:
° In the Description field, type Entitlement-Cert-Date.
° In the Type field, select SSL.

°In the Select file to upload field, browse to the location where you saved the
entitlement certificate, and select the . ¢rt certificate file.

3. Click [Create Key].
4. Click[Create Stored Key/ Cert] and set these parameters for the entitlement key:
° In the Description field, type Entitlement-Key-Date.

° In the Type field, select SSL.

°In the Select file to upload field, browse to the location where you saved the
entitlement key, and select the . key key file.

5. Click [Creat e Key].

6. Click [Create Stored Key/ Cert] and set these parameters for the Red Hat certificate:
° In the Description field, type redhat-cert.
° In the Type field, select SSL.

° In the Select file to upload field, browse to the location where you saved the Red Hat
certificate, and select the certificate file.

7. Click [Creat e Key].
4.10.2.2. Add Software Channels

Before you register Red Hat clients to your Uyuni Server, you need to add the required software channels,
and synchronize them.

In the following section, descriptions often default to the X86_64 architecture.
Replace it with other architectures if appropriate.

The channels you need for this procedure are:

Table 33. Red Hat Channels - CLI

OS Version Base Channel Client Channel Tools Channel

Red Hat 7 rhel-x86_64-server-7 - res7-suse-manager-tools-
x86_64

Red Hat 8 rhel8-pool-x86_64 - res8-manager-tools-pool-
x86_64

Red Hat 9 rhel9-pool-x86_64 - res9-suse-manager-tools-
x86_64

Procedure: Adding Software Channels at the Command Prompt

1. At the command prompt on the Uyuni Server, as root, use the spacewalk-common-channels
command to add the appropriate channels:

spacewalk-common-channels \
<base_channel_label>
<child_channel_label_1> \
<child_channel_label 2> \

. <child_channel_label_n>

2. If automatic synchronization is turned off, synchronize the channels:

administration:custom-channels.pdf#_custom_channel_synchronization

spacewalk-repo-sync -p <base_channel_label>

3. Ensure the synchronization is complete before continuing.

The client tools channel provided by spacewalk-common-channels is
sourced from Uyuni and not from SUSE.

The AppStream repository provides modular packages. This results in the Uyuni
Web UI showing incorrect package information. You cannot perform package
operations such as installing or upgrading directly from modular repositories
using the Web UI or APL

You can use the AppStream filter with content lifecycle management (CLM) to
o transform modular repositories into regular repositories. Make sure to include

python:3.6 using an AppStream filter if you want to use spacecmd on the
clients.

Alternatively, you can use Salt states to manage modular packages on Salt clients,

or use the dnf command on the client. For more information about CLM, see
Administration > Content-lifecycle.

To use RHUI, you need to manually add the required HTTP headers to the configuration file. Without
them, you cannot successfully perform a client synchronization.

Procedure: Adding HTTP Headers to the Configuration File

L. Locate the X-RHUI-ID and X-RHUI-SIGNATURE HTTP headers from your RHUI instance. You
can use these commands on the Red Hat client to get the values from the cloud instance metadata

APl at 169.254.169.254:

echo "X-RHUI-ID=$(curl -s http://169.254.169.254/1atest/dynamic/instance-
identity/document|base64|tr -d '\n")"

echo "X-RHUI-SIGNATURE=$(curl -s http://169.254.169.254/1atest/dynamic/instance-
identity/signature|base64|tr -d '"\n")"

2. Open the /etc/rhn/spacewalk-repo-sync/extra_headers.conf configuration file, and
add or edit these lines with the correct information:

[<channel_label 1>]
X-RHUI-ID=<value>
X-RHUI-SIGNATURE=<value>

[<channel_label_2>]
X-RHUI-ID=<value>
X-RHUI-SIGNATURE=<value>

4.10. Red Hat Client Registration

Replace [literal]" ‘<channel_label_X>'' above with channel names such as
[literal]'‘rhel8-baseos-repo*‘:

[rhel8-baseos-repo]
X-RHUI-ID=...
X-RHUI-SIGNATURE=...

4.10.2.3. Prepare Custom Repositories and Channels

To mirror the software from RHUI, you need to create custom channels and repositories in Uyuni that are
linked to RHUI by a URL. You must have entitlements to these products in your Red Hat Portal for this
to work correctly. You can use the yum utility to get the URLSs of the repositories you want to mirror:

‘ yum repolist -v | grep baseurl

You can use these repository URLs to create custom repositories. This allows you to mirror only the
content you need to manage your clients.

You can only create custom versions of Red Hat repositories if you have the
correct entitlements in your Red Hat Portal.

The details you need for this procedure are:

Table 34. Red Hat Custom Repository Settings

Option Setting

Repository URL The content URL provided by RHUI

Has Signed Metadata? Uncheck all Red Hat Enterprise repositories
SSL CA Certificate redhat-cert

SSL Client Certificate Entitlement-Cert-Date

SSL Client Key Entitlement-Key-Date

Procedure: Creating Custom Repositories

1. On the Uyuni Server Web UI, navigate to Software > Manage > Repositories.
2. Click [Creat e Repository] and set the appropriate parameters for the repository.
3. Click[Creat e Repository].

4. Repeat for all repositories you need to create.

The channels you need for this procedure are:

119/219 4.10. Red Hat Client Registration | Uyuni 2022.11

Table 35. Red Hat Custom Channels

OS Version Base Product Base Channel

Red Hat 7 RHEL7 Base x86_64 rhel7-pool-x86_64

Red Hat 8 RHEL or SLES ES or CentOS 8 rhel8-pool-x86_64
Base

Red Hat 9 RHEL 9 Base rhel9-pool-x86_64

Procedure: Creating Custom Channels

1. On the Uyuni Server Web UI, navigate to Software > Manage > Channels.

2. Click [Cr eat e Channel] and set the appropriate parameters for the channels.

3. In the Parent Channel field, select the appropriate base channel.

4. Click [Creat e Channel].

5. Repeat for all channels you need to create. There should be one custom channel for each custom

repository.

You can check that you have created all the appropriate channels and repositories, by navigating to
Software > Channel List > All

For Red Hat 8 clients, add both the Base and AppStream channels. You require
o packages from both channels. If you do not add both channels, you cannot create

the bootstrap repository, due to missing packages.

When you have created all the channels, you can associate them with the repositories you created:

Procedure: Associating Channels with Repositories

1. On the Uyuni Server Web Ul, navigate to Software > Manage > Channels, and click the channel to
associate.

2. Navigate to the Repositories tab, and check the repository to associate with this channel.
3. Click [Updat e Reposi tori es] to associate the channel and the repository.
4. Repeat for all channels and repositories you need to associate.

5. OPTIONAL: Navigate to the Sync tab to set a recurring schedule for synchronization of this
repository.

6. Click [Sync Nowj to begin synchronization immediately.

4.10.2.4. Check Synchronization Status

Procedure: Checking Synchronization Progress from the Web Ul

1. In the Uyuni Web UI, navigate to Software > Manage > Channels, then click the channel associated
to the repository.

2. Navigate to the Repositories tab, then click Sync and check Sync Status.

Procedure: Checking Synchronization Progress from the Command Prompt

1. At the command prompt on the Uyuni Server, as root, use the tail command to check the
synchronization log file:

‘ tail -f /var/log/rhn/reposync/<channel-label>.1log

2. Each child channel generates its own log during the synchronization progress. You need to check all
the base and child channel log files to be sure that the synchronization is complete.

Red Hat Enterprise Linux channels can be very large. Synchronization can
sometimes take several hours.

4.10.2.5. Manage GPG Keys

Clients use GPG keys to check the authenticity of software packages before they are installed. Only
trusted software can be installed on clients.

Trusting a GPG key is important for security on clients. It is the task of the
administrator to decide which keys are needed and can be trusted. Because a
software channel cannot be used when the GPG key is not trusted, the decision
of assigning a channel to a client depends on the decision of trusting the key.

For more information about GPG keys, see Client-configuration > Gpg-keys.

4.10.2.6. Register Clients

To register your Red Hat clients, you need a bootstrap repository. By default, bootstrap repositories are
automatically created, and regenerated daily for all synchronized products. You can manually create the
bootstrap repository from the command prompt, using this command:

mgr-create-bootstrap-repo

For more information on registering your clients, see Client-configuration > Registration-overview.

4.11. Rocky Linux Client Registration

You can register Rocky Linux clients to your Uyuni Server. The method and details vary depending on
the operating system of the client.

Before you start, ensure that the client has the date and time synchronized correctly with the Uyuni
Server.

You must also have created an activation key. For more information about creating activation keys, see
Client-configuration > Activation-keys.

4.11.1. Registering Rocky Linux Clients

This section contains information about registering Salt clients running Rocky Linux operating systems.

Traditional clients are not available on Rocky Linux. Rocky Linux clients are only supported as Salt
clients.

configuration of enforcing with a targeted policy. You do not need to

o Registering Rocky Linux clients to Uyuni is tested with the default SELinux
disable SELinux to register Rocky Linux clients to Uyuni.

4.11.1.1. Add Software Channels

Before you can register Rocky Linux clients to your Uyuni Server, you need to add the required software
channels, and synchronize them.

The architectures currently supported are: X86_64 and aarch64, on version 9 additionally ppc64le and
s390x. For full list of supported products and architectures, see Client-configuration > Supported-
features.

In the following section, descriptions often default to the X86_64 architecture.
Replace it with other architectures if appropriate.

The channels you need for this procedure are:

Table 36. Rocky Linux Channels - CLI

OS Version Base Channel Client Channel AppStream Channel
Rocky Linux 9 rockylinux9 rockylinux9-uyuni-client rockylinux9-appstream
Rocky Linux 8 rockylinux8 rockylinux8-uyuni-client rockylinux8-appstream

Procedure: Adding Software Channels at the Command Prompt

1. At the command prompt on the Uyuni Server, as root, use the spacewalk-common-channels
command to add the appropriate channels. Ensure you specify the correct architecture:

spacewalk-common-channels \
-a <architecture> \
<base_channel_name> \
<child_channel_name_1> \
<child_channel_name_2> \

. <child_channel_name_n>

2. If automatic synchronization is turned off, synchronize the channels:

spacewalk-repo-sync -p <base_channel_label>

3. Ensure the synchronization is complete before continuing.

0 The client tools channel provided by spacewalk-common-channels is

sourced from Uyuni and not from SUSE.

For Rocky Linux 8 and Rocky Linux 9 clients, add both the Base and
AppStream channels. You require packages from both channels. If you do not
add both channels, you cannot create the bootstrap repository, due to missing
packages.

You might notice some disparity in the number of packages available in the
AppStream channel between upstream and the Uyuni channel. You might also
see different numbers if you compare the same channel added at a different
point in time. This is due to the way that Rocky Linux manages their
repositories. Rocky Linux removes older version of packages when a new
version is released, while Uyuni keeps all of them, regardless of age.

If you are using modular channels with Rocky Linux 8, you must enable the Python 3.6 module stream on
the client. If you do not provide Python 3.6, the installation of the Spacecmd package will fail.

The AppStream repository provides modular packages. This results in the Uyuni
Web UI showing incorrect package information. You cannot perform package
operations such as installing or upgrading directly from modular repositories
using the Web UI or APL

You can use the AppStream filter with content lifecycle management (CLM) to
o transform modular repositories into regular repositories. Make sure to include

python:3.6 using an AppStream filter if you want to use spacecmd on the
clients.

Alternatively, you can use Salt states to manage modular packages on Salt clients,
or use the dnf command on the client. For more information about CLM, see
Administration > Content-lifecycle.

4.11.1.2. Check Synchronization Status

Procedure: Checking Synchronization Progress from the Web Ul

1. In the Uyuni Web Ul, navigate to Software > Manage > Channels, then click the channel associated
to the repository.

administration:custom-channels.pdf#_custom_channel_synchronization

2. Navigate to the Repositories tab, then click Sync and check Sync Status.

Procedure: Checking Synchronization Progress from the Command Prompt

1. At the command prompt on the Uyuni Server, as root, use the tail command to check the
synchronization log file:

tail -f /var/log/rhn/reposync/<channel-label>.1log

2. Each child channel generates its own log during the synchronization progress. You need to check all
the base and child channel log files to be sure that the synchronization is complete.

4.11.1.3. Create an Activation Key

You need to create an activation key that is associated with your Rocky Linux channels.

For more information on activation keys, see Client-configuration > Activation-keys.

4.11.1.4. Manage GPG Keys

Clients use GPG keys to check the authenticity of software packages before they are installed. Only
trusted software can be installed on clients.

Trusting a GPG key is important for security on clients. It is the task of the
administrator to decide which keys are needed and can be trusted. Because a
software channel cannot be used when the GPG key is not trusted, the decision
of assigning a channel to a client depends on the decision of trusting the key.

For more information about GPG keys, see Client-configuration > Gpg-keys.

4.11.1.5. Register Clients

Rocky Linux clients are registered in the same way as all other clients. For more information, see Client-
configuration > Registration-overview.

4.11.1.6. Manage Errata

When you update Rocky Linux clients, the packages include metadata about the updates.

4.12. Ubuntu Client Registration

You can register Ubuntu clients to your Uyuni Server. The method and details varies depending on the
operating system of the client.

Before you start, ensure that the client has the date and time synchronized correctly with the Uyuni
Server.

You must also have created an activation key. For more information about creating activation keys, see
Client-configuration > Activation-keys.

4.12.1. Registering Ubuntu 20.04 and 22.04 Clients

This section contains information about registering Salt clients running Ubuntu 20.04 LTS and 22.04 LTS
operating systems.

Ubuntu is supported for Salt clients only. Traditional clients are not supported.

Bootstrapping is supported for starting Ubuntu clients and performing initial state runs such as setting
repositories and performing profile updates. However, the root user on Ubuntu is disabled by default, so
to use bootstrapping, you require an existing user with sudo privileges for Python.

o Canonical does not endorse or support Uyuni.

4.12.1.1. Add Software Channels

Before you register Ubuntu clients to your Uyuni Server, you need to add the required software channels,
and synchronize them.

In the following section, descriptions often default to the X86_64 architecture.
Replace it with other architectures if appropriate.

The channels you need for this procedure are:

Table 37. Ubuntu Channels - CLI

OS Version Base Channel Main Channel Updates Security Client Channel
Channel Channel

Ubuntu 20.04 ubuntu-2004- ubuntu-2004- ubuntu-2004- ubuntu-2004- ubuntu-2004-
pool-amd64- amd64-main- amd64-main- amd64-main- amd64-uyuni-
uyuni uyuni updates-uyuni security-uyuni client

Ubuntu 22.04 ubuntu-2204- ubuntu-2204- ubuntu-2204- ubuntu-2204- ubuntu-2204-
pool-amd64- amd64-main- amd64-main- amd64-main- amd64-uyuni-
uyuni uyuni updates-uyuni security-uyuni client

Version 20.04 also requires the Universe channels:

Table 38. Ubuntu 20.04 Universe Channels - CLI

Ubuntu 20.04
Universe Channel ubuntu-2004-amd64-universe-uyuni

Universe Updates Channel ubuntu-2004-amd64-universe-updates-uyuni

4.12. Ubuntu Client Registration

Ubuntu 20.04
Universe Security Updates Channel ubuntu-2004-amd64-universe-security-uyuni
Universe Backports Channel ubuntu-2004-amd64-universe-backports-uyuni

Procedure: Adding Software Channels at the Command Prompt

1. At the command prompt on the Uyuni Server, as root, use the spacewalk-common-channels
command to add the appropriate channels:

spacewalk-common-channels \
<base_channel_label>
<child_channel_label_1> \
<child_channel_label_2> \

. <child_channel_label_n>

2. If automatic synchronization is turned off, synchronize the channels:

spacewalk-repo-sync -p <base_channel_label>

3. Ensure the synchronization is complete before continuing.

You need all the new channels fully synchronized before bootstrapping any
Ubuntu client.

4.12.1.2. Check Synchronization Status

Procedure: Checking Synchronization Progress from the Web Ul

1. In the Uyuni Web UI, navigate to Software » Manage > Channels, then click the channel associated
to the repository.

2. Navigate to the Repositories tab, then click Sync and check Sync Status.

Procedure: Checking Synchronization Progress from the Command Prompt

1. At the command prompt on the Uyuni Server, as root, use the tail command to check the
synchronization log file:

tail -f /var/log/rhn/reposync/<channel-label>.1log

2. Each child channel generates its own log during the synchronization progress. You need to check all
the base and child channel log files to be sure that the synchronization is complete.

Ubuntu channels can be very large. Synchronization can sometimes take several
hours.

126 / 219 4.12. Ubuntu Client Registration | Uyuni 2022.11

administration:custom-channels.pdf#_custom_channel_synchronization

4.12. Ubuntu Client Registration

4.12.1.3. Manage GPG Keys

Clients use GPG keys to check the authenticity of software packages before they are installed. Only
trusted software can be installed on clients.

Trusting a GPG key is important for security on clients. It is the task of the
administrator to decide which keys are needed and can be trusted. Because a
software channel cannot be used when the GPG key is not trusted, the decision
of assigning a channel to a client depends on the decision of trusting the key.

For more information about GPG keys, see Client-configuration > Gpg-keys.

4.12.1.4. Root Access

The root user on Ubuntu is disabled by default for SSH access.

To be able to onboard using a regular user, you need to edit the Sudoers file.

Procedure: Granting Root User Access

1. On the client, edit the sudoers file:

sudo visudo

Grant sudo access to the user by adding this line at the end of the sudoers file. Replace <user>
with the name of the user that is bootstrapping the client in the Web UI:

<user> ALL=NOPASSWD: /usr/bin/python, /usr/bin/python2, /usr/bin/python3,
/var/tmp/venv-salt-minion/bin/python

This procedure grants root access without requiring a password, which is
required for registering the client. When the client is successfully installed it runs

0 with root privileges, so the access is no longer required. We recommend that you
remove the line from the sudoers file after the client has been successfully
installed.

4.12.1.5. Register Clients

To register your Ubuntu clients, you need a bootstrap repository. By default, bootstrap repositories are
automatically created, and regenerated daily for all synchronized products. You can manually create the
bootstrap repository from the command prompt, using this command:

mgr-create-bootstrap-repo

For more information on registering your clients, see Client-configuration > Registration-overview.

127 /219 4.12. Ubuntu Client Registration | Uyuni 2022.11

4.12.2. Registering Ubuntu 18.04 Clients

This section contains information about registering Salt clients running Ubuntu 18.04 LTS operating
systems.

Uyuni supports Ubuntu 18.04 LTS clients using Salt.
Ubuntu is supported for Salt clients only. Traditional clients are not supported.

Bootstrapping is supported for starting Ubuntu clients and performing initial state runs such as setting
repositories and performing profile updates. However, the root user on Ubuntu is disabled by default, so
to use bootstrapping, you require an existing user with sudo privileges for Python.

o Canonical does not endorse or support Uyuni.

4.12.2.1. Add Software Channels

Before you register Ubuntu clients to your Uyuni Server, you need to add the required software channels,
and synchronize them.

In the following section, descriptions often default to the x86_64 architecture.
Replace it with other architectures if appropriate.

The channels you need for this procedure are:

Table 39. Ubuntu Channels - CLI

OS Version Ubuntu 18.04

Base Channel ubuntu-1804-pool-amd64-uyuni

Main Channel ubuntu-1804-amd64-main-uyuni

Updates Channel ubuntu-1804-amd64-main-updates-uyuni
Security Channel ubuntu-1804-amd64-main-security-uyuni
Universe Channel ubuntu-1804-amd64-universe-uyuni
Universe Updates Channel ubuntu-1804-amd64-universe-updates-uyuni
Universe Security Updates Channel ubuntu-1804-amd64-universe-security-uyuni
Client Channel ubuntu-1804-amd64-uyuni-client

Procedure: Adding Software Channels at the Command Prompt

1. At the command prompt on the Uyuni Server, as root, use the spacewalk-common-channels
command to add the appropriate channels:

4.12. Ubuntu Client Registration

spacewalk-common-channels \
<base_channel_label>
<child_channel_label 1> \
<child_channel_label_2> \

. <child_channel_label_n>

2. If automatic synchronization is turned off, synchronize the channels:

spacewalk-repo-sync -p <base_channel_label>

3. Ensure the synchronization is complete before continuing.

You need all the new channels fully synchronized, including Universe (Universe
contains important dependencies for Salt), before bootstrapping any Ubuntu
client.

4.12.2.2. Check Synchronization Status

Procedure: Checking Synchronization Progress from the Web Ul

1. In the Uyuni Web UI, navigate to Software > Manage > Channels, then click the channel associated
to the repository.

2. Navigate to the Repositories tab, then click Sync and check Sync Status.

Procedure: Checking Synchronization Progress from the Command Prompt

I. At the command prompt on the Uyuni Server, as root, use the tail command to check the
synchronization log file:

tail -f /var/log/rhn/reposync/<channel-label>.1log

2. Each child channel generates its own log during the synchronization progress. You need to check all
the base and child channel log files to be sure that the synchronization is complete.

Ubuntu channels can be very large. Synchronization can sometimes take several
hours.

4.12.2.3. Manage GPG Keys

Clients use GPG keys to check the authenticity of software packages before they are installed. Only
trusted software can be installed on clients.

129 /219 4.12. Ubuntu Client Registration | Uyuni 2022.11

administration:custom-channels.pdf#_custom_channel_synchronization

4.12. Ubuntu Client Registration

Trusting a GPG key is important for security on clients. It is the task of the
administrator to decide which keys are needed and can be trusted. Because a
software channel cannot be used when the GPG key is not trusted, the decision
of assigning a channel to a client depends on the decision of trusting the key.

For more information about GPG keys, see Client-configuration > Gpg-keys.

4.12.2.4. Root Access
The root user on Ubuntu is disabled by default for SSH access.
To be able to onboard using a regular user, you need to edit the sudoers file.

Procedure: Granting Root User Access

1. On the client, edit the sudoers file:

sudo visudo

Grant sudo access to the user by adding this line at the end of the sudoers file. Replace <user>
with the name of the user that is bootstrapping the client in the Web UI:

<user> ALL=NOPASSWD: /usr/bin/python, /usr/bin/python2, /usr/bin/python3,
/var/tmp/venv-salt-minion/bin/python

This procedure grants root access without requiring a password, which is
required for registering the client. When the client is successfully installed it runs
with root privileges, so the access is no longer required. We recommend that you
remove the line from the sudoers file after the client has been successfully
installed.

4.12.2.5. Register Clients

To register your Ubuntu clients, you need a bootstrap repository. By default, bootstrap repositories are
automatically created, and regenerated daily for all synchronized products. You can manually create the
bootstrap repository from the command prompt, using this command:

mgr-create-bootstrap-repo

For more information on registering your clients, see Client-configuration > Registration-overview.

130/219 4.12. Ubuntu Client Registration | Uyuni 2022.11

4.13. Register Clients to a Proxy

Proxy servers can act as a broker and package cache for both Salt and traditional clients. Registering
clients to a proxy is similar to registering them directly to the Uyuni Server, with a few key differences.

These sections contain information on registering Salt clients to a proxy using the Web UL, commands on
the command line, or a bootstrap script. There is also information on registering traditional clients using a
bootstrap script. There are also procedure how you can move clients from one Uyuni Proxy to another
one or to the Uyuni Server.

Within the Web U, proxy pages show information about both Salt and traditional clients. You can see a
list of clients that are connected to a proxy by clicking the name of the proxy in Systems > System List >
Proxy, then select the Proxy subtab of the Details tab.

A list of chained proxies for a Salt client can be seen by clicking the name of the client in Systems > All,
then select the Connection subtab of the Details tab.

4.13.1. Move Clients between Proxies

You can move Salt and Salt SSH push clients between proxies without the need to repeat the registration
process.

If you want to move a traditional client between proxies you must repeat the
registration process from the beginning.

Procedure: Moving Salt or Salt SSH Push Client between Proxies

L. In the Uyuni Web UI, navigate to the System Details page for the client you want to move
between proxies.

2. Navigate to the Connection tab. Then follow the Change proxy link to see the drop-down menu.

3. From the New Proxy drop-down menu select the proxy you want the client to move to, and click
[Change Proxy].

Procedure: Moving Multiple Salt or Salt SSH Push Clients between Proxies with SSM

1. In the Uyuni Web UI, navigate to Systems > System List and check each client to move, this adds
the clients to the system set manager.

2. Navigate to Systems > System Set Manager, and go to the Misc » Proxy ™ tab.

3. From the New Proxy drop-down menu select the proxy you want the clients to move to, and click
[Change Proxy].

The same functionality is also available with the System.changeProxy API call.

4.13.1.1. Background Information

The effect of this function differs between normal Salt clients and Salt SSH push clients.

4.13.1.1.1. Normal Salt Clients

The function schedules a Salt state action, which modifies master: setting in the susemanager. conf
Salt client configuration file to point to the new proxy. Then the function restarts the Salt client.

Changing master: by manually editing the susemanager.conf file has the
same effect and is supported, too.

When the minion restarts and reconnects via the new proxy, the server updates the proxy path in the
database and schedules another action for refreshing the channel URLs.

4.13.1.1.2. Salt SSH Push Clients

The function updates the proxy path immediately in the database and new action for refreshing the
channel URLs is scheduled.

4.13.2. Move Clients from Proxies to the Server
If you want to move a Salt client from a proxy to the server, select None from proxy list.

If you want to move a traditional client to the server you must repeat the registration process from the
beginning.

4.13.3. Register Clients to a Proxy with the Web UI

You can register Salt clients to the Uyuni Proxy using the Web UL

A bootstrap repository is needed for non-SLE clients in general and for SLE
clients before version 15. A bootstrap repository offers packages for installing
e Salt on clients and for registering Salt or traditional clients. For information
about creating a bootstrap repository, see Client-configuration > Bootstrap-
repository.
Procedure: Registering Clients to a Proxy with the Web Ul

1. In the Uyuni Web Ul, navigate to Systems > Bootstrapping.
2. In the Host field, type the fully qualified domain name (FQDN) of the client to be bootstrapped.

3. In the SSH Port field, type the SSH port number to use to connect and bootstrap the client. By
default, the SSH port is 22.

4. In the User field, type the username to log in to the client. By default, the username is root.

5. In the Authentication Method field, select the authentication method to use for bootstrapping
the client.

° For password authentication, in the Password field, type password to log in to the client.

o For SSH Private key authentication, enter the private key and the associated passphrase. The key

4.13. Register Clients to a Proxy

is only stored for as long as the bootstrapping process takes to complete.

6. In the Activation Key field, select the activation key that is associated with the software channel
you want to use to bootstrap the client.

7. In the Proxy field, select the proxy server you want to register to.

8. By default, the Disable SSH Strict Key Host Checking checkbox is selected. This allows
the bootstrap process to automatically accept SSH host keys without requiring you to manually
authenticate.

9. OPTIONAL: Check the Manage System Completely via SSH checkbox. If you check this
option, the client is configured to use SSH for its connection to the server, and no other connection
method is configured.

10. Click [Boot st r ap] to begin registration.
When the bootstrap process has completed, your client is listed at Systems > System List.

4.13.3.1. Register on the Command Line (Salt)

Instead of the Web UI, you can use the command line to register a Salt client to a proxy. This procedure
requires that you have installed the Salt package on the Salt client before registration. For SLE 12 based
clients, you also must have activated the Advanced Systems Management module.

Registering traditional clients on the command line is also possible, but it
requires more steps. It is not covered here. Use the bootstrap script procedure to

register traditional clients. For more information, see client-proxy-script.pdf.

Procedure: Registering Clients to a Proxy Using the Command Line

1. Choose a client configuration file located at:

‘ /etc/salt/minion ’

or:

‘ /etc/salt/minion.d/NAME.conf ’

This is sometimes also called a minion file.

2. Add the proxy FQDN as the master to the client configuration file:

master: PROXY123.EXAMPLE.COM

3. Restart the salt-minion service:

133/219 4.13. Register Clients to a Proxy | Uyuni 2022.11

client-proxy-script.pdf

4.14. Registering clients on a public cloud

[systemctl restart salt-minion J

4. On the server, accept the new client key; replace <c1ient> with the name of your client:

[salt-key -a '<client>']

4.13.4. Registering with a Bootstrap Script (Salt and Traditional)

You can register Salt or traditional clients through the Uyuni Proxy with a bootstrap script. This is done
almost the same way as registering clients directly with the Uyuni Server. The difference is that you create
the bootstrap script on the Uyuni Proxy with a command line tool. The bootstrap script then deploys all
necessary information to the clients. The bootstrap script requires some parameters such as activation
keys or GPG keys. These parameters depend on your specific setup.

Procedure: Registering Clients to a Proxy with a Bootstrap Script
1. Create a client activation key on the Uyuni server using the Web UI. For more information, see
Client-configuration > Activation-keys.

2. On the proxy, execute the Mgr-bootstrap command line tool as root. If needed, use the additional
command line switches to tune your bootstrap script. To install a traditional client instead of a Salt

client, ensure you use the --traditional switch.

To view available options type mgr-bootstrap --help from the command line:

mgr-bootstrap --activation-keys=key-string

3. OPTIONAL.: Edit the resulting bootstrap script.

4. Execute the bootstrap script directly on the clients or from the proxy with SSh. Replace
<bootstrap> with the name of the bootstrap script and <client.example.com> with the host
name of your client:

cat <bootstrap> | ssh root@<client.example.com> /bin/bash

4.14. Registering clients on a public cloud

When you have your Uyuni Server set up, you are ready to start registering clients.

4.14.1. Add Products and Synchronize Repositories

Ensure you have already added the corresponding products for your clients and synced the repositories to
Uyuni. This is required to create the bootstrap repositories used for registering clients.

134/219 4.14. Registering clients on a public cloud | Uyuni 2022.11

4.14. Registering clients on a public cloud

For more information, see installation-and-upgrade:pubcloud-setup.pdf.

4.14.2. Prepare on-demand images

An instance started from an on-demand image provided by SUSE is automatically registered, and the

update infrastructure and SUSE Linux Enterprise modules are activated. To use your on-demand image as

a Uyuni client, you need to disable this automation before you begin.

Procedure: Preparing on-demand images

1. Log in to the on-demand instance.

2. At the command prompt, as root, remove the registration data and repositories:

[registercloudguest --clean

3. Remove the cloud-regionsrv-client package:

(zypper rm cloud-regionsrv-client

4. Remove additional packages specific to your cloud provider:

o Amazon EC2:

[zypper rm regionServiceClientConfigEC2 regionServiceCertsEC2

o Google Compute Engine:

zypper rm cloud-regionsrv-client-plugin-gce regionServiceClientConfigGCE
regionServiceCertsGCE

o Microsoft Azure:

zypper rm regionServiceClientConfigAzure regionServiceCertsAzure

For instructions on registering Uyuni to SUSE Customer Center, see Installation-and-upgrade > Server-

setup.

4.14.3. Register clients

In the Uyuni Web UL, navigate to Systems > Bootstrapping, then fill in the Host, SSH Port, User,
and Password fields. Make sure you use stable FQDNs for the Host field, or Uyuni cannot find your

host when your Public Cloud gives you a different short-lived FQDNS.

135/219 4.14. Registering clients on a public cloud | Uyuni 2022.11

installation-and-upgrade:pubcloud-setup.pdf#add-product-sync-repo

If you are attempting to bootstrap traditional clients, check that you can resolve
the host name of the server while you are logged in to the client. You might

o need to add the FQDN of the server to /etc/hosts local resolution file on the
client. Check using the hostname -f command with the local IP address of
the server.

Public cloud images usually do not allow SSH login with username and password, but only SSH with a
certificate. If you want to use bootstrap from the Web UI, you need to enable SSH login with username
and SSH key. You can do this by navigating to Systems > Bootstrapping and changing the authentication
method.

If your cloud provider is Microsoft Azure, you can log in with username and password. To do this, you
need to allow the AzureUser to run commands as root without a password. To do this, open the

/etc/sudoers.d/waagent file, and add or edit this line:

AzureUser ALL=(ALL) NOPASSWD: ALL

Allowing the AzureUser to run commands as root without a password carries a
security risk. Use this method for testing only. Do not do this for production
systems.

When the bootstrap process has completed successfully, your client is listed at Systems > System List.

* If you want more control over the process, have to register many clients, or are registering traditional
clients, create a bootstrap script. For more information, see Client-configuration > Registration-
bootstrap.

* For Salt clients and even more control over the process, executing single commands on the command
line can be useful. For more information, see Client-configuration > Registration-cli.

* When registering clients launched from a public cloud image (for example, AWS AMI), you need to
do some additional configuration to prevent them from over-writing each other. For more
information about registering clones, see Administration > Troubleshooting.

4.14.4. Activation keys

Activation keys are used with traditional and Salt clients to ensure that your clients have the correct
software entitlements, are connecting to the appropriate channels, and are subscribed to the relevant
groups. Each activation key is bound to an organization, which you can set when you create the key.

For more on activation keys, see Client-configuration > Activation-keys.

4.14.5. Automatic Registration of Clients Created by Terraform

New clients created by Terraform can be automatically registered to Uyuni. Registration can be achieved
in two ways:

* cloud-init based registration

* remote execution provisioner based registration

4.14.5.1. cloud-init based client registration

Registering by leveraging cloud-init is the preferred way of automatic registering of the newly created
virtual machines. This solution avoids configuring an SSH connection to the host. It can also be used
regardless of the tool used for client creation.

User can pass the set of user data when deploying the image with Terraform, in order to automatically
register the machine to Uyuni. user_data is run only once at bootstrap, and only the first time the
machine is started.

Before using cloud-init to register clients, the user must configure:

* Bootstrap script. See Client-configuration > Registration-bootstrap

* Activation keys. See Client-configuration > Activation-keys

This command will download the bootstrap script and register the new machine when it is created. It
should be added to the cloud-init configuration:

curl -s http://hub-server.tf.local/pub/bootstrap/bootstrap-default.sh | bash -s

Anytime user_data is updated to change the provisioning, Terraform will
destroy and then recreate the machines with a new IP, etc.

For more information about cloud-init on AWS, see: . https://registry.terraform.io/providers/hashicorp/
template/latest/docs/data-sources/cloudinit_config

For a cloud-init example, see: . https://registry.terraform.io/providers/hashicorp/cloudinit/latest/docs/data-
sources/cloudinit_config#example-usage

4.14.5.2. remote-exec provisioner based registration

The second solution for automatic registering of the newly created virtual machines uses Terraform’s
remote-exec provisioner.

remote-exec provisioner interacts with the newly created machines. It opens an SSH connection and can
run commands on that machine.

When using remote-exec provisioner to register clients, the user must ensure that
the machine running Terraform will have access to the new virtual machine after
its creation.

The remaining requirements are the same as when using cloud-init based client registration

https://registry.terraform.io/providers/hashicorp/template/latest/docs/data-sources/cloudinit_config
https://registry.terraform.io/providers/hashicorp/template/latest/docs/data-sources/cloudinit_config
https://registry.terraform.io/providers/hashicorp/cloudinit/latest/docs/data-sources/cloudinit_config#example-usage
https://registry.terraform.io/providers/hashicorp/cloudinit/latest/docs/data-sources/cloudinit_config#example-usage

4.14. Registering clients on a public cloud

* Bootstrap script. See Client-configuration > Registration-bootstrap

* Activation keys. See Client-configuration > Activation-keys

This command will download the bootstrap script and register the new machine when it is created. It
should be defined as the remote command to run:

curl -s http://hub-server.tf.local/pub/bootstrap/bootstrap-default.sh | bash -s

For more information about remote-exec provisioner, see: https://www.terraform.io/docs/provisioners/
remote-exec.html

138 /219 4.14. Registering clients on a public cloud | Uyuni 2022.11

https://www.terraform.io/docs/provisioners/remote-exec.html
https://www.terraform.io/docs/provisioners/remote-exec.html

Chapter 5. Client Upgrades

Clients use the versioning system of their underlying operating system, and require regular upgrades.

For SCC registered clients using SUSE operating systems, you can perform upgrades within the Uyuni
Web UL For supported SUSE Linux Enterprise 15 upgrade paths, see https://documentation.suse.com/
sles/15-SP3/html/SLES-all/cha-upgrade-paths.html

To upgrade clients running SLE 12 to SLE 15, the upgrade is automated, but you need to do some
preparation steps before you begin. For more information, see Client-configuration > Client-upgrades-
major.

You can also automate client upgrades using the content lifecycle manager. For more information, see
Client-configuration > Client-upgrades-lifecycle.

For more information about product migration such as service pack upgrades openSUSE Leap minor
version upgrades, or openSUSE Leap to SUSE Linux Enterprise migrations, see Client-configuration >
Client-upgrades-product-migration.

For more information about upgrading unregistered openSUSE Leap clients, see Client-configuration >
Client-upgrades-uyuni.

5.1. Client - Major Version Upgrade

Your clients must have the latest available service pack (SP) for the installed operating system, with all the
latest updates applied. Before you start, ensure that the system is up to date and all updates have been
installed successfully.

The upgrade is controlled by YaST and AutoYaST, it does not use Zypper.

5.1.1. Prepare to Migrate

Before you can migrate your client from SLE 12 to SLE 15 , you need to:

1. Prepare installation media

2. Create an auto-installable distribution
3. Create an activation key

4. Upload an AutoYaST profile

Procedure: Preparing Installation Media (for example, SLE 15 SP2)

1. On the Uyuni Server, create a local directory for the SLE 15 SP2 installation media:

mkdir -p /srv/images/sle15sp2

https://documentation.suse.com/sles/15-SP3/html/SLES-all/cha-upgrade-paths.html
https://documentation.suse.com/sles/15-SP3/html/SLES-all/cha-upgrade-paths.html

2. Download an ISO image with the installation sources, and mount the ISO image on your server:

mount -o loop DVD1.iso /mnt/ ’

3. Copy everything from the mounted ISO to your local file system:

cp -r /mnt/* /srv/images/sle15sp2 ’

4. When the copy is complete, unmount the ISO image:

umount /mnt ’

0 This image is the Unified Installer and can be used for multiple autoinstallable

distributions.

Procedure: Creating an Autoinstallable Distribution

1. In the Uyuni Web UI, navigate to Systems > Autoinstallation > Distributions and click [Cr eat e
Di stribution].

2. Inthe Create Autoinstallable Distribution section, use these parameters:

o

In the Distribution Label section, type a unique name for the distribution. Use only
letters, numbers, hyphens, periods, and underscores, and ensure the name is longer than four
characters. For example, S1es15sp2-x86_64.

In the Tree Path field, type an absolute path to the installation source. For example,
/srv/images/sle15sp2.

In the Base Channel field, select SLE-Product-SLES15-SP2-Pool for x86_64.
In the Installer Generation field, select SUSE Linux Enterprise 15.

In the Kernel Options field, type any options to be passed to the kernel when booting for
the installation. ~ The install= parameter and the self_update=0
pt.options=self_update parameter are added by default.

In the Post Kernel Options section, type any options to be passed to the kernel when
booting the installed system for the first time.

3. Click[Create Autoinstallable Distribution] tosave.

To switch from the old SLE 12 base channel to the new SLE 15 channel, you need an activation key.

Procedure: Creating an Activation Key

L. In the Uyuni Server Web UI, navigate to Systems > Activation Keys and click Create Key.

2. Enter a description for your key.

3. Enter a key or leave it blank to generate an automatic key.
4. OPTIONAL: If you want to limit the usage, enter your value in the USage text field.
5. Select the SLE-Product-SLES15-SP2-Pool for x86_64 base channel.

6. OPTIONAL: Select any Add-On System Types. For more information, see
https://documentation.suse.com/sles/15-SP3/html/SLES-all/article-modules.html.

7. Click [Create Activation Key].

8. Click the Child Channels tab and select the required channels.
9. Click [Updat e Key].

5.1.2. Create an Autoinstallation Profile

Autoinstallation profiles contain all the installation and configuration data needed to install a system. They
can also contain scripts to be executed after the installation is complete. For example scripts that you can
use as a starting point, see https://github.com/SUSE/manager-build-profiles/tree/master/Auto YaST.

For valid AutoYaST upgrade settings, see
https://doc.opensuse.org/projects/autoyast/#CreateProfile-upgrade.

Procedure: Creating an Autoinstallation Profile

1. In the Uyuni Web Ul, navigate to Systems > Autoinstallation > Profiles and upload your
autoinstallation profile script.

For example scripts that you can use as a starting point, see
https://github.com/SUSE/manager-build-profiles/tree/master/Auto YaST.
2. In the Kernel Options field, type autoupgrade=1.

Optionally, you can also include the Y2DEBUG=1 option. The debug setting is not required but can
help with investigating any future problems you might encounter.

Clients running in Azure cloud must add textmode=1 console=ttyS@
to Kernel Options.

3. Paste the autoinstallation profile or use the file upload field.
4. Click [Cr eat e] to save.
5. When the uploaded profile requires variables to be set, navigate to Systems > Autoinstallation >

Profiles, select the profile to edit, and navigate to the Variables tab.

Specify the required variables, using this format:

https://documentation.suse.com/sles/15-SP3/html/SLES-all/article-modules.html
https://github.com/SUSE/manager-build-profiles/tree/master/AutoYaST
https://doc.opensuse.org/projects/autoyast/#CreateProfile-upgrade
https://github.com/SUSE/manager-build-profiles/tree/master/AutoYaST

<key>=<value>

5.1.3. Migration

Before you begin, check that all the channels referenced in the autoinstallation profile are available and
fully synchronized.

You can monitor the mirroring progress in /var/log/rhn/reposync/<channel-1abel>.1og.
Procedure: Migrating
L. In the Uyuni Server Web UI, navigate to Systems and select the client to be upgraded.

2. Navigate to the Provisioning tab, and select the autoinstallation profile you uploaded.

3. Click [Schedul e Autoi nstall ati on and Fi ni sh]. The system downloads the required
files, change the bootloader entries, reboot, and start the upgrade.

Next time the client synchronizes with the Uyuni Server, it receives a re-installation job. The re-
installation job fetches the new kernel and initrd packages. It also writes a new /boot/grub/menu.1st
(GRUB Legacy) or /boot/grub2/grub.cfg (GRUB 2), containing pointers to the new kernel and
initrd packages.

When the client next boots, it uses grub to boot the new kernel with its initrd. PXE booting is not used
during this process.

Approximately three minutes after the job was fetched, the client goes down for reboot.

client again after migration has completed.

0 For Salt clients, use the spacewalk/minion_script snippet to register the

5.2. Upgrade Using the Content Lifecycle Manager

When you have many SUSE Linux Enterprise Server clients to manage, you can automate in-place
upgrades using the content lifecycle manager.

5.2.1. Prepare to Upgrade

Before you can upgrade your clients, you need to make these preparations:

* Create a content lifecycle project
e Create an activation key
* Create an autoinstallable distribution

* Create an autoinstallation profile

Procedure: Creating a Content Lifecycle Project

1. Create a content lifecycle project for your distribution.
For more information, see Administration > Content-lifecycle.

2. Ensure you a choose a short but descriptive name for your project.
3. Include all source channel modules that you require for your distribution.

4. Add filters as required, and set up at least one environment.

Procedure: Creating an Activation Key

1. Create an activation key for your distribution.
For more information, see Client-configuration » Activation-keys.

2. Ensure your activation key includes all filtered project channels.

Procedure: Creating an Autoinstallable Distribution

1. Create an autoinstallable distribution for every base channel you want to migrate.

For more information, see Client-configuration > Autoinst-distributions.
2. Give your distribution a label that references the name of the content lifecycle project.
3. Inthe Installer Generation field, select the SLES version you are using.

Procedure: Creating an Autoinstallation Profile

1. Create an autoinstallation profile for every target distribution and service pack you want to upgrade
to.

For more information, see Client-configuration > Autoinst-profiles.

2. You must use a different profile for Salt and traditional clients.

3. You can use variables in the profile to distinguish between the different lifecycle environments.

For example autoinstallation profiles, see https://github.com/SUSE/manager-build-profiles/tree/master/
AutoYaST.

Use these variables in your autointallation profiles for automating in-place upgrades:
Listing 1. Example: Variables for Use in Autoinstallation Profiles

registration_key=1-15sp1-demo-test
org=1
channel_prefix=15sp1-demo-test
distro_label=15sp1-demo-test

https://github.com/SUSE/manager-build-profiles/tree/master/AutoYaST
https://github.com/SUSE/manager-build-profiles/tree/master/AutoYaST

Listing 2. Example: Entry for Use in Autoinstallation Profiles

<listentry>
<ask_on_error config:type="boolean">true</ask_on_error>
<media_url>https://$redhat_management_server/ks/dist/child/$channel_prefix-sle-module-
web-scripting15-sp1-pool-x86_64/$distro_label</media_url>
<name>$channel_prefix SLE-Module-Web-Scripting15-SP1 Pool for x86_64 </name>
<product>Web Scripting Module 15 SP1 x86_64 Pool</product>
</listentry>

5.2.2. Upgrade
When you have prepared the server for the upgrade, you can provision the clients.

Procedure: Provisioning the Clients

1. In the Uyuni Web Ul, navigate to Systems > System List, and select the clients you want to provision
to add them to the system set manager.

2. Navigate to Systems > System Set Manager > Overview and click the Provisioning tab.

3. Select the autoinstallation profile to use.

For clients that are able to use PXE, the migration is automated as soon as you have provisioned them.
For all other clients, you can use Cobbler to perform the upgrade.

Procedure: Using Cobbler to Upgrade Clients
1. At the command prompt, as root, check the available Cobbler profiles:
cobbler profile list

2. Build the ISO file with your chosen profile and distribution:

cobbler buildiso --iso=/tmp/SLE_15-sp1.iso --profiles=SLE_15-sp1:1:Example
--distro=SLE_15-sp1

For more information about using CD-ROMs to provision clients, see Client-configuration >
Autoinst-cdrom.

5.3. Product Migration

Product migration allows you to upgrade SLE-based client systems from an Service Pack (SP) level to a
later one. For example, you can migrate SUSE Linux Enterprise 15 SP1 to SUSE Linux
Enterprise 15 SP2.

You can also migrate openSUSE Leap to a later minor version or to the corresponding SLE SP level, for
example:

* openSUSE Leap 15.1 to 15.2, or
* openSUSE Leap 15.1 to SUSE Linux Enterprise 15 SP1, or
* openSUSE Leap 15.4 to SUSE Linux Enterprise 15 SP4

During migration, Uyuni automatically accepts any required licenses (EULAS)
before installation.

In SUSE Linux Enterprise 12 and later, SUSE supports service pack skipping if SUSE Customer Center
provides it. For example, you can upgrade from SUSE Linux Enterprise 15 to SP2, without installing SP1.
For supported SUSE Linux Enterprise upgrade paths, see https://documentation.suse.com/sles/15-SP3/
html/SLES-all/cha-upgrade-paths.html#sec-upgrade-paths-supported.

Product migration is for upgrading within the same major version. You cannot
use product migration to migrate from SUSE Linux Enterprise 12 to SUSE
Linux Enterprise 15. For more information about major upgrades, see Client-
configuration > Client-upgrades-major.

Product migration does not have a rollback feature. When the migration
procedure has begun, rolling back is not possible. Ensure you have a working
system backup available, in case of an emergency.

5.3.1. Perform a Migration

Before starting the product migration, ensure there are no pending updates or patches. Check the System
Status on the client system’s Details > Overview page, and install all offered updates or patches. If your
client system is not uptodate, product migration may fail.

fully synchronized. To check the synchronization status in the Web UI, navigate

0 Before starting a migration, make sure all the channels of the target product are
to the Admin > Setup Wizard > Products page.

Procedure: Performing a Migration
1. From the Systems » Overview page, select a client.
2. From the system details page of the client, navigate to the Software > Product Migration tab.

3. Select the target migration path and click [Sel ect Channel s] .

4. From the Product Migration - Channels page select the correct base channel, including
Mandatory Child Channels and any additional Optional Child Channels.

5. OPTIONAL: Check Allow Vendor Change to allow packages that have changed vendors to be
installed. If this occurs, a notification is shown with details before the migration is started.

https://documentation.suse.com/sles/15-SP3/html/SLES-all/cha-upgrade-paths.html#sec-upgrade-paths-supported
https://documentation.suse.com/sles/15-SP3/html/SLES-all/cha-upgrade-paths.html#sec-upgrade-paths-supported

5.3. Product Migration

To migrate openSUSE Leap to SUSE Linux Enterprise, you must check the
Allow Vendor Change option.

6. Click [Schedul e M grati on] when your channels have been configured properly.

5.3.2. Product Mass Migration

If you want to migrate a large number of clients to the next SP version, you can use Uyuni API calls.

The product mas migration operation is dangerous. Be careful not to upgrade
systems unintentionally. The process should be tested thoroughly. At least, do a
dry-run first.

The spacecmd commandline tool provides a System_scheduleproductmigration sub command,
which can be used to schedule a migration for a large number of clients to the next minor version.

To see syntax usage and options for system_scheduleproductmigration, run:

spacecmd system_scheduleproductmigration help

5.3.2.1. Perform a Product Mass Migration

Procedure: Performing a Product Mass Migration

1. List available migration targets, and take note of the system IDs you want to migrate:

spacecmd api -- system.listMigrationTargets -A 1000010001

2. For each system ID, call 1istMigrationTarget and check that the desired target product is
available.

° If the system ID has an available target, call System.scheduleProductMigration.

o If the desired target is not available, skip the system.

Adapt this template for your environment:

146 / 219 5.3. Product Migration | Uyuni 2022.11

5.3. Product Migration

target = "[....]"
basechannel = 'channel-label'
system_ids = [1, 2, 3]

session = auth.login(user, pass)
for system in system_ids
if system.listMigrationTargets(session, system).ident == target
system.scheduleProductMigration(session, system, target, basechannel, [], False, <now>)
else
print "Cannot migrate to requested target -- skipping system"
endif
endfor

5.3.2.2. Product Mass Migration Example: SLES 15 SP2 to SLES 15 SP3
For this example, a group will be created temporarily to facilitate the mass migration.
Procedure: Creating a Mass Product Migration Group
1. In the Uyuni Web UI, navigate to Systems > System Groups, and click [Cr eat e G oup] .
2. Name the group mpm-target-sles15sp3.
Only systems subscribed to the same base channel should be added to the created group. In the example,

only systems subscribed to SLE-Product-SLES15-SP2-Pool for x86_64 were added to the
group.

Any systems that you are not intending to upgrade at this time, should be
removed from the group.

Procedure: Adding Systems to the Group

1. For more information about adding clients to groups, see client-configuration:system-groups.pdf.

The spacecmd sub-commands system_scheduleproductmigration abd
system_listmigrationtargets are looping over all systems that are part
of the group. If there are 100 systems in the group, you will see 100 actions
scheduled. It is important that all systems in the group support the same
"migration target."

+ You will get the targets for all the systems in the group, when you run:
o +

‘ spacecmd -- system_listmigrationtargets group:mpm-target-sles15sp3

+ Only select a target, which is reported for all systems. This command output a

string of "IDs." The string is the identifier for the MIGRATIONTARGET of the
other command.

147 /219 5.3. Product Migration | Uyuni 2022.11

client-configuration:system-groups.pdf#_add_clients_to_groups

5.3. Product Migration

Procedure: Running the Mass Migration Command

1. For this example to upgrade all systems in the group mpm-target-sles15sp3 from SLES 12 SP2
to SLES 15 SP, enter on the command line:

spacecmd -- system_scheduleproductmigration group:mpm-target-sles15sp3 \
sle-product-sles15-sp3-pool-x86_64 "[190,203,195,1242]" -d

The syntax for the System_scheduleproductmigration command is as follows:

spacecmd -- system_scheduleproductmigration <SYSTEM> <BASE_CHANNEL_LABEL> \
<MIGRATION_TARGET> [options]

For more information, see spacecmd — system_scheduleproductmigration help.

5.3.2.3. Mandatory Syntax

<SYSTEM>

For this example we will use the group we created to select all of the systems from that group:

group:mpm-target-sles15sp3

<BASE_CHANNEL_LABEL>

This is the label for the target base channel. In this case, the system is being upgraded to SLES 15
SP3, and the label is Sle-product-sles15-sp3-pool-x86_64.

To see a list of all base channels currently mirrored, run:

spacecmd softwarechannel_listbasechannels.

Keep in mind you cannot upgrade to a channel unless it is an available target for your current base
channel.

<MIGRATION_TARGET>
To identify this value for systems in the group group:mpm-target-sles15sp3, run:

[spacecmd -- system_listmigrationtargets group:mpm-target-sles15sp3 J

The MIGRATION_TARGET parameter must be passed in the following format; note necessary shell
quotation to prevent sideeffects with brackets:

["[190,203,195,1242]"]

148 /219 5.3. Product Migration | Uyuni 2022.11

Options
1. -s START_TIME

2. -d pass this flag, if you want to do a dry run (it is recommended to run a dry run before the
actual migration)

3. -c CHILD_CHANNELS (comma-separated child channels labels (with no spaces))

In this case we included the "-d" option, which can be removed after a successful dry run.

If successful, you will see the command output with the following for each scheduled system:

1. Scheduling Product migration for system mpm-sles152-1

2. Scheduled action ID: 66

You can also track the action, in this case the dry run, in the Web UI for a given system in the group.
From the system details page of the client, Navigate to Events > History. If there are any failures during
the dry run, the system should be investigated.

If all is well, the "-d" option can be removed from the command to run the real migration. After the
migration is complete, you can reboot the system from the Uyuni Web UL

5.4. Upgrade Uyuni Clients

In this section, we use openSUSE Leap as an example.

5.4.1. Prepare to Upgrade

Procedure: Preparing the Client Upgrade

1. At the command prompt on the Uyuni Server, as root, use the spacewalk-common-channels
command to add the appropriate channels.

spacewalk-common-channels \
opensuse_leap15_4 \
opensuse_leap15_4-non-oss \
opensuse_leap15_4-non-oss-updates \
opensuse_leap15_4-updates \
opensuse_leap15_4-uyuni-client

2. Fully synchronize all channels with spacewalk-repo-sync. In case of already defined repository
URLS, continue with installation-and-upgrade:proxy-uyuni.pdf.

3. In the Uyuni Server Web UI, navigate to Software > Manage > Channels and click the Uyun1i
Client Tools for openSUSE Leap 15.4 (x86_64) channel name.

4. In the upper right corner, click [Manage Channel] .

5. Click the Repositories tab, and select External - Uyuni Client Tools for openSUSE
Leap 15.3 (x86_64).

installation-and-upgrade:proxy-uyuni.pdf#uyuni-202007-channeldupes

6. Click [Updat e Repositories].
7. Navigate to Repositories > Sync subtab, and click [Sync Nowj .

8. Do the same with openSUSE Leap 15.4 (x86_64) and External - openSUSE Leap
15.3 (x86_64).

Unfold openSUSE Leap 15.4 (x86_64) to see all child channels populated with packages.

5.4.2. Upgrade

To upgrade a client you replace the software repositories and update the software, and finally reboot the
client.
Procedure: Upgrading the Client

1. In the Uyuni Server Web UI, navigate to Systems and click the name of the client.

2. Click Software > Software Channels, and as the base channel select the openSUSE Leap 15.4
channel that is listed in the Customs Channels list.

3. Inthe Child Channels pane, select the 15.4 child channels.

4. Click [Next] ,and Confirm Software Channel Change with [Confirni.

5. Click Software > Packages > Upgrade, and select all the packages to be updated on the client, and
then apply the selection. Click [Upgr ade Packages] , check the details, and click [Conf i r
to complete the update.

6. Reboot the client.

If you need to update many clients, you can create an action chain of this command sequence on the
Uyuni Server. You can use the action chain to perform updates on multiple clients at the same time.

Chapter 6. Client Deletion

If you need to remove a client from your Uyuni Server, you can use the Web UI to delete it. This
procedure works for both traditional and Salt clients.

Procedure: Deleting a Client
1. In the Uyuni Web Ul, navigate to Systems > System List and select the client to delete.
2. Click [Del ete Systeni.
3. Check the details and click [Del et e Profil e] to confirm.

4. For Salt clients, Uyuni attempts to clean up additional configuration. If the client cannot be
contacted, you are given the option to cancel the deletion, or delete the client without cleaning up the
configuration files.

You can also delete multiple clients using the system set manager. For more information about the system
set manager, see Client-configuration > System-set-manager.

It is not possible to automatically clean up a a traditional client after deleting it.
You have to take care of this yourself. Furthermore cleaning up a Salt minion

does not remove Salt itself.

Normally you migrate a traditional client to a Salt minion without deleting the
client. Salt automatically detects that you have a traditional client and does the

e necessary changes itself. But if you already deleted the traditional client and
want to register it as a Salt minion again, see Administration >
Troubleshooting.

Chapter 7. Client Operations
In addition to registering, upgrading, or deleting clients other operations can be performed.

Uyuni clients can be managed individually, or organised in groups using System Set Manager, System
Groups or Configuration Management.

You can obtain Custom System Information, manage Configuration Snapshots or power on, power off,
and reboot clients using the SUSE Manager Web UL

This section contains detailed description of each of these operation.

7.1. Package Management

Clients use packages to install, uninstall, and upgrade software.

To manage packages on a client, navigate to Systems, click the client to manage, and navigate to the
Systems > Software > Packages subtab. The options available in this section vary depending on the type
of client you have selected, and its current channel subscriptions.

When packages are installed or upgraded, licenses or EULAs are automatically
accepted.

Most package management actions can be added to action chains. For more about action chains, see
Reference > Schedule.

7.1.1. Verify Packages

You can check that packages you have installed on a client match the current state of the database they
were installed from. The metadata of the installed package is compared to information in the database,
including the file checksum, file size, permissions, owner, group, and type.

Procedure: Verifying Installed Packages

L. In the Uyuni Web UI, navigate to Systems, click the client the package is installed on, and navigate
to the Systems > Software > Packages > Verify subtab.

2. Select the packages you want to verify and click [Veri fy Sel ect ed Packages].

3. When the verification is complete, navigate to Systems > Events > History to see the results.

7.1.2. Compare Packages

You can compare the packages installed on a client with a stored profile, or with packages installed on
another client. When the comparison is made, you can choose to modify the selected client to match.

To compare packages against a profile, you need to have stored a profile. Profiles are created from the
packages on a currently installed client. When the profile has been created, you can use it to install more

clients with the same packages installed.

Procedure: Creating a Stored Profile

1. In the Uyuni Web UI, navigate to Systems, click the client to base your profile off, and navigate to
the Systems > Software > Packages > Profiles subtab.

2. Click[Create System Profile].

3. Type a name and description for your profile and click [Create Profil e].

Procedure: Comparing Client Packages

L. In the Uyuni Web UI, navigate to Systems, click the client to compare, and navigate to the Systems
> Software > Packages » Profiles subtab. To compare with a stored profile, select the profile and
click [Conpar €] .

2. To compare with another client, select the client name and click [Conpar e] to see a list of
differences between the two clients.

3. Check packages you want to install on the selected client, uncheck packages you want to remove, and
click [Sync Packages to].

7.2. Patch Management

You can use custom patches within your organization to manage clients. This allows you to issue patch
alerts for packages in custom channels, schedule patch installation, and manage patches across
organizations.

7.2.1. Create Patches

To use a custom patch, you need to create the patch, add packages to it and add it to one or more
channels.

Procedure: Creating a Custom Patch
1. In the Uyuni Web U, navigate to Patches > Manage Patches, click [Cr eat e Pat ch] .
2. Inthe Create Patch section, use these details:
° In the Synops1s field, type a short description of the patch.

° In the Advisory field, type a label for the patch. We recommend you devise a naming
convention for your organization to make patch management easier.

° In the Advisory Release field, enter a release number for your patch. For example, if this is
the first version of this patch, use 1.

° In the Advisory Type field, select the type of patch to use. For example, Bug Fix
Advisory for a patch that fixes errors.

° If you selected an advisory type of Security Advisory,in the Advisory Severity field,
select the severity level to use.

° In the Product field, type the name of the product this patch refers to.
° OPTIONAL: In the Author field, type the name of the author of the patch.

° Complete the Topic, Description, and Solution fields with further information about the
patch.

3. OPTIONAL: In the Bugs section, specify the information of any related bugs, using these details:
° In the ID field, enter the bug number.
° In the Summary field, type a short description of the bug.
° In the Bugzilla URL field, type the address of the bug.

In the Keywords field, type any keywords related to the bug. Use a comma between each
keyword.

° Complete the References and Notes fields with further information about the bug.
o Select one or more channels to add the new patch to.
4. Click [Creat e Patch].

You can also create patches by cloning an existing one. Cloning preserves package associations and
simplifies issuing patches.

Procedure: Cloning Patches

1. In the Uyuni Web UlI, navigate to Patches > Clone Patches.

2. In the View patches potentially applicable to: field, select the software channel for
the patch you want to clone.

3. Select the patch or patches you want to clone, and click [Cl one Pat ches] .
4. Select one or more channels to add the cloned patch to.

5. Confirm the details to begin the clone.

When you have created a patch, you can assign packages to it.

Procedure: Assigning Packages to a Patch

1. In the Uyuni Web UlI, navigate to Patches > Manage Patches, and click the the advisory name of
the patch to see the patch details.

2. Navigate to the Packages > Add tab.

3. In the Channel field, select the software channel that contains the packages you want to assign to

the patch, and click [Vi ew Packages] . You can select ALl managed packages to see the
available packages in all channels.

4. Check the packages you want to include, and click [Add Packages] .
5. Confirm the details of the packages, and click [Confi r nj to assign them to the patch.

6. Navigate to the Packages > List/Remove tab to check that the packages have been assigned correctly.

When packages are assigned to a patch, the patch cache is updated to reflect the changes. The cache
update might take a couple of minutes.

If you need to change the details of an existing patch, you can do so from the Patches Management
page.

Procedure: Editing and Deleting Existing Patch Alerts
1. In the Uyuni Web UI, navigate to Patches > Manage Patches.
2. Click the advisory name of the patch to see the patch details.
3. Make the changes as required, and click [Updat e Pat ch].

4. To delete a patch, select the patch in the Patches Management page, and click [Del et e
Pat ches] . Deleting patches might take a few minutes.

7.2.2. Apply Patches to Clients

When a patch is ready, you can apply it to clients either singly, or with other patches.

Each package within a patch is part of one or more channels. If the client is not subscribed to the channel,
the update is not installed.

If the client has a more recent version of a package already installed, the update is not installed. If the
client has an older version of the package installed, the package is upgraded.

Procedure: Applying All Applicable Patches
1. In the Uyuni Web Ul, navigate to Systems > Overview and select the client you want to update.
2. Navigate to the Software » Patches tab.
3. Click [Sel ect Al |] to select all applicable patches.
4. Click [Appl y Pat ches] to update the client.

If you are signed in with Administrator privileges, you can also perform larger batch upgrades for clients.
Procedure: Applying a Single Patch to Multiple Clients
1. In the Uyuni Web Ul, navigate to Patches > Patch List.
2. Locate the patch you want to apply, and click the number under the Systems column for that patch.
3. Select the clients you want to apply the patch to, and click [Appl y Pat ches] .
4. Confirm the list of clients to perform the update.

Procedure: Applying Multiple Patches to Multiple Clients

1. In the Uyuni Web UlI, navigate to Systems > Overview and check the clients you want to update to
add them to the system set manager.

2. Navigate to Systems > System Set Manager and naviagte to the Patches tab.

3. Select the patches you want to apply to the clients and click [Appl y Pat ches] .
4. Schedule a date and time for the update to occur, and click [Confi rnj .

5. To check the progress of the update, navigate to Schedule > Pending Actions.

Scheduled package updates are installed using the contact method configured for
each client. For more information, see Client-configuration > Contact-

methods-intro.

7.3. System Locking

System locks are used to prevent actions from occurring on a client. For example, a system lock prevents a
client from being updated or restarted. This is useful for clients running production software, or to prevent
accidental changes. You can disable the system lock when you are ready to perform actions.

System locks are implemented differently on traditional and Salt clients.

7.3.1. System Locks on Traditional Clients

When a traditional client is locked, no actions can be scheduled using the Web UlI, and a padlock icon is
displayed next to the name of the client in the System > System List.

Procedure: System Locking a Traditional Client
1. In the Uyuni Web UI, navigate to the System Details page for the client you want to lock.

2. Under Lock Status, click [Lock this systeni. The client remains locked until you click
[Unl ock this systen].

Some actions can still be completed on locked traditional clients, including remote commands, and
automated patch updates. To stop automated patch updates, navigate to the System Details page for
the client, and on the Properties tab, uncheck Auto Patch Update.

7.3.2. System Locks on Salt Clients

When a Salt client is locked, or put into blackout mode, no actions can be scheduled, Salt execution
commands are disabled, and a yellow banner is displayed on the System Details page. In this mode,
actions can be scheduled for the locked client using the Web UI or the API, but the actions fail.

o The locking mechanism is not available for Salt SSH clients.

Procedure: System Locking a Salt Client

1. In the Uyuni Web UI, navigate to the System Details page for the client you want to lock.
2. Navigate to the Formu1as tab, check the system lock formula, and click [Save] .

3. Navigate to the Formulas > System Lock tab, check Lock system, and click [Save] . On this
page, you can also enable specific Salt modules while the client is locked.

4. When you have made your changes, you might need to apply the highstate. In this case, a banner in
the Web UI notifies you. The client remains locked until you remove the system lock formula.

For more information about blackout mode in Salt, see https://docs.saltstack.com/en/latest/topics/
blackout/index.html.

7.3.3. Package Locks

Package locking can be used on several clients, but different feature sets are
available. You must differentiate between:

0 1. SUSE Linux Enterprise and openSUSE (zypp-based) versus Red Hat
Enterprise Linux or Debian clients, and

2. Traditional versus Salt clients.

7.3.3.1. Package Locks on Zypp-based Systems

Systems with the Zypper package manager have package locking available on
traditional and Salt clients.

Package locks are used to prevent unauthorized installation or upgrades to software packages. When a
package has been locked, it shows a padlock icon, indicating that it cannot be installed. Any attempt to
install a locked package is reported as an error in the event log.

Locked packages cannot be installed, upgraded, or removed, neither through the Uyuni Web UI, nor
directly on the client machine using a package manager. Locked packages also indirectly lock any
dependent packages.

Procedure: Using Package Locks

1. Navigate to the Software > Packages > L.ock tab on the managed system to see a list of all available
packages.

2. Select the packages to lock, and click [Request Lock] . Pick date and time for the lock to
activate. By default, the lock is activated as soon as possible. Note that the lock might not activate
immediately.

3. To remove a package lock, select the packages to unlock and click [Request Unl ock] . Pick
date and time as with activating the lock.

7.3.3.2. Package Locks on Red Hat Enterprise Linux- and Debian-like Systems

Some Red Hat Enterprise Linux- and Debian-like systems have package locking
available on Salt clients.

On Red Hat Enterprise Linux- and Debian-like systems, package locks are only used to prevent
unauthorized upgrades or removals to software packages. When a package has been locked, it shows a

https://docs.saltstack.com/en/latest/topics/blackout/index.html
https://docs.saltstack.com/en/latest/topics/blackout/index.html

padlock icon, indicating that it cannot be changed. Any attempt to change a locked package is reported as
an error in the event log.

Locked packages cannot be upgraded or removed, neither through the Uyuni Web UI, nor directly on the
client machine using a package manager. Locked packages also indirectly lock any dependent packages.

Procedure: Using Package Locks

1. On the Red Hat Enterprise Linux 7 systems, install the yum-plugin-versionlock package as
root. On the Red Hat Enterprise Linux 8 systems, install the python3-dnf-plugin-
versionlock package as root. On Debian systems, the apt tool has the locking feature included.

2. Navigate to the Software > Packages > Lock tab on the managed system to see a list of all available
packages.

3. Select the packages to lock, and click [Request Lock] . Pick date and time for the lock to
activate. By default, the lock is activated as soon as possible. Note that the lock might not activate
immediately.

4. To remove a package lock, select the packages to unlock and click [Request Unl ock] . Pick
date and time as with activating the lock.

7.4. Configuration Management

You can use configuration files and channels to manage configuration for your clients, rather than
configuring each client manually.

Configuration parameters are scripted and stored in configuration files. You can write configuration files
directly using the Uyuni Web UI, or you can upload or link to files that exist in other locations.

Configuration files can be centrally managed, or locally managed. Centrally managed configuration files
are provided by global configuration channels and can be applied to any client subscribed to the Uyuni
Server. Locally managed configuration files are used to override centrally managed configuration settings.
They are especially useful for Uyuni users who do not have configuration administration privileges, but
need to make changes to the clients that they manage.

Configuration channels are used to organize configuration files. You can subscribe clients to configuration
channels, and deploy configuration files as required.

Configuration files are version-controlled, so you can add configuration settings, test them on your clients,
and roll back to a previous revision as required. When you have created your configuration channels, you
can also perform comparisons between various configuration files, and between revisions of the same
configuration file.

Configuration files can be centrally managed, or locally managed. Centrally managed configuration files
are provided by global configuration channels. Locally managed configuration files are created or
uploaded to Uyuni directly.

The available configuration management features are different for Salt and traditional clients. This table
shows the supported features on different client types:

Table 40. Configuration Management Supported Features

Feature Salt Traditional
Global Configuration Channels «

Deploying Files v

(N

Comparing Files
Locally Managed Files
Sandbox Files
Applying the Highstate

File Import from a Client

C L X € K < X

X X ¢ X X

Configuration Macros

7.4.1. Prepare Traditional Clients for Configuration Management

Traditional clients require some extra preparation to use configuration management. If you installed your
traditional client with AutoYaST or Kickstart you probably already have the appropriate packages. For
other traditional clients, ensure you have installed the relevant tools child channel for your client operating
system. For more information about software channels, see Client-configuration > Channels.

The packages you require are:

* mgr-cfg: base libraries and functions needed by all mgr -cfg-* packages
* mgr-cfg-actions: required to run configuration actions scheduled using Uyuni.

* mgr-cfg-client: provides a command line interface to the client features of the configuration
management system.

* mgr-cfg-management: provides a command line interface to manage Uyuni configuration.
You can install these packages during the bootstrap process by navigating to Systems > Activation Keys,
clicking the activation key you intend to use during bootstrap, and checking the Configuration File

Deployment option. For more information about activation keys, see Client-configuration >
Activation-keys.

7.4.2. Create Configuration Channels
To create a new central configuration channel:

Procedure: Creating Central Configuration Channel

1. In the Uyuni Web Ul, navigate to Configuration > Channels, and click [Create Confi g
Channel].

Type a name for the channel.

Type a label for the channel. This field must contain only letters, numbers, hyphens (-) and
underscores (_).

Type a description for the channel that allows you to distinguish it from other channels.

Click [Creat e Config Channel] to create the new channel.

You can also use a configuration channel to manage Salt states on Salt clients.

Procedure: Creating a Salt State Channel

L.

In the Uyuni Web UL, navigate to Configuration > Channels, and click [Create State
Channel].

Type a name for the channel.

Type a label for the channel. This field must contain only letters, numbers, hyphens (-) and
underscores (_).

Type a description for the channel that allows you to distinguish it from other channels.
Type the SLS Contents for the init.s1s file.

Click [Creat e Confi g Channel] to create the new channel.

7.4.3. Add Configuration Files, Directories, or Symbolic Links

When you have created a configuration channel you can add a configuration file, directory, or symbolic

link:

Procedure: Adding a Configuration File, Directory, or Symbolic Link

1.

In the Uyuni Web Ul, navigate to Configuration > Channels, and click the name of the
configuration channel that you want to add a configuration file to, and navigate to the Add Files >
Create File subtab.

In the File Type field, choose whether you want to create a text file, directory, or symbolic link.

. In the Filename/Path field, type the absolute path to the location where the file should be

deployed.

If you are creating a symbolic link, type the target file and path in the Symbolic Link Target
Filename/Path field.

Type the User name and Group name for the file in the Ownership field, and the File
Permissions Mode.

If the client has SELinux enabled, you can configure SELinux contexts to enable the required
file attributes (for example: user, role, and file type).

If the configuration file includes a macro, enter the symbol that marks the beginning and end of the
macro.

Enter the configuration file contents in the File Contents text box, using the script drop-down

0.

box to choose the appropriate scripting language.

Click [Create Configuration File].

7.4.4. Subscribe Clients to Configuration Channels

You can subscribe individual clients to configuration channels by navigating to Systems > System List,

selecting the client you want to subscribe, and navigating to the Configuration tab. To subscribe
multiple clients to a configuration channel, you can use the system set manager (SSM).

Procedure: Subscribing Multiple Clients to Configuration Channels

1.

In the Uyuni Web UI, navigate to Systems > Systems List and select the clients you want to work
with.

Navigate to Systems > System Set Manager, and go to the Configuration > Subscribe to Channels
subtab to see the list of available configuration channels.

OPTIONAL: Click the number in the Systems currently subscribed column to see which
clients are currently subscribed to the configuration channel.

Check the configuration channels you want to subscribe to, and click [Cont i nue] .

Rank the configuration channels using the up and down arrows. Where settings conflicts occur
between configuration channels, channels closer to the top of the list take precedence.

Determine how the channels are applied to the selected clients. Click [Subscri be Wth
Lowest Priority] to add the new channels at a lower priority than currently subscribed
channels. Click [Subscribe with H ghest Priority] to add the new channels at a
higher priority than currently subscribed channels. Click [Replace Existing
Subscri pti ons] to remove existing channels and replace them with the new channels.

Click [Appl y Subscri ptions].

If new configuration channel priorities conflict with existing channels, the
duplicate channel is removed and replaced according to the new priority. If the
client’s configuration priorities are going to be reordered by an action, the
Web UI requires you to confirm the change before proceeding.

7.4.5. Compare Configuration Files

You can also use the system set manager (SSM) to compare the configuration file deployed on clients
with the configuration file stored on the Uyuni Server.

Procedure: Comparing Configuration Files

1. In the Uyuni Web UI, navigate to Systems > Systems List and select the clients subscribed to the

configuration files you want to compare.

2. Navigate to Systems > System Set Manager, and go to the Configuration > Compare Files subtab

3.

to the list of available configuration files.

OPTIONAL: Click the number in the Systems column to see which clients are currently subscribed

to the configuration file.

4. Check the configuration files to compare, and click [Schedul e Fi | e Conpari son].

7.4.6. Configuration File Macros on Traditional Clients

Being able to store one file and share identical configurations is useful, but in some cases you might need
many variations of the same configuration file, or configuration files that differ only in system-specific
details, such as host name and MAC address. In this case, you can use macros or variables within the
configuration files. This allows you to upload and distribute a single file, with hundreds or even thousands
of variations. In addition to variables for custom system information, the following standard macros are
supported:

rhn.system.sid

rhn.system.profile_name

rhn.system.description

rhn.system.hostname

rhn.system.ip_address
rhn.system.custom_info(key_name)
rhn.system.net_interface.ip_address(eth_device)
rhn.system.net_interface.netmask(eth_device)
rhn.system.net_interface.broadcast(eth_device)
rhn.system.net_interface.hardware_address(eth_device)
rhn.system.net_interface.driver_module(eth_device)

To use this feature, either upload or create a configuration file via the Configuration Channel
Details page. Then open its Configuration File Details page and include the supported
macros of your choice. Ensure that the delimiters used to offset your variables match those set in the
Macro Start Delimiter and Macro End Delimiter fields and do not c