
Uyuni 2021.12
Salt Guide
December 07 2021

Table of Contents
Salt Guide Overview 1

1. Terminology 2
2. The Salt Command 4

2.1. Salt Targets. 4
2.2. Salt Execution Modules . 5
2.3. Salt Function Arguments . 5

3. Often Used Salt Commands 7
4. Salt States and Pillars 9

4.1. Group States. 9
4.2. Salt Pillars . 10
4.3. Download Endpoint . 11

5. Custom Salt States 13
5.1. Create a New Custom Salt Channel . 13
5.2. Example Custom State Files . 14
5.3. Custom State to Trust a GPG Key . 15
5.4. Apply a custom state at highstate . 16

6. Salt File Locations and Structure 17
7. The gitfs Fileserver Backend 20
8. Install with Yomi 22

8.1. Install the Yomi Formula . 22
8.2. Install the PXE Image . 23
8.3. Register Yomi in Cobbler . 23
8.4. Example Salt Pillar Preparation . 25
8.5. Monitor the Installation . 27

9. Configuration Modules 28
9.1. Install Configuration Modules . 28

10. Formulas 29
10.1. Formulas Provided by Uyuni . 29

10.1.1. Install Formulas with Zypper . 29
10.1.2. Activate Formulas from the Web UI. 30

10.2. Bind Formula . 30
10.3. Branch Network Formula . 32

10.3.1. Set Up a Branch Server Networking. 32
10.3.2. Set up Branch Server Terminal Naming . 34

10.4. DHCPd Formula. 34
10.5. Image Synchronization Formula . 35
10.6. Monitoring Formula . 36
10.7. PXE Formula . 39

10.7.1. Saltboot Kernel Command Line Parameters. 40
10.8. Saltboot Formula . 41

10.8.1. Special Partition Types . 43
10.8.2. Disk Selection in Saltboot Formula . 44
10.8.3. Troubleshooting the Saltboot Formula . 44

10.9. TFTPD Formula . 44
10.10. VsFTPd Formula . 45
10.11. Yomi Formula . 45

10.12. Custom Salt Formulas. 49
10.12.1. File Structure Overview . 49
10.12.2. Define Formula with Forms Data . 50
10.12.3. Writing Salt Formulas. 60
10.12.4. Separate Data . 61
10.12.5. Generated Pillar Data . 62

11. Salt SSH 64
11.1. SSH Connection Methods . 64
11.2. Salt SSH Integration . 64
11.3. Authentication . 64
11.4. User Account . 64
11.5. HTTP Redirection . 65
11.6. Call Sequence. 65
11.7. Bootstrap Sequence . 66
11.8. Proxy Support. 68
11.9. Users and SSH Key Management. 71
11.10. Repository Access with a Proxy . 72
11.11. Proxy Setup . 73

12. Rate Limiting 74
12.1. Batching . 74
12.2. Disabling the Salt Mine . 74

13. Large Scale Deployments 76
14. GNU Free Documentation License 77

Salt Guide Overview
Updated: 2021-12-07

Salt is a remote execution engine, configuration management and orchestration system used by Uyuni to
manage clients.

In Uyuni, the Salt master runs on the Uyuni Server, allowing you to register and manage Salt clients.

This book is designed to be a primer for using Salt with Uyuni.

For more information about Salt, see the Salt documentation at https://docs.saltstack.com/en/latest/
contents.html.

The current version of Salt in Uyuni is 3002.

Throughout the Uyuni documentation, we use the term Salt clients to refer
to Salt machines that are connected to and controlled by the Salt master on the
Uyuni Server. This is to clearly differentiate them from traditional clients. In
other documentation, and in some internal references, Salt clients are sometimes
referred to as Salt minions instead. This is a difference in terminology only.

1 / 83 | Uyuni 2021.12

https://docs.saltstack.com/en/latest/contents.html
https://docs.saltstack.com/en/latest/contents.html

Chapter 1. Terminology
Beacon

Beacons allow you to use the Salt event system to monitor non-Salt processes. Clients can use
beacons to connect to various system processes for constant monitoring. When a monitored activity
occurs, an event is sent on the Salt event bus that can then trigger a reactor.

To use beacons on SUSE Linux Enterprise Server Salt clients, install the
python-pyinotify package. For Red Hat Enterprise Linux systems,
install the python-inotify package.

For more information on beacons, see https://docs.saltstack.com/en/latest/topics/beacons/

Broker

The Salt broker allows clients to pass commands to each other. The broker acts like a switch, therefore
peer communication will only work for clients on the same network, or connected to the same proxy.

For more information on Salt and peer communication, see https://docs.saltstack.com/en/latest/ref/
peer.html.

Environment

Uyuni implements Salt with a single environment. Multiple Salt environments are not supported.

Formulas

Formulas are collections of Salt States that contain generic parameter fields. Formulas are used within
Uyuni to assist with configuring Salt clients. Some formulas have extensive configuration options, and
use forms to help organize them in the Uyuni Web UI.

For more information about formulas, see Salt › Formulas-intro.

Grains

Grains provide information about the hardware of a client. This includes the operating system, IP
addresses, network interfaces, and memory. When you run a Salt command any modules and
functions are run locally from the system being called. Salt modules are stored on clients and the
Uyuni Server within the /usr/lib/python*/site-packages/salt/ directory.

For more information on grains, see https://docs.saltstack.com/en/latest/topics/grains/.

Highstate

This term is used when you apply all outstanding states to all targeted clients at the same time. The
highstate must be applied when doing changes to systems, including enabling and disabling formulas.

Key Fingerprints

Key fingerprints are exchanged between the Uyuni Server and Salt clients to verify the identity of the
server and the client. This prevents Salt clients from connecting to the wrong server. You can see the

2 / 83 Chapter 1. Terminology | Uyuni 2021.12

https://docs.saltstack.com/en/latest/topics/beacons/
https://docs.saltstack.com/en/latest/ref/peer.html
https://docs.saltstack.com/en/latest/ref/peer.html
https://docs.saltstack.com/en/latest/topics/grains/

fingerprints of your Salt clients by navigating to Salt › Keys.

Master

The Salt master issues commands to its attached clients. In Uyuni, the Salt master must be the Uyuni
Server.

Minions

Salt clients that are connected to and controlled by the Salt master on the Uyuni Server. In Uyuni,
these are referred to as Salt clients, in order to clearly differentiate them from traditional clients. This
is a difference in terminology only.

Modules

Functions within Salt are stored in modules. There are many types of Salt modules, including state
and execution modules. For a complete list of available Salt modules, see https://docs.saltstack.com/
en/latest/ref/index.html. Alternatively, you can write your own Salt modules using Python.

Pillars

Pillars are created on the Uyuni Server. They contain information about a client or group of clients.
Pillars allow you to send confidential information to a targeted client or group of clients. Pillars are
useful for sensitive data, configuration of clients, variables, and any arbitrary data.

For more information on pillars, see https://docs.saltstack.com/en/latest/topics/tutorials/pillar.html.

States

States are configuration templates. They allow you to describe what each of your systems should look
like, including the applications and services that are installed and running. States are applied to the
target client. This automates the process of bringing a large number of systems into a known state, and
then maintaining them.

Do not update the salt package using states. Update all other system
packages using states. You can then update the salt package from the
Uyuni Web UI as a separate step.

For more information on states, see https://docs.saltstack.com/en/latest/topics/tutorials/
starting_states.html.

For more Salt terminology, see https://docs.saltstack.com/en/latest/glossary.html.

3 / 83 Chapter 1. Terminology | Uyuni 2021.12

https://docs.saltstack.com/en/latest/ref/index.html
https://docs.saltstack.com/en/latest/ref/index.html
https://docs.saltstack.com/en/latest/topics/tutorials/pillar.html
https://docs.saltstack.com/en/latest/topics/tutorials/starting_states.html
https://docs.saltstack.com/en/latest/topics/tutorials/starting_states.html
https://docs.saltstack.com/en/latest/glossary.html

Chapter 2. The Salt Command
Salt commands have three main components: target, function, and arguments. The calls are constructed in
this format:

salt 'target' <function> [arguments]

The target defines the client, or group of clients, on which to run the function.

The function is the particular task to be run.

Arguments provide any extra data required by the function.

2.1. Salt Targets
Salt command targets allow you to specify a client or group of clients. There are several different targets
you can use.

General Targeting

List available grains on all clients:

salt '*' grains.ls

Target a specific client:

salt 'web1.example.com' test.ping

Glob Targeting

Target all clients using a particular domain:

salt '*example.com' test.ping

Target all clients using a particular label:

salt 'label*' test.ping

List Targeting

Specify a flat list of clients, using their IDs:

salt -L 'client_ID1, client_ID2, client_ID3' test.ping

2.1. Salt Targets

4 / 83 2.1. Salt Targets | Uyuni 2021.12

Regular Expression Targeting

You can also define targets with PCRE-compliant regular expressions:

salt -E '(?!web)' test.ping

IP Address Targeting

List available client IP addresses:

salt '*' network.ip_addrs

Target a specific client IP address:

salt -S '172.31.60.74' test.ping

Target all clients on a subnet:

salt -S 172.31.0.0/16 test.ping

For more on targeting, see https://docs.saltstack.com/en/latest/topics/targeting/.

2.2. Salt Execution Modules
When you have specified a target, provide the module and function to execute on the target.

Find which modules can be executed on the target:

salt '*' sys.doc

For a full list of callable modules, see https://docs.saltstack.com/en/latest/ref/modules/all/index.html.

2.3. Salt Function Arguments
Functions accept arguments for any extra data.

For example, the pkg.install function requires an argument specifying which package to install:

salt '*' pkg.install yast2

You can provide more than one argument to a function, with spaces between them. For example:

2.2. Salt Execution Modules

5 / 83 2.2. Salt Execution Modules | Uyuni 2021.12

https://docs.saltstack.com/en/latest/topics/targeting/
https://docs.saltstack.com/en/latest/ref/modules/all/index.html

salt '*' cmd.run 'echo "Hello: $FIRST_NAME"' env='{FIRST_NAME: "John"}'

2.3. Salt Function Arguments

6 / 83 2.3. Salt Function Arguments | Uyuni 2021.12

Chapter 3. Often Used Salt Commands
This section contains the most commonly used Salt commands. For a complete list of available Salt
commands, see https://docs.saltstack.com/en/latest/ref/cli/index.html.

salt-run

Display all clients that are running:

salt-run manage.up

Display all clients that are not running:

salt-run manage.down

Display the current status of all Salt clients:

salt-run manage.status

Check the version of Salt running on the Uyuni Server and active clients:

salt-run manage.versions

salt-cp

Copy a file to a client or set of clients:

salt-cp '*' foo.conf /root

salt-key -l

List public keys:

salt-key -l all

salt-key -a my-minion

Accept pending key for a minion:

salt-key -a my-minion

salt-key -A

Accept all pending keys:

7 / 83 Chapter 3. Often Used Salt Commands | Uyuni 2021.12

https://docs.saltstack.com/en/latest/ref/cli/index.html

salt-key -A

salt grains

List all available grains:

salt '*' grains.ls

List collected grain system data:

salt '*' grains.items

8 / 83 Chapter 3. Often Used Salt Commands | Uyuni 2021.12

Chapter 4. Salt States and Pillars
States are configuration templates. They allow you to describe what each of your systems should look
like, including the applications and services that are installed and running. Salt state files are referred to as
SLS (SaLt State) files.

States are applied to the target systems by matching relevant state data to clients. The state data comes
from Uyuni in the form of package and custom states.

You can target clients at three specific levels of hierarchy and priority: individual clients, system groups,
and organization. Individual clients have priority over groups, and groups have priority over the
organization.

For example:

• The Organization requires that version 1 is installed. All clients are part of the same Organization.

• Group A requires that version 2 is installed. Client1, Client2, and Client3 are part of Group A.

• Group B requires any version installed. Client4 is part of Group B.

Leading to these possible scenarios:

• Client1 wants package removed, package is removed (Client Level)

• Client2 wants version 2, gets version 2 (Client Level)

• Client3 wants any version, gets version 2 (Group Level)

• Client4 wants any version, gets version 1 (Organization Level)

For more information on Salt states, see https://docs.saltproject.io/en/latest/topics/states/.

You can create custom Salt states with Uyuni. For more information, see Salt › Custom-states.

4.1. Group States
Pillar data can be used to perform bulk actions, like applying all assigned states to clients within the
group. This section contains some examples of bulk actions that you can take using group states.

To perform these actions, you will need to determine the ID of the group that you want to manipulate.
You can determine the Group ID by using the spacecmd command:

spacecmd group_details

These examples use an example Group ID of GID.

To apply all states assigned to the group:

4.1. Group States

9 / 83 4.1. Group States | Uyuni 2021.12

https://docs.saltproject.io/en/latest/topics/states/

salt -I 'group_ids:GID' state.apply custom.group_GID

To apply any state (whether or not it is assigned to the group):

salt -I 'group_ids:GID' state.apply ``state``

To apply a custom state:

salt -I 'group_ids:2130' state.apply manager_org_1.``customstate``

Apply the highstate to all clients in the group:

salt -I 'group_ids:GID' state.apply

4.2. Salt Pillars
Uyuni exposes a small amount of internal data as pillars which can be used with custom states. Pillars are
created on the Uyuni Server, and contain information about a client or group of clients. For custom
information in pillars, see Client-configuration › Custom-info. Pillars are useful for sensitive data,
configuration of clients, variables, and any arbitrary data.

Pillars are managed either automatically by Uyuni, or manually by the user.

To avoid hard-coding organization IDs within SUSE Linux Enterprise Server files, a pillar entry is added
for each organization:

org-files-dir: relative_path_to_files

The specified file is available for all clients which belong to the organization.

This is an example of a pillar located at /etc/motd:

file.managed:
 - source: salt://{{ pillar['org-files-dir']}}/motd
 - user: root
 - group: root
 - mode: 644

For more information on Salt pillars, see https://docs.saltproject.io/en/latest/topics/pillar/.

4.2. Salt Pillars

10 / 83 4.2. Salt Pillars | Uyuni 2021.12

https://docs.saltproject.io/en/latest/topics/pillar/

4.3. Download Endpoint
By default, Uyuni assumes that the download endpoint to use is the FQDN of the Uyuni Server or Proxy.
However, there are some cases where you might like to use a different FQDN as the download endpoint.
The most common example is if you need to use load balancing, caching proxies, or in environments with
complicated networking requirements.

To change the package download endpoint, you can manually adjust three Salt pillars: *
pkg_download_point_protocol, defaults to https. * pkg_download_point_host, defaults to
the FQDN of the Uyuni Server (or Proxy, if in use). * pkg_download_point_port, defaults to 443.

If you do not adjust these pillars directly, Uyuni will fall back to the default values.

Procedure: Changing the Package Download Endpoint Pillar

1. Navigate to /srv/pillar/ and create a file called top.sls with these contents:

base:
 '*':
 - pkg_download_points

This example directs Salt to look at the pkg_download_points.sls file to determine the base
URL to use. You can adjust this file to target different clients or groups, depending on your
environment.

2. Remain in /srv/pillar/ and create a file called pkg_download_points.sls with the base
URLs you want to use. For example:

pkg_download_point_protocol: http
pkg_download_point_host: example.com
pkg_download_point_port: 444

3. OPTIONAL: If you want to use external pillars, for example Group IDs, open the master
configuration file and set the ext_pillar_first parameter to true. You can then use Group
IDs to set conditional values, for example:

{% if pillar['group_ids'] is defined and 8 in pillar['group_ids'] %}
 pkg_download_point_protocol: http
 pkg_download_point_host: example.com
 pkg_download_point_port: 444
{% else %}
 pkg_download_point_protocol: ftp
 pkg_download_point_host: example.com
 pkg_download_point_port: 445
{%- endif %}

4. OPTIONAL: You can also use grains to set conditional values, for example:

4.3. Download Endpoint

11 / 83 4.3. Download Endpoint | Uyuni 2021.12

{% if grains['fqdn'] == 'client1.example.com' %}
 pkg_download_point: example1.com
{% elif grains['fqdn'] == 'client2.example.com'' %}
 pkg_download_point: example2.com
{% else %}
 pkg_download_point: example.com
{% endif %}

4.3. Download Endpoint

12 / 83 4.3. Download Endpoint | Uyuni 2021.12

Chapter 5. Custom Salt States
You can create your own custom Salt states with Uyuni as centrally managed configuration channels.
Custom states are stored as Salt state files on the Uyuni Server with a .sls extension.

5.1. Create a New Custom Salt Channel
You can use the Uyuni Web UI to create and edit custom Salt state files. You must create a state channel
first, with an initial state named init.sls. The init.sls file is used to reference all other state files
within the channel. The custom states that you create using the Web UI are stored on the Uyuni Server in
the the /srv/susemanager/salt/<organization>/ directory.

After the channel is created with an init.sls file, you can write additional state files in the Web UI.
Alternatively, you can upload existing state files to use within your state channel, or import them from
other channels or clients.

Procedure: Creating a Custom Salt Channel and Initial State

1. In the Uyuni Web UI, navigate to Configuration › Channels.

2. Click [Create State Channel].

3. In the Name field, type a name for your state.

4. In the Label field, type a label. Use alphanumeric characters, hyphens, and underscores. Do not use
spaces.

5. In the Description field, type a short description of the configuration your state performs.

6. In the SLS Contents field, type the contents of your init.sls state. If you want to reference file
templates in this configuration channel, ensure your file starts by specifying the source of the
managed file, using this syntax:

file.managed:
 - source: salt://<org_name>/<channel_name>/etc/<ID>/<filename>

 Example custom state files are given later in this section.
. Click btn:[Update Channel] to save your state.

Procedure: Adding Additional Files to a Custom State Channel

1. In the Uyuni Web UI, navigate to Configuration › Channels. . Click the name of the channel you
want to add files to.

2. To create a new file, click btn:Create configuration file and type the contents of the file.

3. To upload an existing file, click [Upload Configuration Files] and select the file to
upload.

4. To copy an existing file, click [Import a File from Another Channel or System]

5.1. Create a New Custom Salt Channel

13 / 83 5.1. Create a New Custom Salt Channel | Uyuni 2021.12

and select the file to copy.

Procedure: Editing a Custom Salt State

1. In the Uyuni Web UI, navigate to Configuration › Channels.

2. Click [View/Edit <filename>.sls File].

3. Make your changes to the file.

4. Click [Update Configuration File] to save your state.

You can also manage revisions, compare the state to others in your organization, and download the .sls
file from this dialog.

Procedure: Assigning a Client to a Custom Salt State

1. In the Uyuni Web UI, navigate to Configuration › Channels.

2. Click the name of the state you want to assign a client to.

3. Navigate to the Systems › Target Systems tab.

4. Check the clients you want to assign.

5. Click [Subscribe systems].

For more information about Salt state modules, see https://docs.saltproject.io/en/latest/ref/states/all/
index.html.

5.2. Example Custom State Files
This section contains some example custom state files. Use these as a basis for writing your own custom
states.

Listing 1. Example: Manage a File

my_config_change_id:
 file.managed:
 - name: /etc/my.conf
 - source: salt://example_org/example_channel/etc/my.conf
 - user: root
 - group: root
 - mode: 644
 - template: jinja

Listing 2. Example: Package Management

my_pkg_id:
 pkg.installed:
 - refresh: True
 - pkgs:
 - glibc
 - kernel-default
 - hello: 1.0-42

5.2. Example Custom State Files

14 / 83 5.2. Example Custom State Files | Uyuni 2021.12

https://docs.saltproject.io/en/latest/ref/states/all/index.html
https://docs.saltproject.io/en/latest/ref/states/all/index.html

Listing 3. Example: Remote Command

ip_forward-on:
 cmd.run:
 - name: echo "1" > /proc/sys/net/ipv4/ip_forward
 - onlyif:
 - test `cat /proc/sys/net/ipv4/ip_forward` -eq 0

Listing 4. Example: Service Management

time_service_id:
 service.running:
 - name: chronyd
 - enable: True

5.3. Custom State to Trust a GPG Key
By default, operating systems trust only their own GPG keys when they are installed, and do not trust keys
provided by third party packages. The clients can be successfully bootstrapped without the GPG key
being trusted. However, you cannot install new third party packages or update them until the keys are
trusted.

Salt clients are set to trust SUSE tools channels GPG keys when they are bootstrapped. For all other
clients and channels, you need to manually trust third party GPG keys.

If you are bootstrapping Salt clients from the Uyuni Web UI, you can use a custom Salt state to trust the
GPG key.

Procedure: Trusting a GPG Key With a Custom Salt State

1. Locate the key that you need to trust. Ensure you have the correct key, and that you also have the
fingerprint used to verify the key. This information is available from the vendor or, in some cases,
from a key server.

2. Copy the key to a file location where the client can access it. We recommend saving it in the
/srv/www/htdocs/pub/ directory, where all SUSE public keys are also saved.

3. In the Uyuni Web UI, navigate to Configuration › Channels.

4. Click [Create State Channel].

5. In the Name field, type a name for your state. For example, GPG Key Trusts.

6. In the Label field, type a label. For example, GPG_Key_Trusts.

7. In the Description field, type a short description of the configuration your state performs. For
example, Trusts GPG Keys for CentOS.

8. In the SLS Contents field, create a state to retrieve the appropriate key from the Uyuni Server and
trust it on the client. The exact contents of your state varies depending on your client operating
system. For example:

5.3. Custom State to Trust a GPG Key

15 / 83 5.3. Custom State to Trust a GPG Key | Uyuni 2021.12

rpm_trust_gpg_key:
 cmd.run:
 - name: rpm --import https://{{ salt['pillar.get']('mgr_server') }}/pub/<third-
party-gpg>.key
 - unless: rpm -q gpg-pubkey-<key_id>

deb_trust_gpg_key:
 mgrcompat.module_run:
 - name: pkg.add_repo_key
 - path: https://{{ salt['pillar.get']('mgr_server') }}/pub/<third-party-gpg>.key

 Alternatively, you can add GPG keys to a configuration channel, using a managed file
to deploy them directly on the client.
 In this case, you would use a local path to the key, rather than a URL.
. Click btn:[Update Channel] to save your state.
. Navigate to menu:Configuration[Channels] and click the name of the state you want to
assign a client to.
. Navigate to the menu:Systems[Target Systems] tab and check the clients you want to
assign.
. Click btn:[Subscribe systems].
 When the configuration file is next run on the client, the GPG key is trusted.

Alternatively, you can manage your GPG keys from your own repository hosted on an external file
management system.

5.4. Apply a custom state at highstate
To apply a custom state at highstate create a mapping in /srv/salt/top.sls. This short example
maps the test state to the system group 12:

/srv/salt/top.sls
base:
 'group_ids:12':
 - match: pillar
 - test

5.4. Apply a custom state at highstate

16 / 83 5.4. Apply a custom state at highstate | Uyuni 2021.12

Chapter 6. Salt File Locations and Structure
There are several ways to set up the Salt file structure. This section describes how Salt is supported and
set up as part of Uyuni Server. The main configuration file is
/etc/salt/master.d/susemanager.conf.

Do not edit the /etc/salt/master.d/susemanager.conf configuration
file. This file belongs to the spacewalk-setup package and is marked as
%config. When SUSE updates the spacewalk-setup package, the
susemanager.conf file is overwritten, and any customization is lost. Instead,
add your own configuration file to the /etc/salt/master.d/ directory. This
prevents the update process from deleting your settings from the main
susemanager.conf configuration file.

Some settings from /etc/salt/master.d/susemanager.conf that can help with finding
configuration options:

Configure different file roots. Custom salt states should only be placed in
/srv/salt.
Users should not touch other directories listed here.
file_roots:
 base:
 - /usr/share/susemanager/salt
 - /usr/share/salt-formulas/states
 - /usr/share/susemanager/formulas/states
 - /srv/susemanager/salt
 - /srv/salt

Configure different pillar roots. Custom pillar data should only be placed
in /srv/pillar.
Users should not touch other directories listed here.
pillar_roots:
 base:
 - /srv/pillar

When you are working with /etc/salt/master.d/susemanager.conf, be aware that:

• Files listed are searched in the order they appear

• The first matching file found is called

The Uyuni Server reads Salt state data from five root directories:

/usr/share/susemanager/salt

This directory is shipped and updated with Uyuni and includes certificate setup and common state
logic to be applied to packages and channels.

 Do not edit or add custom Salt data to this directory.

17 / 83 Chapter 6. Salt File Locations and Structure | Uyuni 2021.12

/usr/share/salt-formulas/states

/usr/share/susemanager/formulas/states

These directories are shipped and updated with Uyuni or additional extensions. They include states
for Salt formulas.

 Do not edit or add custom Salt data to this directory.

/srv/susemanager/salt

This directory is generated by Uyuni, based on assigned channels and packages for clients, groups,
and organizations. This directory will be overwritten and regenerated. It is the Salt equivalent of the
Uyuni database.

 Do not edit or add custom Salt data to this directory.

Within this directory, each organization has a sub-directory.

Listing 5. Example: SLS File Directory Structure

├── manager_org_<org id>
│ ├── files
│ │ ... files needed by states (uploaded by users)...
│ └── state.sls
 ... other SLS files (created by users)...
For example:
├── manager_org_TESTING
│ ├── files
│ │ └── motd # user created
│ │ ... other files needed by states ...
│ └── motd.sls # user created
 ... other SLS files ...

/srv/salt

This directory is used for custom state data, modules, and related data. Uyuni does not operate or use
this directory directly. The state data in this directory is used by the client highstate, and is merged
with the total state result generated by Uyuni. Use this directory for custom Salt data.

The Uyuni Server reads Salt pillar data from two root directories:

/usr/share/susemanager/pillar

This directory is generated by Uyuni. It is shipped and updated together with Uyuni.

 Do not edit or add custom Salt data to this directory.

/srv/pillar

By default, Uyuni does not operate or use this directory directly. The custom pillar data in this
directory is merged with the pillar result created by Uyuni. Use this directory for custom Salt pillar
data.

18 / 83 Chapter 6. Salt File Locations and Structure | Uyuni 2021.12

You can use the gitfs fileserver backend to serve Salt data from git
repositories. For more information, see salt-gitfs.pdf.

19 / 83 Chapter 6. Salt File Locations and Structure | Uyuni 2021.12

salt-gitfs.pdf

Chapter 7. The gitfs Fileserver Backend
In Uyuni, pygit2 is the supported Python interface to git. When pygit2 is installed the gitfs
fileserver backend is available and it is a supported feature.

Configuration options are set in the /etc/salt/master file, or in a separate configuration file in the
/etc/salt/master.d/ directory. The basic settings are:

fileserver_backend

List of fileserver backends that the Salt master checks for files in the order they are defined. Options:

• roots: Files local on the Salt master (Uyuni Server). roots is required to keep the product
running. You can only enable gitfs optionally. Additionally, SUSE strongly recommends to
prefer roots (local files) over gitfs. The standard backend.

• gitfs: Files stored in one or more git repositories. The repositories are defined with
gitfs_remotes.

Example:

fileserver_backend:
 - roots
 - git

gitfs_remotes

List of git repositories. git://, https://, file://, or ssh:// URLs can be configured. For
SSH remotes, a scp-like syntax is also supported; for example:
gitlab@gitlab.example.com:universe/setup.git. Then you can also specify options for
credentials, file locations, or branches such as pubkey, privkey, root,base.

Example:

gitfs_remotes:
 - https://example.com/myformulas/formula.git
 - gitlab@gitlab.example.com:universe/setup.git:
 - pubkey: /var/lib/salt/.ssh/id_rsa_gitlab.pub
 - privkey: /var/lib/salt/.ssh/id_rsa_gitlab
 - root: srv/salt
 - base: master

ext_pillar

List of external pillar interfaces. Salt can also serve pillar data from one or more git repositories. For
syntax and options, also see the gitfs_remotes setting.

Example:

20 / 83 Chapter 7. The gitfs Fileserver Backend | Uyuni 2021.12

ext_pillar:
 - git:
 - master gitlab@gitlab.example.com:universe/setup.git:
 - root: srv/pillar
 - pubkey: /var/lib/salt/.ssh/id_rsa_gitlab.pub
 - privkey: /var/lib/salt/.ssh/id_rsa_gitlab

For more information, see:

• https://docs.saltstack.com/en/latest/topics/tutorials/gitfs.html

• https://docs.saltstack.com/en/latest/ref/configuration/master.html

21 / 83 Chapter 7. The gitfs Fileserver Backend | Uyuni 2021.12

https://docs.saltstack.com/en/latest/topics/tutorials/gitfs.html
https://docs.saltstack.com/en/latest/ref/configuration/master.html

Chapter 8. Install with Yomi
Yomi (yet one more installer) is an installer for SUSE and openSUSE operating systems. Yomi is designed
as a Salt state, and can be used for installing SUSE operating systems on new systems.

In Uyuni, Yomi can be used as part of provisioning new clients, as an alternative to AutoYaST.

Yomi consists of two components:

• The Yomi formula, which contains the Salt states and modules required to perform the installation.

• The operating system image, which includes the pre-configured salt-minion service.

Both components can be used independently of Uyuni, or integrated with it. This section describes how
to use it with Uyuni.

• For more information about using Yomi independently, see https://github.com/openSUSE/yomi.

• For build assets, see https://build.opensuse.org/project/show/systemsmanagement:yomi.

To use Yomi for installing a client operating system, follow this process:

• Install the yomi-formula package.

• Prepare the Salt pillar for the new installation.

• Boot the new client using the PXE boot image for Yomi.

To use Yomi with Uyuni, ensure you have enough available memory. To boot
from USB or DVD image, you need at least 512 MB. To boot from a PXE
server, you need at least 2 GB.

8.1. Install the Yomi Formula
Before you begin, you need to install the Yomi formula, which is available as a package in Uyuni.

The yomi-formula package contains the Salt states and modules that describe the Yomi state, and the
formulas with forms to create the pillar. It also contains documentation about the different sections of the
pillar, and some examples about how to parameterize installations based on openSUSE, MicroOS, or SLE.

The formula package performs these actions:

• Adds a new configuration file called yomi-formula.conf in the /etc/salt/master.d/
directory. This configuration file defines the Python module and Salt states required by Yomi.

• Installs the Yomi Salt states in the /usr/share/salt-formulas/states/ directory.

• Provides some example configuration files in the /usr/share/yomi/ directory.

• Installs the required forms and sub-forms in the /usr/share/salt-formulas/metadata/

8.1. Install the Yomi Formula

22 / 83 8.1. Install the Yomi Formula | Uyuni 2021.12

https://github.com/openSUSE/yomi
https://build.opensuse.org/project/show/systemsmanagement:yomi

directory.

• Provides some pillar examples in the /usr/share/yomi/pillar/ directory.

Procedure: Installing the Yomi Formula

1. On the Uyuni Server, at the command prompt, as root, install the yomi-formula package:

zypper in yomi-formula

2. Restart services:

systemctl restart salt-master.service

For more information about the Yomi formula, see Salt › Formula-yomi

8.2. Install the PXE Image
To provision a new client, you need an operating system image to boot from. You can use any image that
contains a salt-minion service enabled, together with a minimal set of tools that are required during
the installation, for example parted or btrfstools.

Yomi provides an already prepared image, based on openSUSE Tumbleweed, openSUSE Leap (for
Uyuni), or SLE (for SUSE Manager). For Uyuni, the image is packaged as an RPM. This is done in a
similar way to how pxe-default-image is distributed.

The package installs a standard PXE OEM image generated by Kiwi, the initial kernel and initrd in the
/srv/pxe-yomi-image/ directory, and the second stage kernel, initrd and image in the /srv/pxe-
yomi-image/image directory.

Procedure: Installing the PXE Image

1. On the Uyuni Server, at the command prompt, as root, install the pxe-yomi-image service:

zypper in pxe-yomi-image-opensuse15

When you have the package installed, you can register Yomi in Cobbler.

8.3. Register Yomi in Cobbler
Uyuni uses Cobbler to manage the PXE boot service, so you will need to register the image in Cobbler.

Procedure: Registering the Yomi Image in Cobbler

1. On the Uyuni Server, at the command prompt, as root, create a directory for the Yomi image:

8.2. Install the PXE Image

23 / 83 8.2. Install the PXE Image | Uyuni 2021.12

mkdir /srv/tftpboot/pxe-yomi-image

2. Define a distribution in Cobbler, including the path to install the second stage kernel and initrd, the
location of the full image, and any further kernel options. Adjust this command to include the correct
version of the product, and the TFTP server address:

cobbler distro add \
 --name=pxe-yomi-image \
 --kernel=/srv/pxe-yomi-image/linux \
 --initrd=/srv/pxe-yomi-image/initrd \
 --boot-files='/srv/tftpboot/pxe-yomi-image/image.initrd=/srv/pxe-yomi-image/image/pxe
-yomi-image-opensuse15.x86_64-1.0.0.initrd /srv/tftpboot/pxe-yomi-
image/image.kernel=/srv/pxe-yomi-image/image/pxe-yomi-image-opensuse15.x86_64-
1.0.0.kernel /srv/tftpboot/pxe-yomi-image/image.md5=/srv/pxe-yomi-image/image/pxe-yomi-
image-opensuse15.x86_64-1.0.0.md5 /srv/tftpboot/pxe-yomi-
image/image.config.bootoptions=/srv/pxe-yomi-image/image/pxe-yomi-image-opensuse15-
x86_64-1.0.0.config.bootoptions /srv/tftpboot/pxe-yomi-image/image.xz=/srv/pxe-yomi-
image/image/pxe-yomi-image-opensuse15.x86_64-1.0.0.xz' \
 --kernel-options='rd.kiwi.install.pxe rd.kiwi.install.image=tftp://server-address/pxe-
yomi-image/image.xz rd.kiwi.ramdisk ramdisk_size=2097152 net.ifnames=1'

By default, the salt-minion service in pxe-yomi-image is configured to find the Salt master under
the salt address. If the DNS server is not able to resolve this address, you need to adjust the kernel-
options parameter from the Cobbler command that register the distribution, and add a new kernel
command line of master=master_address. This will override the default configuration for the
salt-minion.

Procedure: Registering the Yomi Profile in Cobbler

1. On the Uyuni Server, at the command prompt, as root, define a profile in Cobbler based on the
image.

cobbler profile add \
 --name pxe-yomi-profile \
 --distro=pxe-yomi-image

2. OPTIONAL: Create a system in Cobbler. If you know the MAC address for the new client to be
provisioned, you can have it boot directly from the Yomi image.

cobbler system add \
 --name=yomi \
 --mac=00:11:22:33:44:55 \
 --profile=pxe-yomi-profile

3. When the new node has been provisioned, remove the temporary Cobbler system:

cobbler system remove --name=yomi

8.3. Register Yomi in Cobbler

24 / 83 8.3. Register Yomi in Cobbler | Uyuni 2021.12

8.4. Example Salt Pillar Preparation
The parameters of the new installation are defined with a Salt pillar. The pillar includes parameters that
the Yomi state requires during the installation, including the partitions, file systems, repositories, packages
installed, and services enabled.

The pillar is defined using the formulas with forms. In this example, we prepare the pillar for a minimal
openSUSE Tumbleweed installation. You can find examples for MicroOS or SLES in the example
directory /usr/share/yomi/pillar/.

To begin, boot the client that you want to provision using the Yomi PXE boot image, using the Cobbler
procedures described earlier in this section.

When the salt-minion service is running on the new client, accept the key by navigating to Salt ›
Keys. When the key is accepted, you can view and manage the client by navigating to Systems ›
Overview. Navigate to the Formulas tab, and add all the Yomi Installer formulas to the client. When
you have added all the formulas, complete the forms and sub-forms. This section outlines each form and
provides example settings for a minimal installation. For a detailed explanation of every option, see Salt ›
Formula-yomi.

Yomi

The Yomi form contains some general configuration options. For example, the keyboard language and
layout, the locale information, and the option to perform a full reset of the system after provisioning.

For this example, set the Reboot parameter to yes.

Yomi Storage

This sub-form provides information about the devices, partitioning, file system (including the BtrFS
subvolumes, for example), and LVM and RAID configuration.

For this example, we assume that the new client has a single device named /dev/sda, and that it belongs
to a non-UEFI system. In this case, we have only three partitions: one for the boot loader, one for swap
and one for the system. We also expect to have an ext4 file system for the root directory.

Device 1:

• Device: /dev/sda

• Label: GPT

• Initial Gap: 1 MB

Create three partitions:

• Partition 1:

◦ Partition Number: 1

◦ Partition Size: 1 MB

8.4. Example Salt Pillar Preparation

25 / 83 8.4. Example Salt Pillar Preparation | Uyuni 2021.12

◦ Partition Type: boot

• Partition 2:

◦ Partition Number: 2

◦ Partition Size: 1024 MB

◦ Partition Type: swap

• Partition 3:

◦ Partition Number: 3

◦ Partition Size: rest

◦ Partition Type: linux

Create two file systems:

• Filesystem 1:

◦ Partition: /dev/sda2

◦ Filesystem: swap

• Filesystem 2:

◦ Partition: /dev/sda3

◦ Filesystem: ext4

◦ Mountpoint: /

Yomi Bootloader

This sub-form provides details required for GRUB.

Set these parameters:

• Device: /dev/sda

• Theme: selected

The Kernel parameter can be used for the GRUB append section.

Yomi Software

This form provides the different repositories and packages to install. You can also register the product
in this form, using SUSEConnect, and install the different modules after registering.

For this example we are going to install a very minimal openSUSE Tumbleweed distribution, using
publicly available repositories. For production deployments, you will need to provide a local repository.

Add a new repository: * Repository Name: repo-oss * Repository URL: http://download.opensuse.org/
tumbleweed/repo/oss/

8.4. Example Salt Pillar Preparation

26 / 83 8.4. Example Salt Pillar Preparation | Uyuni 2021.12

http://download.opensuse.org/tumbleweed/repo/oss/
http://download.opensuse.org/tumbleweed/repo/oss/

Add these packages: * pattern:enhanced_base * glibc-locale * kernel-default

You can also add patterns and products, together with packages, by using the correct prefix.

Yomi Services

By default Yomi is installed with the salt-minion service, but you must enable it.

Add a new enabled service:

• Service 1:

◦ Service: salt-minion

Yomi Users

This form sets out the system users. In this example, we have a single root user. To provide a
password, you must use the hashed version of the password, not the plain text. This behavior
is set to be changed in future versions of Yomi.

• User 1:

◦ Username: root

◦ Password Hash: 1wYJUgpM5$RXMMeASDc035eXNbYWFl0

8.5. Monitor the Installation
You can monitor the installation as it progresses, using the monitor tool from Yomi. You can continue
monitoring as the highstate is applied to the new client. To use the tool, you will need to have enabled
Events in the Yomi formula, and have the salt-api service activated.

For more information about the salt-api service, and how to use the monitor tool, see
https://github.com/openSUSE/yomi.

8.5. Monitor the Installation

27 / 83 8.5. Monitor the Installation | Uyuni 2021.12

https://github.com/openSUSE/yomi

Chapter 9. Configuration Modules

 This feature is a technology preview.

Salt uses execution and state modules to define, apply, and orchestrate configuration of your devices.
Uyuni provides a set of modules called Uyuni configuration modules, that you can use to configure both
SUSE Manager and Uyuni Servers.

You can use the Uyuni configuration modules directly or using SLS files. They are are especially useful if
you have multiple Uyuni Servers, for example in Hub installations, but they are also useful for smaller
installations.

For more information about using Hub, see Large-deployments › Multi-server.

You can use Uyuni configuration modules to configure:

• Organizations

• Users

• User permissions

• System groups

• Activation Keys

For more information about Salt execution modules, see https://docs.saltstack.com/en/latest/topics/
tutorials/modules.html.

For more information about Salt state modules, see https://docs.saltstack.com/en/latest/topics/tutorials/
starting_states.html.

9.1. Install Configuration Modules
The Uyuni configuration modules are available in the uyuni-config-modules package. On the Uyuni
Server, at the command prompt, as root, use this command:

zypper in uyuni-config-modules

This package also installs detailed API descriptions, indications on pillar settings, and examples. When
you have installed the package, navigate to /usr/share/doc/packages/uyuni-config-
modules/.

9.1. Install Configuration Modules

28 / 83 9.1. Install Configuration Modules | Uyuni 2021.12

https://docs.saltstack.com/en/latest/topics/tutorials/modules.html
https://docs.saltstack.com/en/latest/topics/tutorials/modules.html
https://docs.saltstack.com/en/latest/topics/tutorials/starting_states.html
https://docs.saltstack.com/en/latest/topics/tutorials/starting_states.html

Chapter 10. Formulas
Formulas are collections of Salt States that contain generic parameter fields. Formulas allow for reliable
reproduction of a specific configuration. Some formulas are supplied by SUSE, or you can install formulas
from RPM packages or an external git repository.

Formulas work best for large, non-trivial, configurations. For smaller tasks, use a state rather than a
formula. Formulas and states both act as a kind of configuration documentation. When you have written
and stored the configuration, they provide a snapshot of your infrastructure.

Formula data can be managed using the XMLRPC API.

You can use the Uyuni Web UI to apply Uyuni formulas. The most commonly used formulas are
documented in this section.

Alternatively, you can use pre-written formulas as a starting point for your own custom formulas. Pre-
written formulas are available from https://github.com/saltstack-formulas. For more information on
custom formulas, see Salt › Formulas-custom.

10.1. Formulas Provided by Uyuni
Some formulas are installed by default with Uyuni. Other official formulas can be installed as RPM
packages. When the formula is installed, you can activate them using the Uyuni Web UI.

For information about writing custom formulas, see Salt › Formulas-custom.

10.1.1. Install Formulas with Zypper

Formulas are provided in the Uyuni pool software channel.

If a formula uses the same name as an existing Salt state, the two names will
collide, and could result in the formula being used instead of the state. Always
check states and formulas to avoid name clashes.

Procedure: Installing Formulas with Zypper

1. On the Uyuni Server, at the command prompt, search for available formulas:

zypper se --type package formula

2. Get more information about a formula:

zypper info <formula_name>

3. On the Uyuni Server, at the command prompt, as root, install the formula:

10.1. Formulas Provided by Uyuni

29 / 83 10.1. Formulas Provided by Uyuni | Uyuni 2021.12

https://github.com/saltstack-formulas

zypper in <formula_name>

10.1.2. Activate Formulas from the Web UI

Formulas provided by Uyuni, or formulas that you have installed, can be activated using the Uyuni
Web UI.

Procedure: Activate Formulas from the Web UI

1. In the Uyuni Web UI, navigate to Systems › List, select the client you want to activate the formula
for.

2. Navigate to the Systems › Formulas tab, and check the formula you want to activate.

3. Click [Save].

4. Navigate to the new subtab for the formula, and configure the formula as required.

5. Apply the highstate.

10.2. Bind Formula
The Bind formula is used to configure the Domain Name System (DNS) on the branch server. POS
terminals will use the DNS on the branch server for name resolution of saltboot specific hostnames.

When you are configuring the Bind formula for a branch server with a dedicated internal network, check
that you are using the same fully qualified domain name (FQDN) on both the external and internal branch
networks. If the FQDN does not match on both networks, the branch server will not be recognized as a
proxy server.

The following procedure outlines a standard configuration with two zones.
Adjust it to suit your own environment.

Zone 1 is a regular domain zone. Its main purpose is to resolve saltboot hostnames such as TFTP, FTP, or
Salt. It can also resolve the terminal names if configured.

Zone 2 is the reverse zone of Zone 1. Its main purpose is to resolve IP addresses back to hostnames.
Zone 2 is primarily needed for the correct determination of the FQDNs of the branch.

Procedure: Configuring Bind with Two Zones

1. Check the Bind formula, click Save, and navigate to the Formulas › Bind tab.

2. In the Config section, select Include Forwarders.

3. In the Configured Zones section, use these parameters for Zone 1:

◦ In the Name field, enter the domain name of your branch network (for example:
branch1.example.com).

10.2. Bind Formula

30 / 83 10.2. Bind Formula | Uyuni 2021.12

◦ In the Type field, select master.

4. Click Add item to add a second zone, and set these parameters for Zone 2:

◦ In the Name field, use the reverse zone for the configured IP range (for example:
com.example.branch1).

◦ In the Type field, select master

5. In the Available Zones section, use these parameters for Zone 1:

◦ In the Name field, enter the domain name of your branch network (for example:
branch1.example.org).

◦ In the File field, type the name of your configuration file.

6. In the Start of Authority (SOA) section, use these parameters for Zone 1:

◦ In the Nameserver (NS) field, use the FQDN of the branch server (for example:
branchserver.branch1.example.org).

◦ In the Contact field, use the email address for the domain administrator.

◦ Keep all other fields as their default values.

7. In the Records section, in subsection A, use these parameters to set up an A record for Zone 1:

◦ In the Hostname field, use the hostname of the branch server (for example: branchserver).

◦ In the IP field, use the IP address of the branch server (for example, 192.168.1.5).

8. In the Records section, subsection NS, use these parameters to set up an NS record for Zone 1:

◦ In the input box, use the hostname of the branch server (for example: branchserver).

9. In the Records section, subsection CNAME, use these parameters to set up CNAME records for
Zone 1:

◦ In the Key field, enter tftp, and in the Value field, type the hostname of the branch server
(for example: branchserver).

◦ Click Add Item. In the Key field, enter ftp, and in the Value field, type the hostname of the
branch server.

◦ Click Add Item. In the Key field, enter dns, and in the Value field, type the hostname of the
branch server.

◦ Click Add Item. In the Key field, enter dhcp, and in the Value field, type the hostname of
the branch server.

◦ Click Add Item. In the Key field, enter salt, and in the Value field, type the FQDN of the
branch server (for example: branchserver.branch1.example.org).

10. Set up Zone 2 using the same parameters as for Zone 1, but ensure you use the reverse details:

◦ The same SOA section as Zone 1.

10.2. Bind Formula

31 / 83 10.2. Bind Formula | Uyuni 2021.12

◦ Empty A and CNAME records.

◦ Additionally, configure in Zone 2:

▪ Generate Reverse field by the network IP address set in branch server network formula
(for example, 192.168.1.5/24).

▪ For Zones should specify the domain name of your branch network (for example,
branch1.example.org).

11. Click [Save Formula] to save your configuration.

12. Apply the highstate.

Reverse name resolution on terminals might not work for networks that are
inside one of these IPv4 private address ranges:

• 10.0.0.0/8

• 172.16.0.0/12

• 192.168.0.0/16

If you encounter this problem, go to the Options section of the Bind formula,
and click [Add item]:

• In the Options field, enter empty-zones-enable.

• In the Value field, select No.

10.3. Branch Network Formula
The Branch Network formula is used to configure the networking services required by the branch server,
including DHCP, DNS, TFTP, PXE, and FTP.

10.3.1. Set Up a Branch Server Networking

The branch server can be configured to use networking in many different ways. The most common ways
provide either a dedicated or shared LAN for terminals.

10.3.1.1. Set Up a Branch Server with a Dedicated LAN

In this configuration, the branch server requires at least two network interfaces: one acts as a WAN to
communicate with the SUSE Manager server, and the other one acts as an isolated LAN to communicate
with terminals.

This configuration allows for the branch server to provide DHCP, DNS, TFTP, PXE, and FTP services to
terminals. These services can be configured with Salt formulas in the SUSE Manager Web UI.

Procedure: Setting Up a Branch Server with a Dedicated LAN

10.3. Branch Network Formula

32 / 83 10.3. Branch Network Formula | Uyuni 2021.12

1. In the SUSE Manager Web UI, open the details page for the branch server, and navigate to the
Formulas tab.

2. In the Branch Network section, set these parameters:

◦ Keep Dedicated NIC checked.

◦ In the NIC field, enter the name of the network device that is connected to the internal LAN.

◦ In the IP field, enter the static IP address to be assigned to the branch server on the internal
LAN.

◦ In the Netmask field, enter the network mask of the internal LAN.

3. Check Enable Route if you want the branch server to route traffic from internal LAN to WAN.

◦ Check Enable NAT if you want the branch server to convert addresses from internal LAN to
WAN.

◦ Select the bind DNS forwarder mode.

◦ Check DNS forwarder fallback if you want to rely on an external DNS if the branch DNS fails.

◦ Specify the working directory, and the directory owner and group.

10.3.1.2. Set up a Branch Server with a Shared Network

In this configuration, the branch server has only one network interface card, which is used to connect to
the SUSE Manager server as well as the terminals.

This configuration allows for the branch server to provide DNS, TFTP, PXE, and FTP services to
terminals. These services can be configured with Salt formulas in the SUSE Manager Web UI. Optionally,
the branch server can also provide DHCP services in this configuration.

If DHCP services are not provided by the branch server, ensure that your
external DHCP configuration is set correctly:

• The next-server option must point to the branch server for PXE boot to
work.

• The filename option must correctly identify the network boot program
(by default, this is /boot/pxelinux).

• The domain-name-servers option must point to the branch server for
correct host name resolution.

Procedure: Setting Up a Branch Server with a Shared Network

1. In the SUSE Manager Web UI, open the details page for the branch server, and navigate to the
Formulas tab.

2. In the Branch Network section, set these parameters:

◦ Keep Dedicated NIC unchecked.

10.3. Branch Network Formula

33 / 83 10.3. Branch Network Formula | Uyuni 2021.12

◦ Enable services on the branch server’s firewall. Ensure you include DNS, TFTP, and FTP
services.

◦ Select the bind DNS forwarder mode.

◦ Check DNS forwarder fallback if you want to rely on an external DNS if the branch DNS fails.

◦ Specify the working directory, and the directory owner and group.

10.3.2. Set up Branch Server Terminal Naming

In this configuration it is required to fill at least Branch Identification. This identifies Branch
Server in Retail subsystem and is also used to better organize terminals with their respective branch
servers.

Procedure: Setting up a Branch Server Identification

1. In the SUSE Manager Web UI, open the details page for the branch server, and navigate to the
Formulas tab.

2. In the Terminal Naming section, enter the Branch Identification string.

3. Click [Save] to save your changes.

4. Apply the highstate.

It is also possible to set various options about terminal naming, for more information about terminal
naming see Retail › Retail-terminal-names.

10.4. DHCPd Formula
The DHCPd formula is used to configure the DHCP service on the branch server.

Procedure: Configuring DHCP

1. In the SUSE Manager Web UI, open the details page for the branch server, and navigate to the
Formulas tab.

2. Check the Dhcpd formula, and click [Save].

3. Navigate to the Formulas › Dhcpd tab, and set these parameters:

◦ In the Domain Name field, enter the domain name for the branch server (for example:
branch1.example.com).

◦ In the Domain Name Server field, enter either the IP address or resolvable FQDN of the
branch DNS server (for example: 192.168.1.5).

◦ In the Listen Interfaces field, enter the name of the network interface used to connect to
the local branch network (for example: eth1).

4. Navigate to the Network Configuration (subnet) section, and use these parameters for
Network1:

10.4. DHCPd Formula

34 / 83 10.4. DHCPd Formula | Uyuni 2021.12

◦ In the Network IP field, enter the IP address of the branch server network (for example:
192.168.1.0).

◦ In the Netmask field, enter the network mask of the branch server network (for example:
255.255.255.0).

◦ In the Domain Name field, enter the domain name for the branch server network (for example:
branch1.example.com).

5. In the Dynamic IP Range section, use these parameters to configure the IP range to be served by
the DHCP service:

◦ In the first input box, set the lower bound of the IP range (for example: 192.168.1.51).

◦ In the second input box, set the upper bound of the IP range (for example: 192.168.1.151).

6. In the Broadcast Address field, enter the broadcast IP address for the branch network (for
example: 192.168.1.255).

7. In the Routers field, enter the IP address to be used by routers in the branch server network (for
example: 192.168.1.5).

8. In the Next Server field, enter the hostname or IP address of the branch server (for example:
192.168.1.5).

9. In the Filename field, if you are booting a client using PXE, type the path to the PXE bootloader.
There is usually no need to change the default value of /boot/pxelinux.0.

10. In the Filename Efi field, if you are booting a UEFI client using PXE, type the path to the PXE
bootloader. There is usually no need to change the default value of /boot/shim.efi.

11. In the Filename Http field, if you are booting a UEFI client using HTTP, type
http://branchserver/saltboot/boot/shim.efi.

12. Click [Save Formula] to save your configuration.

13. Apply the highstate.

10.5. Image Synchronization Formula
The Image Synchronization formula is used to configure when OS images are synchronized to the branch
server, and to specify which images to synchronize.

If this formula is not enabled, synchronization must be started manually, and all images will be
synchronized.

Procedure: Configuring Image Synchronization

1. In the SUSE Manager Web UI, open the details page for the branch server, and navigate to the
Formulas tab.

2. Check the Image Synchronize formula, and click [Save].

3. Navigate to the Formulas › Image Synchronize tab, and set these parameters:

10.5. Image Synchronization Formula

35 / 83 10.5. Image Synchronization Formula | Uyuni 2021.12

http://branchserver/saltboot/boot/shim.efi
http://branchserver/saltboot/boot/shim.efi
http://branchserver/saltboot/boot/shim.efi
http://branchserver/saltboot/boot/shim.efi
http://branchserver/saltboot/boot/shim.efi
http://branchserver/saltboot/boot/shim.efi
http://branchserver/saltboot/boot/shim.efi

◦ Check the Include Image Synchronization in Highstate field to have image
synchronization occur every time highstate is applied. This ensures that you do not have to
perform image synchronization manually, however it requires a high bandwidth environment.

◦ In the Synchronize only the listed images field, click [Add item] to add the
images you want to have synchronized automatically. Alternatively, you can leave this list blank
to have all images synchronized.

4. Click [Save Formula] to save your configuration.

5. Apply the highstate.

The Image Synchronization state does not delete cached images. If you are
running out of disk space, check the size of the Salt client cache directory, and
delete it if required. By default, the directory is located at
/var/cache/salt/minion.

10.6. Monitoring Formula
The monitoring services in Uyuni are configured using formulas with forms. The package is installed by
default, and contains these formulas:

• Grafana

• Prometheus

• Prometheus Exporters

For more information about using monitoring, see Administration › Monitoring.

Procedure: Configuring the Grafana Formula

1. Navigate to the Formulas › Grafana tab, and set these parameters in the Grafana section:

◦ Check the Enabled box to enable Grafana visualizations.

◦ In the Default admin user field, type the name of the default Grafana user.

◦ In the Default admin password field, enter a password for the default user. Alternatively,
click [Generate new password] to generate a password and fill the field.

2. For each Prometheus data source you want to use, in the Datasources › Prometheus section, click
[+], and set these parameters:

◦ In the Datasource name field, type a name to identify the data source.

◦ In the Prometheus URL field, type the used protocol, the location of the Prometheus server,
and append port 9090. For example, http://example.com:9090. In case TLS encryption
is enabled in Prometheus formula make sure to use https protocol and FQDN.

◦ In the fields Prometheus server username and Prometheus server password,
enter basic authentication credentials for Prometheus server matching the ones in Prometheus
formula.

10.6. Monitoring Formula

36 / 83 10.6. Monitoring Formula | Uyuni 2021.12

http://example.com:9090

3. In the Dashboards section, check the dashboards you want to use:

◦ Uyuni server dashboard

◦ Uyuni clients dashboard

◦ PostgreSQL dashboard

◦ Apache HTTPD dashboard

◦ Kubernetes cluster dashboard

◦ Kubernetes etcd dashboard

◦ Kubernetes namespaces dashboard

4. Click [Save Formula] to save your configuration.

Procedure: Configuring the Prometheus Formula

1. Navigate to the Formulas › Prometheus tab, and set these parameters in the Prometheus section:

◦ Check the Enabled box to enable Prometheus monitoring.

◦ In the Scrape interval field, type the frequency of data scraping, in seconds. For example,
15 will scrape data every fifteen seconds.

◦ In the Evaluation interval field, type the frequency of rules evaluation, in seconds. For
example, 15 will evaluate alerting and aggregation rules every fifteen seconds.

2. In the TLS section, set these parameters:

◦ Check the Enabled box to enable the secure configuration on Prometheus server.

◦ In the Server Certificate field, type the path to the TLS server certificate.

◦ In the Server Key field, type the path to the TLS server key.

◦ In the User field, type the user name for Prometheus server.

◦ In the Password Hash field, type the password for Prometheus server hashed with bcrypt.

3. In the Uyuni Server section, set these parameters:

◦ Check the Enabled box to enable monitoring on this server.

◦ Check the Autodiscover clients box to enable Prometheus to automatically find and
monitor new clients when they are added to the server.

◦ In the Username field, type the user name of the Prometheus account on the server.

◦ In the Password field, type the password of the Prometheus account on the server.

◦ In the Targets TLS section, set these parameters:

▪ Check the Enabled box to enable the secure configuration for auto-discovered targets.

▪ In the CA Certificate field, type the path to the Certificate Authority certificate.

10.6. Monitoring Formula

37 / 83 10.6. Monitoring Formula | Uyuni 2021.12

▪ In the Client Certificate field, type the path to the TLS client certificate for
authentication.

▪ In the Client Key field, type the path to the TLS client key for authentication.

4. In the Alerting section, set these parameters:

◦ Check the Enable local Alertmanager service box to enable the alert manager
service.

◦ Check the Use local Alertmanager box to use the local alert manager service.

5. For each alert manager you want to use, in the Alerting › Alertmanagers section, click [+], and set
these parameters:

◦ In the IP Address:Port field, type the location of the alert manager target, including the
port number.

6. To use a rule file, in the Alerting › Rule Files section, click [+], and set these parameters:

◦ In the Rule Files field, type the location of the rule file you want to use.

7. To add a custom scrape configuration, in the User defined scrape configurations
section, click [+], and set these parameters:

◦ In the Job name field, type a unique job name for your configuration.

◦ In the Files field, type the location pattern of file service discovery files you want to use. For
more information, see the upstream documentation https://prometheus.io/docs/prometheus/
latest/configuration/configuration/#file_sd_config.

8. Click [Save Formula] to save your configuration.

The formula does not generate and deploy the TLS certificates and keys. Ensure
the files are present on the Salt client and readable for the user prometheus
before applying the highstate. For more information about generating client and
server certificates, see Administration › Monitoring.

Procedure: Configuring the Prometheus Exporters Formula

1. Navigate to the Formulas › Prometheus Exporters tab, and set these parameters in the Node
Exporter section:

◦ Check the Enabled box to enable the node exporter.

◦ In the Arguments field, type any customized arguments for this exporter. For example,
--web.listen-address=":9100".

2. In the Apache Exporter section:

◦ Check the Enabled box to enable the Apache exporter.

◦ In the Arguments field, type any customized arguments for this exporter. For example,
--telemetry.address=":9117".

10.6. Monitoring Formula

38 / 83 10.6. Monitoring Formula | Uyuni 2021.12

https://prometheus.io/docs/prometheus/latest/configuration/configuration/#file_sd_config
https://prometheus.io/docs/prometheus/latest/configuration/configuration/#file_sd_config

3. In the Postgres Exporter section:

◦ Check the Enabled box to enable the PostreSQL exporter.

◦ In the Data source Name field, type the name of the data source to use.

◦ In the Arguments field, type any customized arguments for this exporter. For example,
--web.listen-address=":9187".

4. In the TLS section:

◦ Check the Enabled box to enable the secure configuration.

◦ In the CA Certificate field, type the path to the Certificate Authority certificate.

◦ In the Server Certificate field, type the path to the TLS server certificate.

◦ In the Server Key field, type the path to the TLS server key.

5. Click [Save Formula] to save your configuration.

The formula does not generate and deploy the TLS certificates and keys. Ensure
the files are present on the Salt client and readable for the user prometheus
before applying the highstate. For more information about generating client and
server certificates, see Administration › Monitoring.

When you have completed and saved all the forms, apply the highstate.

For more information about using monitoring, see Administration › Monitoring.

10.7. PXE Formula
The PXE formula is used to configure PXE booting on the branch server.

Procedure: Configuring PXE Booting

1. In the SUSE Manager Web UI, open the details page for the branch server, and navigate to the
Formulas tab.

2. Select the Pxe formula, and click Save.

3. Navigate to the Formulas › Pxe tab, and set these parameters:

◦ In the Kernel Filename field, keep the default value.

◦ In the Initrd Filename field, keep the default value.

◦ If the terminals connecting to this branch server are running ARM64 architecture, check the
Enable ARM64 UEFI boot box. Leave unchecked for x86-64.

◦ In the Kernel Filename for ARM64 field, keep the default value.

◦ In the Initrd Filename for ARM64 field, keep the default value.

10.7. PXE Formula

39 / 83 10.7. PXE Formula | Uyuni 2021.12

◦ In the Kernel Command Line Parameters field, keep the default value. For more
information about possible values, see Saltboot Kernel Command Line Parameters.

◦ In the PXE root directory field, enter the path to the saltboot directory (for example,
/srv/saltboot).

4. Click Save Formula to save your configuration.

5. Apply the highstate.

10.7.1. Saltboot Kernel Command Line Parameters

Saltboot supports common kernel parameters and saltboot-specific kernel parameters. All the parameters
can be entered in the Kernel Command Line Parameters field of the PXE formula.

kiwidebug=1

Starts a shell on tty2 during boot and enables debug logging in Salt.

Do not use this parameter in a production environment as it creates a major
security hole. This parameter should be used only in a development
environment for debug purposes.

MASTER

Overrides auto-detection of the Salt master. For example:

MASTER=myproxy.domain.com

SALT_TIMEOUT

Overrides the local boot fallback timeout if the Salt master does not apply the saltboot state within
this timeout (default: 60 seconds). For example:

SALT_TIMEOUT=300

DISABLE_HOSTNAME_ID

If the terminal has a hostname assigned by DHCP, it is by default used as a minion ID. Setting this
option to 1 disables this mechanism, and SMBios information will be used as a minion ID.

DISABLE_UNIQUE_SUFFIX

Setting this option to 1 disables adding random generated suffix to terminal minion ID.

If you set this parameter make sure your terminal has either a unique hostname provided by DHCP
and DNS, or the terminal hardware comes with a unique serial number stored in its SMBios memory.
Otherwise there is a risk of terminal minion ID duplicity, and bootstrapping the minion will fail.

10.7. PXE Formula

40 / 83 10.7. PXE Formula | Uyuni 2021.12

The following parameters (MINION_ID_PREFIX, salt_device, root) are usually autoconfigured and
should be used only in specific conditions such as debugging or development:

MINION_ID_PREFIX

Branch ID set in the Branch Network formula form.

salt_device

Device that contains the Salt configuration.

root

Device that contains the already deployed root file system. Used for falling back to local boot.

10.8. Saltboot Formula
The Saltboot formula is used to configure disk images and partitioning for the selected hardware type.

The Saltboot formula is meant to be used as a group formula. Enable and
configure Saltboot formula for hardware type groups.

To apply changes to a terminal, terminal needs to be restarted. Applying
highstate does not have any effect on running terminals.

Procedure: Configuring the Hardware Type Group with Saltboot

1. Open the details page for your new hardware type group, and navigate to the Formulas tab.

2. Select the Saltboot formula and click [Save].

3. Navigate to the Formulas › Saltboot tab.

4. In the Disk 1 section, set these parameters:

◦ In the Disk symbolic ID field, enter a custom name for the disk (for example, disk1).

◦ In the Device type field, select DISK.

◦ In the Disk device field, select the device that corresponds to the device name on the target
machine or asterisk *, see Disk Selection in Saltboot Formula.

◦ In the RAID level field, leave it empty.

◦ In the Disk Label field, select gpt.

5. In the Partition section, set these parameters for Partition 1:

◦ In the Partition symbolic ID field, enter a custom name for the partition (for example,
p1).

◦ In the Partition size use value 500.

◦ In the Device mount point use /boot/efi.

10.8. Saltboot Formula

41 / 83 10.8. Saltboot Formula | Uyuni 2021.12

◦ In the Filesystem format use vfat.

◦ In the OS Image to deploy field, leave it empty.

◦ In the Partition encryption password field, leave it empty.

◦ In the Partition flags use boot.

6. In the Partition section, set these parameters for Partition 2:

◦ In the Partition symbolic ID field, enter a custom name for the partition (for example,
p2).

◦ In the Partition size field, specify a size for the partition in Mebibytes (MiB).

◦ In the Device mount point field, select a location to mount the partition (for example,
/data).

◦ In the Filesystem format field, select your preferred format (for example, xfs).

◦ In the OS Image to deploy field, leave it empty.

◦ In the Partition encryption password field, enter a password if you want to encrypt
the partition.

◦ In the Partition flags field, leave it empty.

7. In the Partition section, set these parameters for Partition 3:

◦ In the Partition symbolic ID field, enter a custom name for the partition (for example,
p3).

◦ In the Partition size field, specify a size for the partition in Mebibytes (MiB).

◦ In the Device mount point field, leave it empty.

◦ In the Filesystem format field, select swap.

◦ In the OS Image to deploy field, leave it empty.

◦ In the Partition encryption password field, enter a password if you want to encrypt
the partition.

◦ In the Partition flags field, select swap.

8. In the Partition section, set these parameters for Partition 4:

◦ In the Partition symbolic ID field, enter a custom name for the partition (for example,
p4).

◦ In the Partition size field, leave it empty. This will ensure the partition uses up all
remaining space.

◦ In the Device mount point field, select /.

◦ In the Filesystem format field, leave it empty.

10.8. Saltboot Formula

42 / 83 10.8. Saltboot Formula | Uyuni 2021.12

◦ In the OS Image to deploy field, enter the name of the image to deploy.

◦ In the Image version field, leave it empty. This will ensure you use the latest available
version.

◦ In the Partition encryption password field, enter a password if you want to encrypt
the partition.

◦ In the Partition flags field, leave it empty.

9. Click [Save Formula] to save your configuration.

10.8.1. Special Partition Types

The Saltboot formula helps you with setting up special partition types.

For terminal to be able to boot locally, either BIOS grub or EFI partition must
be configured.

10.8.1.1. BIOS grub Partition

A BIOS grub partition is needed for local booting from a GPT disk on non-EFI machines. For more
information, see https://en.wikipedia.org/wiki/BIOS_boot_partition.

In the formula, enter the following options:

Partition Symbolic ID: p1
Partition Size (MiB): 50
Partition Flags: bios_grub

Leave the other fields empty.

10.8.1.2. EFI Partition

An EFI partition is needed for local booting on EFI machines, Partition Table Type must be GPT.
For more information, see https://en.wikipedia.org/wiki/EFI_system_partition.

In the formula, enter the following options:

Partition Symbolic ID: p1
Partition Size (MiB): 500
Device Mount Point: /boot/efi
Filesystem Format: vfat
Partition Flags: boot

Leave the other fields empty.

10.8. Saltboot Formula

43 / 83 10.8. Saltboot Formula | Uyuni 2021.12

https://en.wikipedia.org/wiki/BIOS_boot_partition
https://en.wikipedia.org/wiki/EFI_system_partition

10.8.2. Disk Selection in Saltboot Formula

When there is only one disk present on target hardware (including USB drives), use an asterisk * to
automatically select the disk device.

When there are multiple disks, use an asterisk * in the device path. In this example, SATA disks are
differentiated from USB disks:

/dev/disk/by-path/*-ata-1
/dev/disk/by-path/*usb*

If the entered value does not contain /, the entered value is automatically prepended by
/dev/disk/by-path/. For example, *usb* is the same as /dev/disk/by-path/*usb*.

If you prefer to select specific devices, you can this format in the disk device field:

• symbolic names (for example: /dev/sda)

• by-path (for example: /dev/disk/by-path/..)

• by-id (for example: /dev/disk/by-id/…)

To see a list of available devices from the command prompt, press Esc while waiting for key approval.

10.8.3. Troubleshooting the Saltboot Formula

msdos Disklabel Limitations

On the msdos disk label, you can create a maximum of four primary partitions. Extended partitions
are not supported. If you need more than four partitions, use the GPT disk label instead.

For more information on troubleshooting problems with the Saltboot formula, see Administration ›
Tshoot-saltboot.

10.9. TFTPD Formula
The TFTPD formula is used to configure the TFTP service on the Uyuni for Retail branch server.

Procedure: Configuring TFTP

1. In the SUSE Manager Web UI, open the details page for the branch server, and navigate to the
Formulas tab.

2. Select the Tftpd formula, and click [Save].

3. Navigate to the Formulas › Tftpd tab, and set these parameters:

◦ In the Internal Network Address field, enter the IP address of the branch server (for
example: 192.168.1.5).

10.9. TFTPD Formula

44 / 83 10.9. TFTPD Formula | Uyuni 2021.12

◦ In the TFTP Base Directory field, enter the path to the saltboot directory (for example,
/srv/saltboot).

◦ In the Run TFTP Under User field, enter saltboot.

4. Click [Save Formula] to save your configuration.

5. Apply the highstate.

10.10. VsFTPd Formula
The VsFTPd formula is used to configure the FTP service on the branch server.

Procedure: Configuring VsFTPd

1. In the SUSE Manager Web UI, open the details page for the branch server, and navigate to the
Formulas tab.

2. Select the Vsftpd formula, and click [Save].

3. Navigate to the Formulas › Vsftpd tab, and set these parameters:

◦ In the FTP server directory field, enter /srv/saltboot.

◦ In the Internal Network Address field, enter the IP address of the branch server (for
example: 192.168.1.5).

◦ All other fields can retain their default values.

4. Click [Save Formula] to save your configuration.

5. Apply the highstate.

10.11. Yomi Formula
The Yomi (yet one more installer) installer for SUSE and openSUSE operating systems is configured
using formulas with forms.

The yomi-formula package provides these formulas:

• Yomi

• Yomi Storage

• Yomi Bootloader

• Yomi Software

• Yomi Services

• Yomi Users

Procedure: Install the Yomi Formulas with Forms

1. On the Uyuni Server, at the command prompt, as root, install the yomi-formula package:

10.10. VsFTPd Formula

45 / 83 10.10. VsFTPd Formula | Uyuni 2021.12

zypper in yomi-formula

2. Restart services:

systemctl restart salt-master.service

When the formula package is installed, you need to install the PXE Yomi image on the client, boot the
client you want to provision, and enable the Yomi formulas on the client. For more information on
preparing Yomi clients for provisioning, see Salt › Yomi.

Procedure: Configuring the Yomi Formula

1. Navigate to the Formulas › Yomi tab, and set these parameters in the General Configuration
section:

◦ Check the Events box to allow monitoring.

◦ In the Reboot field, select yes to instruct the client to reboot after installation.

◦ Check the Snapper box if you are using the btrfs file system on the client.

◦ In the Locale field, select the region and encoding for systemd to use on the client. For
example: en_US.utf8 for US English and UTF-8.

◦ In the Keymap field, select the appropriate keyboard layout. For example: us for a US keyboard
layout.

◦ In the Timezone field, select the timezone for the client to use. For example:
America/New_York for EST.

◦ In the Hostname field, enter the hostname for the client to use. Leave this blank if you are
using DHCP to provide the hostname.

◦ In the Machine Id field, enter a machine identification number for the client. Leave this blank
to have systemd generate one automatically.

◦ In the Target field, enter a systemd target unit.

2. Click [Save Formula] to save your configuration.

Procedure: Configuring the Yomi Storage Formula

1. Navigate to the Formulas › Yomi Storage tab, and set these parameters in the Partitions › Config
section:

◦ In the Labels field, select the default partition table type to use.

◦ In the Initial Gap field, select the default amount of space to leave before the first partition.
For example: 1 MB, or use 0 to leave no space between partitions.

2. For each device that you want to configure, in the Partitions › Devices section, click [+], and set
these parameters:

10.11. Yomi Formula

46 / 83 10.11. Yomi Formula | Uyuni 2021.12

◦ In the Device field, type the mount point for the device. For example, /dev/sda.

◦ In the Label field, select the partition table type to use, if it is different from the default label
you selected.

◦ In the Initial Gap field, select the amount of space to leave before the first partition, if it is
different from the default space you specified.

3. For each partition that you want to create, in the Partitions › Devices › Partitions section, click
[+], and set these parameters:

◦ In the Partition Number field, enter a number for the partition. The number you enter here
is appended to the device name to identify the partition. For example, partition number 1 on
device /dev/sda can be identified as /dev/sda1.

◦ In the Partition Name field, enter a name for the partition. Leave this blank if you have
entered a partition number in the previous field.

◦ In the Partition Size field, enter a size for the partition. For example: 500 MB. Use rest
to use all the remaining free space.

4. For each file system that you want to create, in the Filesystems section, click [+], and set these
parameters:

◦ In the Partition field, select the partition to create the file system on. For example,
/dev/sda1.

◦ In the Filesystem field, select the file system type to create.

◦ In the Mountpoint field, type the mount point for the file system. For example: / for root.

5. Click [Save Formula] to save your configuration.

If you want to use LVM or RAID on your devices, click [+] in the appropriate
sections, and complete the details for your environment.

Procedure: Configuring the Yomi Bootloader Formula

1. Navigate to the Formulas › Yomi Bootloader tab, and set these parameters in the Bootloader
section:

◦ In the Device field, type the path for the bootloader. For example, /dev/sda.

◦ In the Timeout field, select the number of seconds grub will wait before booting the default
menu entry.

◦ In the Kernel field, type any additional kernel parameters you want to use. Any kernel
parameters you add here will be appended to the GRUB_CMDLINE_LINUX_DEFAULT line
during boot.

◦ In the Terminal field, type the terminal to use for both terminal input and output.

◦ In the Serial Command field, type parameters for using the serial port. Use this only if you
are using the serial console as the default terminal.

10.11. Yomi Formula

47 / 83 10.11. Yomi Formula | Uyuni 2021.12

◦ In the Gfxmode field, type the resolution to use for the graphical terminal. Use this only if you
are using the graphical console as the default terminal.

◦ Check the Theme box to use GRUB2 default branding package.

◦ Check the Disable OS Prober box to disable using the OS prober to discover other installed
operating systems.

2. Click [Save Formula] to save your configuration.

Procedure: Configuring the Yomi Software Formula

1. Navigate to the Formulas › Yomi Software tab, and set these parameters in the Software ›
Configuration section:

◦ Check the Minimal box to use a minimal installation, which only installs packages listed as
Required.

2. For each repository that you want to add, in the Software › Repositories section, click [+], and set
these parameters:

◦ In the Repository Name field, type a name for the repository.

◦ In the Repository URL field, type the location of the repository.

3. To add packages from each repository, in the Software › Packages section, click [+], and set these
parameters:

◦ In the Software › Packages field, type the names of the packages to install, or type a pattern to
search for the appropriate packages. For example, pattern:enhanced_base glibc-
locale, or kernel-default.

4. In the Software › Image section, set these parameters:

◦ In the Image URL field, type the location of the operating system ISO image to use.

◦ In the Md5 field, type the MD5 hash to use to verify the ISO.

5. In the SUSEConect › Config section, set these parameters:

◦ In the Registration Code field, type the registration code for the client you are installing.
You can obtain this code from SUSE Customer Center.

◦ In the Email field, type the administrator email address to use.

◦ In the Url field, type the address of the registration server to use. For example, use
https://scc.suse.com, to register with SUSE Customer Center.

◦ In the Version field, type the version of the product you are registering.

6. For each product that you want to register, in the SUSEConnect › Products section, click [+], and
set these parameters:

◦ In the Product field, type each product you want to register. For example,
<product_name>/1.1/x86, for version 1.1 with x86 architecture.

◦ In the SUSEConnect › Packages field, type the names of the packages to install, or type a

10.11. Yomi Formula

48 / 83 10.11. Yomi Formula | Uyuni 2021.12

https://scc.suse.com

pattern to search for the appropriate packages. For example, pattern:enhanced_base
glibc-locale, or kernel-default.

7. Click [Save Formula] to save your configuration.

Procedure: Configuring the Yomi Services Formula

1. Navigate to the Formulas › Yomi Services tab, and set these parameters:

◦ Check the Install salt-minion box to install and configure the client as a Salt client.

2. For each service you want to enable, in the Services › Enabled section, click [+], and set these
parameters:

◦ In the Service field, type the name of the service to enable. For example, salt-minion.

3. For each service you want to disable, in the Services › Disabled section, click [+], and set these
parameters:

◦ In the Service field, type the name of the service to disable.

4. Click [Save Formula] to save your configuration.

Procedure: Configuring the Yomi Users Formula

1. Navigate to the Formulas › Yomi Users tab.

2. For each user you want to create, in the Users section, click [+], and set these parameters:

◦ In the Username field, type the name of the new user.

◦ In the Password Hash field, type the hashed version of the password to use.

3. To add a certificate for each user, in the Users › Certificates section, click [+], and add the
certificate to the Certificate field.

4. Click [Save Formula] to save your configuration.

When you have completed and saved all the forms, apply the highstate.

For more information about using Yomi, see Salt › Yomi.

10.12. Custom Salt Formulas
You can also write your own custom formulas, and make them available to your clients in the Uyuni
Web UI. This section contains information about writing custom formulas, including formulas with forms.

For information about the formulas provided by Uyuni, see Salt › Formulas-suma.

10.12.1. File Structure Overview

RPM-based formulas must be placed in a specific directory structure to ensure that they work correctly. A
formula contains two separate directories: states, and metadata. Folders in these directories need to
have exactly matching names.

10.12. Custom Salt Formulas

49 / 83 10.12. Custom Salt Formulas | Uyuni 2021.12

The formula states directory contains anything necessary for a Salt state to work independently. This
includes .sls files, a map.jinja file and any other required files. This directory should only be
modified by RPMs and should not be edited manually. For example, the locale-formula states
directory is located in:

/usr/share/salt-formulas/states/locale/

To create formulas with forms, the metadata directory contains a form.yml file. The form.yml file
defines the forms for Uyuni. The metadata directoy also contains an optional metadata.yml file that
contains additional information about a formula. For example, the locale-formula metadata directory
is located in:

/usr/share/susemanager/formulas/metadata/locale/

If you have a custom formula that is not in an RPM, it must be in a state directory configured as a Salt file
root. Custom state formula data must be in:

/srv/salt/<custom-formula-name>/

Custom metadata information must be in:

/srv/formula_metadata/<custom-formula-name>/

All custom folders must contain a form.yml file. These files are detected as form recipes and are applied
to groups and systems from the Web UI:

/srv/formula_metadata/<custom-formula-name>/form.yml

The Salt formula directory changed in Uyuni 4.0. The old directory location,
/usr/share/susemanager/formulas, will continue to work for some
time. You should ensure that you update to the new directory location,
/usr/share/salt-formulas/ as soon as possible.

10.12.2. Define Formula with Forms Data

Uyuni requires a file called form.yml, to describe how formula data should look within the Web UI.
The form.yml file is used by Uyuni to generate the desired formula with forms, with values editable by
a user.

The file contains a list of editable attributes that start with a $ sign. These attributes are used to determine
how to display the formula in the Uyuni Web UI.

10.12. Custom Salt Formulas

50 / 83 10.12. Custom Salt Formulas | Uyuni 2021.12

For example, the form.yml that is included with the locale-formula is in:

/usr/share/susemanager/formulas/metadata/locale/form.yml

Part of that file looks like this:

timezone:
 $type: group

 name:
 $type: select
 $values: ["CET",
 "Etc/Zulu"
]
 $default: CET

 hardware_clock_set_to_utc:
 $type: boolean
 $default: True
...

All values that start with a $ sign are annotations used to display the UI that users interact with. These
annotations are not part of pillar data itself and are handled as metadata.

This section lists the available attributes:

$type

The most important attribute is the $type attribute. It defines the type of the pillar value and the
form-field that is generated. The supported types are:

• text

• password

• number

• url

• email

• date

• time

• datetime

• boolean

• color

• select

• group

10.12. Custom Salt Formulas

51 / 83 10.12. Custom Salt Formulas | Uyuni 2021.12

• edit-group

• namespace

• hidden-group (obsolete, renamed to namespace)

 The text attribute is the default and does not need to be specified explicitly.

Many of these values are self-explanatory:

• The text type generates a simple text field

• The password type generates a password field

• The color type generates a color picker

The group, edit-group, and namespace (formerly hidden-group) types do not generate an
editable field and are used to structure form and pillar data. All these types support nesting.

The group and namespace types differ slightly. The group type generates a visible border with a
heading. The namespace type shows nothing visually, and is only used to structure pillar data.

The edit-group type allows you to structure and restrict editable fields in a more flexible way. The
edit-group type is a collection of items of the same kind. Collections can have these four shapes:

• List of primitive items

• List of dictionaries

• Dictionary of primitive items

• Dictionary of dictionaries

The size of each collection is variable. Users can add or remove elements.

For example, edit-group supports the $minItems and $maxItems attributes, which simplifies
complex and repeatable input structures. These, and also itemName, are optional.

$default

Allows you to specify a default value to be displayed. This default value will be used if no other value
is entered. In an edit-group it allows you to create initial members of the group and populate them
with specified data.

$optional

This type is a Boolean attribute. If it is true and the field is empty in the form, then this field will
not be generated in the formula data and the generated dictionary will not contain the field name key.
If it is false and the field is empty, the formula data will contain a <field name>: null entry.

10.12. Custom Salt Formulas

52 / 83 10.12. Custom Salt Formulas | Uyuni 2021.12

$ifEmpty

This type is used if the field is empty. This usually occurs because the user did not provide a value.
The ifEmpty type can only be used when $optional is false or not defined. If $optional is
true, then $ifEmpty is ignored. In this example, the DP2 string would be used if the user leaves the
field empty:

displayName:
 $type: string
 $ifEmpty: DP2

$name

Allows you to specify the name of a value that is shown in the form. If this value is not set, the pillar
name is used and capitalized without underscores and dashes. Reference it in the same section with
${name}.

$help and $placeholder

These attributes are used to give a user a better understanding of what the value should be. The
$help type defines the message a user sees when hovering over a field The $placeholder type
displays a gray placeholder text in the field

Use $placeholder only with text fields like text, password, email or date fields. Do not add a
placeholder if you also use $default, as it will hide the placeholder.

$key

Applicable only if the edit-group has the shape of a dictionary. When the pillar data is a
dictionary, the $key attribute determines the key of an entry in the dictionary.

For example:

user_passwords:
 $type: edit-group
 $minItems: 1
 $prototype:
 $key:
 $type: text
 $type: text
 $default:
 alice: secret-password
 bob: you-shall-not-pass

Pillar:

user_passwords:
 alice:
 secret-password
 bob:
 you-shall-not-pass

10.12. Custom Salt Formulas

53 / 83 10.12. Custom Salt Formulas | Uyuni 2021.12

$minItems and $maxItems

In an edit-group, $minItems and $maxItems specifies the lowest and highest numbers for the
group.

$itemName

In an edit-group, $itemName defines a template for the name to be used for the members of the
group.

$prototype

In an edit-group, $prototype is mandatory and defines the default pre-filled values for newly
added members in the group.

$scope

Specifies a hierarchy level at which a value may be edited. Possible values are system, group, and
readonly.

The default value is $scope: system, allows values to be edited at group and system levels. A
value can be entered for each system but if no value is entered the system will fall back to the group
default.

The $scope: group option makes a value editable only for a group. On the system level you will
be able to see the value, but not edit it.

The $scope: readonly option makes a field read-only. It can be used to show data to the user, but
will not allow them to edit it. This option should be used in combination with the $default
attribute.

$visibleIf

 Deprecated in favor of $visible.

Allows you to show a field or group if a simple condition is met. An example condition is:

some_group#another_group#my_checkbox == true

The left part of the condition is the path to another value, and groups are separated by $ signs. The
middle section of the condition should be either == for a value to be equal or != for values that
should be not equal. The last field in the statement can be any value which a field should have or not
have.

The field with this attribute associated with it will be shown only when the condition is met. In this
example the field will be shown only if my_checkbox is checked. The ability to use conditional
statements is not limited to check boxes. It may also be used to check values of select-fields, text-
fields, and similar.

10.12. Custom Salt Formulas

54 / 83 10.12. Custom Salt Formulas | Uyuni 2021.12

A check box should be structured like this:

some_group:
 $type: group

 another_group:
 $type: group

 my_checkbox:
 $type: boolean

Relative paths can be specified using prefix dots. One dot indicates a sibling, two dots indicate a
parent, and so on. This is mostly useful for edit-group.

some_group:
 $type: group

 another_group:
 $type: group

 my_checkbox:
 $type: boolean

 my_text:
 $visibleIf: .my_checkbox

 yet_another_group:
 $type: group

 my_text2:
 $visibleIf: ..another_group#my_checkbox

If you use multiple groups with the attribute, you can allow a users to select an option and show a
completely different form, dependent upon the selected value.

Values from hidden fields can be merged into the pillar data and sent to the client. A formula must
check the condition again and use the appropriate data. For example:

show_option:
 $type: checkbox
some_text:
 $visibleIf: show_option == true

{% if pillar.show_option %}
do_something:
 with: {{ pillar.some_text }}
{% endif %}

$values

Can only be used together with $type Use to specify the different options in the select-field.
$values must be a list of possible values to select. For example:

10.12. Custom Salt Formulas

55 / 83 10.12. Custom Salt Formulas | Uyuni 2021.12

select_something:
 $type: select
 $values: ["option1", "option2"]

Or:

select_something:
 $type: select
 $values:
 - option1
 - option2

$visible

Allows you to show a field or group if a condition is met. You must use the jexl expression language
to write the condition.

Example structure:

some_group:
 $type: group

 another_group:
 $type: group

 my_checkbox:
 $type: boolean

An example condition is:

formValues.some_group.another_group.my_checkbox == true

The field with this attribute will only show if the condition is met. In this example, the field will show
only if my_checkbox is checked. You can also choose other elements for the conditional statement,
such as select fields or text fields.

If you use multiple groups with the attribute, users can select an option that will show a completely
different form, depending on the selected value.

Values from hidden fields can be merged into the pillar data and sent to the client. A formula must
check the condition again and use the appropriate data. For example:

show_option:
 $type: checkbox
some_text:
 $visible: this.parent.value.show_option == true

10.12. Custom Salt Formulas

56 / 83 10.12. Custom Salt Formulas | Uyuni 2021.12

https://github.com/TomFrost/jexl

{% if pillar.show_option %}
do_something:
 with: {{ pillar.some_text }}
{% endif %}

$disabled

Allows you to disable a field or group if a condition is met. You must use the jexl expression language
to write the condition.

If specified at group level it will disable all fields in that group.

$required

Fields with this attribute are mandatory. Supports using the jexl expresion language.

$match

Allows using a regular expression to validate the content of a text field.

It supports the regular expression features existing in JavaScript.

Example:

 hardware:
 $type: text
 $name: Hardware Type and Address
 $placeholder: Enter hardware-type hardware-address (for example, "ethernet
AA:BB:CC:DD:EE:FF")
 $help: Hardware Identifier - prefix is mandatory
 $match: "\\w+ [A-Z]{2}:[A-Z]{2}:[A-Z]{2}:[A-Z]{2}:[A-Z]{2}:[A-Z]{2}"

10.12.2.1. Expression language

You must use the jexl expression language to write conditions.

Given a structure like this:

some_group:
 $type: group

 another_group:
 $type: group

 my_checkbox:
 $type: boolean

An example condition is:

formValues.some_group.another_group.my_checkbox == true

10.12. Custom Salt Formulas

57 / 83 10.12. Custom Salt Formulas | Uyuni 2021.12

https://github.com/TomFrost/jexl
https://github.com/TomFrost/jexl
https://github.com/TomFrost/jexl

Absolute paths must begin with formValues.

Specify relative paths using this.parent.value to define the value of the parent.

You can also refer to the parent of the parent, with this.parent.parent.value. This is mostly
useful for edit-group elements.

Example for relative paths:

some_group:
 $type: group

 another_group:
 $type: group

 my_checkbox:
 $type: boolean

 my_text:
 $visible: this.parent.value.my_checkbox

 yet_another_group:
 $type: group

 my_text2:
 $visible: this.parent.parent.value.another_group.my_checkbox

Listing 6. Example: Basic edit-group

partitions:
 $name: "Hard Disk Partitions"
 $type: "edit-group"
 $minItems: 1
 $maxItems: 4
 $itemName: "Partition ${name}"
 $prototype:
 name:
 $default: "New partition"
 mountpoint:
 $default: "/var"
 size:
 $type: "number"
 $name: "Size in GB"
 $default:
 - name: "Boot"
 mountpoint: "/boot"
 - name: "Root"
 mountpoint: "/"
 size: 5000

Click [Add] to fill the form with the default values.

The formula is called hd-partitions and will appear as Hd Partitions in the Web UI.

10.12. Custom Salt Formulas

58 / 83 10.12. Custom Salt Formulas | Uyuni 2021.12

To remove the definition of a partition click the minus symbol in the title line of an inner group.

When you are finished, click [Save Formula].

10.12. Custom Salt Formulas

59 / 83 10.12. Custom Salt Formulas | Uyuni 2021.12

Listing 7. Example: Nested edit-group

users:
 $name: "Users"
 $type: edit-group
 $minItems: 2
 $maxItems: 5
 $prototype:
 name:
 $default: "username"
 password:
 $type: password
 groups:
 $type: edit-group
 $minItems: 1
 $prototype:
 group_name:
 $type: text
 $default:
 - name: "root"
 groups:
 - group_name: "users"
 - group_name: "admins"
 - name: "admin"
 groups:
 - group_name: "users"

10.12.3. Writing Salt Formulas

Salt formulas are pre-written Salt states. You can use Jinja to configure formulas with pillar data.

Basic Jinja syntax is:

pillar.some.value

When you are sure a pillar exists, use this syntax:

salt['pillar.get']('some:value', 'default value')

You can also replace the pillar value with grains. For example, grains.some.value.

Using data this way makes the formula configurable. In this example, a specified package is installed in
the package_name pillar:

install_a_package:
 pkg.installed:
 - name: {{ pillar.package_name }}

You can also use more complex constructs such as if/else and for-loops to provide greater
functionality:

10.12. Custom Salt Formulas

60 / 83 10.12. Custom Salt Formulas | Uyuni 2021.12

{% if pillar.installSomething %}
something:
 pkg.installed
{% else %}
anotherPackage:
 pkg.installed
{% endif %}

Another example:

{% for service in pillar.services %}
start_{{ service }}:
 service.running:
 - name: {{ service }}
{% endfor %}

Jinja also provides other helpful functions. For example, you can iterate over a dictionary:

{% for key, value in some_dictionary.items() %}
do_something_with_{{ key }}: {{ value }}
{% endfor %}

You can have Salt manage your files (for example, configuration files for a program), and change them
with pillar data.

In this example, Salt copies the file salt-file_roots/my_state/files/my_program.conf on
the server to /etc/my_program/my_program.conf on the client and template it with Jinja:

/etc/my_program/my_program.conf:
 file.managed:
 - source: salt://my_state/files/my_program.conf
 - template: jinja

This example allows you to use Jinja in the file, like the previous example for states:

some_config_option = {{ pillar.config_option_a }}

10.12.4. Separate Data

Separating data from a state can increase flexibility and make it easier to re-use. You can do this by
writing values into a separate file named map.jinja. This file must be within the same directory as the
state files.

This example sets data to a dictionary with different values, depending on which system the state runs
on. It will also merge data with the pillar using the some.pillar.data value so you can access
some.pillar.data.value by using data.value.

10.12. Custom Salt Formulas

61 / 83 10.12. Custom Salt Formulas | Uyuni 2021.12

You can choose to override defined values from pillars. For example, by overriding
some.pillar.data.package in this example:

{% set data = salt['grains.filter_by']({
 'Suse': {
 'package': 'packageA',
 'service': 'serviceA'
 },
 'RedHat': {
 'package': 'package_a',
 'service': 'service_a'
 }
}, merge=salt['pillar.get']('some:pillar:data')) %}

When you have created a map file, you can maintain compatibility with multiple system types while
accessing deep pillar data in a simpler way.

Now you can import and use data in any file. For example:

{% from "some_folder/map.jinja" import data with context %}

install_package_a:
 pkg.installed:
 - name: {{ data.package }}

You can define multiple variables by copying the {% set …%} statement with different values and then
merge it with other pillars. For example:

{% set server = salt['grains.filter_by']({
 'Suse': {
 'package': 'my-server-pkg'
 }
}, merge=salt['pillar.get']('myFormula:server')) %}
{% set client = salt['grains.filter_by']({
 'Suse': {
 'package': 'my-client-pkg'
 }
}, merge=salt['pillar.get']('myFormula:client')) %}

To import multiple variables, separate them with a comma. For example:

{% from "map.jinja" import server, client with context %}

For more information about conventions to use when writing formulas, see https://docs.saltstack.com/en/
latest/topics/development/conventions/formulas.html.

10.12.5. Generated Pillar Data

Pillar data is generated by Uyuni when events occur like generating the highstate. You can use an external
pillar script to generate pillar data for packages and group IDs, and include all pillar data for a system:

10.12. Custom Salt Formulas

62 / 83 10.12. Custom Salt Formulas | Uyuni 2021.12

https://docs.saltstack.com/en/latest/topics/development/conventions/formulas.html
https://docs.saltstack.com/en/latest/topics/development/conventions/formulas.html

/usr/share/susemanager/modules/pillar/suma_minion.py

The process is executed like this:

1. The suma_minion.py script starts and finds all formulas for a system by checking the
group_formulas.json and server_formulas.json files.

2. The script loads the values for each formula (groups and from the system) and merges them with the
highstate. By default, if no values are found, a group overrides a system if $scope: group.

3. The script also includes a list of formulas applied to the system in a pillar named formulas.

This structure makes it possible to include states. In this example, the top file is specifically generated by
the mgr_master_tops.py script. The top file includes a state called formulas for each system. This
includes the formulas.sls file located in /usr/share/susemanager/formulas/states or
/usr/share/salt-formulas/states/. The content looks similar to this:

include: {{ pillar["formulas"] }}

This pillar includes all formulas that are specified in the pillar data generated from the external pillar
script.

Formulas should be created directly after Uyuni is installed. If you encounter any problems with formulas
check these things first:

• The external pillar script (suma_minion.py) must include formula data.

• Data is saved to /srv/susemanager/formula_data and the pillar and group_pillar sub-
directories. These directories should be automatically generated by the server.

• Formulas must be included for every client listed in the top file. Currently this process is initiated by
the mgr_master_tops.py script which includes the formulas.sls file located in
/usr/share/susemanager/formulas/states/ or /usr/share/salt-
formulas/states/. This directory must be a salt file root. File roots are configured on the salt-
master (Uyuni) located at /etc/salt/master.d/susemanager.conf.

10.12. Custom Salt Formulas

63 / 83 10.12. Custom Salt Formulas | Uyuni 2021.12

Chapter 11. Salt SSH
Salt SSH allows Salt commands and states to be issued directly over SSH. SSH connections are created
on demand, when the server executes an action on a client.

For more information about Salt SSH, see https://docs.saltstack.com/en/latest/topics/ssh/.

11.1. SSH Connection Methods
In Uyuni there are two SSH connection methods, ssh-push and ssh-push-tunnel. In both methods
the server initiates an SSH connection to the client to execute a Salt call.

In the ssh-push method, the package manager works as normal, and the HTTP or HTTPS connection
is directly created.

In the ssh-push-tunnel method, the server creates an HTTP or HTTPS connection through an SSH
tunnel. The HTTP connection initiated by the package manager is redirected through the tunnel using
/etc/hosts aliasing. Use this method for in-place firewall environments that block HTTP or HTTPS
connections between server and client.

11.2. Salt SSH Integration
As with all Salt calls, Uyuni invokes salt-ssh via the salt-api.

Salt SSH relies on a roster to obtain details such as hostname, ports, and the SSH parameters of a client.
Uyuni keeps these details in the database and makes them available to Salt by generating a temporary
roster file for each Salt SSH call. The location of the temporary roster file is supplied to salt-ssh using
the --roster-file= option.

11.3. Authentication
Salt SSH supports both password and key authentication. Uyuni uses both methods:

Password authentication is used only when bootstrapping. During the bootstrap step the key of the server
is not authorized on the client and therefore a password must be used for a connection to be made. The
password is used transiently in a temporary roster file used for bootstrapping. This password is not stored.

All other common Salt calls use key authentication. During the bootstrap step the SSH key of the server is
authorized on the client and added to the client /.ssh/authorized_keys file. Subsequent calls no
longer require a password.

11.4. User Account
The user for Salt SSH calls made by Uyuni is taken from the ssh_push_sudo_user setting. By default,
the user is root.

11.1. SSH Connection Methods

64 / 83 11.1. SSH Connection Methods | Uyuni 2021.12

https://docs.saltstack.com/en/latest/topics/ssh/

If bootstrapping with default settings fail, check whether the client allows root
login with ssh.

If the value of ssh_push_sudo_user is not root, then the --sudo options of salt-ssh are used. For
this user you must configure the NOPASSWD option in the sudoers file. At least, set the python binary
with the version number; for example:

<USER> ALL=(ALL) NOPASSWD:/usr/bin/python3.6

11.5. HTTP Redirection
The ssh-push-tunnel method requires traffic to be redirected through an SSH tunnel. This allows
traffic to bypass firewalls blocking a direct connection between the client and the server.

This is achieved by using port 1233 in the repository URL:

https://suma-server:1233/repourl...

You can alias the suma-server hostname to localhost in /etc/hosts:

127.0.0.1 localhost suma-server

The server creates a reverse SSH tunnel that connects localhost:1233 on the client to suma-
server:443:

ssh ... -R 1233:suma-server:443

This means that the package manager will actually connect to localhost:1233, which is then
forwarded to suma-server:443 by the SSH tunnel.

The package manager can contact the server only if the tunnel is open, which occurs only when the server
executes an action on the client.

Manual package manager operations that require server connectivity are not possible in this case.

11.6. Call Sequence
Salt SSH calls run in this sequence:

1. Prepare the Salt roster for the call

a. Create remote port forwarding option if the contact method is ssh-push-tunnel

11.5. HTTP Redirection

65 / 83 11.5. HTTP Redirection | Uyuni 2021.12

b. Compute the ProxyCommand if the client is connected through a proxy

c. Create Roster content

2. Create a temporary roster file

3. Execute a synchronous salt-ssh call using the API

4. Remove the temporary roster file

The roster content contains:

• hostname

• user

• port

• remote_port_forwards: The remote port forwarding SSH option

• ssh_options: Other ssh options:

◦ ProxyCommand: If the client connects through a proxy

• timeout: defaults to 180 seconds

• minion_opts:

◦ master: Set to the minion ID if the contact method is ssh-push-tunnel

11.7. Bootstrap Sequence
This section describes the sequence of events when clients are registered to a Salt master. While
bootstrapping is a type of Salt SSH call, the sequence differs slightly from regular SSH calls.

Bootstrapping uses Salt SSH for communication between the master and the client. This happens for both
regular and SSH clients.

1. For a regular Salt client, generate and pre-authorize the Salt key of the client.

2. For an SSH client, if a proxy was selected, retrieve the SSH public key of the proxy using the
mgrutil.chain_ssh_cmd runner. The runner copies the public key of the proxy to the server
using SSH. If needed, it can chain multiple SSH commands to reach the proxy across multiple hops.

3. Generate pillar data for bootstrap. The pillar data is compiled and stored on the Salt master, and
retrieved by the client.

4. Generate the roster for bootstrapping into a temporary file on the client. You can generate the roster
using the Salt API, with this command:

salt-ssh --roster-file=<temporary_bootstrap_roster> minion state.apply
certs,<bootstrap_state>`

11.7. Bootstrap Sequence

66 / 83 11.7. Bootstrap Sequence | Uyuni 2021.12

For bootstrap_state, use bootstrap for regular clients or ssh_bootstrap for SSH clients.

The way the client retrieves the pillar data depends on the contact method you have chosen for your
client:

• If you are using the ssh-push-tunnel contact method, ensure you have completed the remote
port forwarding option.

• If the client connects through a proxy, ensure you have completed the ProxyCommand option. This
depends on your proxy configuration, including how many proxies you need to connect through.

Pillar data contains:

• mgr_server: The hostname of the Salt master

• mgr_origin_server: The hostname of the Uyuni Server

• minion_id: The hostname of the client to bootstrap

• contact_method: The connection type

• mgr_sudo_user: The user for salt-ssh

• activation_key: If selected

• minion_pub: The pre-authorized public client key

• minion_pem: The pre-authorized private client key

• proxy_pub_key: The public SSH key that was retrieved from the proxy if the target is an SSH client
and a proxy was selected

The roster content contains:

• hostname

• user

• password

• port

• remote_port_forwards: the remote port forwarding SSH option

• ssh_options: other SSH options:

◦ ProxyCommand if the client connects through a proxy

• timeout: defaults to 180 seconds

This image provides an overview of the Salt SSH bootstrap process.

11.7. Bootstrap Sequence

67 / 83 11.7. Bootstrap Sequence | Uyuni 2021.12

Figure 1. Salt SSH Bootstrap Process

11.8. Proxy Support
Salt SSH works with Uyuni Proxy by chaining the SSH connection from one server or proxy to the next.
This is also known as a multi-hop or multi-gateway SSH connection.

Uyuni uses ProxyCommand to redirect SSH connections through proxies. This options invokes an
arbitrary command that is expected to connect to the SSH port on the target host. The SSH process uses
standard input and output of the command to communicate with the remote SSH daemon.

ProxyCommand replaces a TCP/IP connection. It does not perform any authorization or encryption. Its
role is simply to create a byte stream to the remote SSH daemon port.

This image depicts a client connecting to a server that is behind a gateway. In this example netcat is
used to pipe port 22 of the target host into the SSH standard input/output:

11.8. Proxy Support

68 / 83 11.8. Proxy Support | Uyuni 2021.12

The Salt SSH calls run in this sequence when a proxy is in use:

1. Uyuni initiates the SSH connection.

2. ProxyCommand uses SSH to create a connection from the server to the client through the proxies.

This example uses ProxyCommand with two proxies and the ssh-push method:

Connect the server to the first proxy:
/usr/bin/ssh -i /srv/susemanager/salt/salt_ssh/mgr_ssh_id -o StrictHostKeyChecking=no -o
User=mgrsshtunnel proxy1

Connect the first proxy to the second, and forward standard input/output on the client to
client:22 using the `-W` option:
/usr/bin/ssh -i /var/lib/spacewalk/mgrsshtunnel/.ssh/id_susemanager_ssh_push -o
StrictHostKeyChecking=no -o User=mgrsshtunnel -W client:22 proxy2

11.8. Proxy Support

69 / 83 11.8. Proxy Support | Uyuni 2021.12

This example uses ProxyCommand with two proxies and the ssh-push-tunnel method:

Connect the server to the first proxy:
/usr/bin/ssh -i /srv/susemanager/salt/salt_ssh/mgr_ssh_id -o User=mgrsshtunnel proxy1

Connect the first proxy to the second:
/usr/bin/ssh -i /home/mgrsshtunnel/.ssh/id_susemanager_ssh_push -o User=mgrsshtunnel proxy2

Connect the second proxy to the client and open an reverse tunnel (-R 1233:proxy2:443) from
the client to the HTTPS port on the second proxy:
/usr/bin/ssh -i /home/mgrsshtunnel/.ssh/id_susemanager_ssh_push -o User=root -R
1233:proxy2:443 client

Connect the client to itself and forward the standard input/output of the server to the SSH
port of the client (-W client:22).
This is equivalent to `ssh ... proxy2 netcat client 22`` and is needed because SSH does not
allow both the reverse tunnel (-R 1233:proxy2:443) and the standard input/output forward (-W
client:22) in the same command.
/usr/bin/ssh -i /root/.ssh/mgr_own_id -W client:22 -o User=root client

11.8. Proxy Support

70 / 83 11.8. Proxy Support | Uyuni 2021.12

11.9. Users and SSH Key Management
To connect to a proxy, the parent server or proxy uses a specific user called mgrsshtunnel. When
mgrsshtunnel connects, the SSH configuration of the proxy will force the execution of
/usr/sbin/mgr-proxy-ssh-force-cmd. This is a simple shell script that allows only the execution
of scp, ssh, or cat commands.

The connection to the proxy or client is authorized using SSH keys in this sequence:

1. The server connects to the client and to the first proxy using the key in
`/srv/susemanager/salt/salt_ssh/mgr_ssh_id.

2. Each proxy has its own key pair in
`/home/mgrsshtunnel/.ssh/id_susemanager_ssh_push.

3. Each proxy authorizes the key of the parent proxy or server.

4. The client authorizes its own key.

11.9. Users and SSH Key Management

71 / 83 11.9. Users and SSH Key Management | Uyuni 2021.12

11.10. Repository Access with a Proxy
When Uyuni connects to a repository using a proxy, it can use either ssh-push or ssh-push-tunnel.

In both methods the client connects to the proxy to retrieve package and repository information.

In the ssh-push method, the package manager connects directly to the proxy using HTTP or HTTPS.
This works in cases where there is no firewall between the client and the proxy that blocks HTTP
connections initiated by the client.

In the ssh-push-tunnel method, the HTTP connection to the proxy is redirected through a reverse
SSH tunnel.

11.10. Repository Access with a Proxy

72 / 83 11.10. Repository Access with a Proxy | Uyuni 2021.12

11.11. Proxy Setup
When the spacewalk-proxy package is installed on the proxy, the mgrsshtunnel user is created.

The initial configuration with configure-proxy.sh occurs using this sequence:

1. An SSH key pair is generated, or an existing keypair is imported.

2. The SSH key of the parent server or proxy is retrieved to authorize it on the proxy.

3. The ssh daemon on the proxy is configured to restrict the mgrsshtunnel user. This is done by the
mgr-proxy-ssh-push-init script, which is called from configure-proxy.sh. It does not
have to be manually invoked.

The parent key is retrieved by calling an HTTPS endpoint on the parent server or proxy. The first
endpoint tried is https://$PARENT/pub/id_susemanager_ssh_push.pub. If the parent is a
proxy then this will return the public SSH key of the proxy.

If a 404 error is received from that endpoint, then the parent is assumed to be a server not a proxy, and
https://$PARENT/rhn/manager/download/saltssh/pubkey is tried instead.

If an SSH key exists at /srv/susemanager/salt/salt_ssh/mgr_ssh_id.pub on the server it is
returned.

If the public key does not exist because salt-ssh has not been invoked yet, a key will be generates by
calling the mgrutil.ssh_keygen runner.

Salt SSH generates a keypair the first time it is invoked with
/srv/susemanager/salt/salt_ssh/mgr_ssh_id. The sequence in this
section is needed if a proxy is configured before Salt SSH was invoked for the
first time.

11.11. Proxy Setup

73 / 83 11.11. Proxy Setup | Uyuni 2021.12

https://$PARENT/pub/id_susemanager_ssh_push.pub
https://$PARENT/pub/id_susemanager_ssh_push.pub
https://$PARENT/pub/id_susemanager_ssh_push.pub
https://$PARENT/pub/id_susemanager_ssh_push.pub
https://$PARENT/pub/id_susemanager_ssh_push.pub
https://$PARENT/rhn/manager/download/saltssh/pubkey
https://$PARENT/rhn/manager/download/saltssh/pubkey
https://$PARENT/rhn/manager/download/saltssh/pubkey
https://$PARENT/rhn/manager/download/saltssh/pubkey
https://$PARENT/rhn/manager/download/saltssh/pubkey
https://$PARENT/rhn/manager/download/saltssh/pubkey
https://$PARENT/rhn/manager/download/saltssh/pubkey
https://$PARENT/rhn/manager/download/saltssh/pubkey
https://$PARENT/rhn/manager/download/saltssh/pubkey
https://$PARENT/rhn/manager/download/saltssh/pubkey
https://$PARENT/rhn/manager/download/saltssh/pubkey

Chapter 12. Rate Limiting
Salt is able to run commands in parallel on a large number of clients. This can potentially create large
amounts of load on your infrastructure. You can use these rate-limiting parameters to control the load in
your environment.

These parameters are all configured in the /etc/rhn/rhn.conf configuration file.

Salt commands that are executed from the command line are not subject to these
parameters.

12.1. Batching
There are two parameters that control how actions are sent to clients, one for the batch size, and one for
the delay.

When the Uyuni Server sends a batch of actions to the target clients, it will send it to the number of
clients determined in the batch size parameter. After the specified delay period, commands will be sent to
the next batch of clients. The number of clients in each subsequent batch is equal to the number of clients
that have completed in the previous batch.

Choosing a lower batch size will reduce system load and parallelism, but might reduce overall
performance for processing actions.

The batch size parameter sets the maximum number of clients that can execute a single action at the same
time. Adjust the java.salt_batch_size parameter. Defaults to 200.

Increasing the delay increases the chance that multiple clients will have completed before the next action
is issued (more clients are grouped together in subsequent batches), resulting in fewer overall commands,
and reducing load.

The batch delay parameter sets the amount of time, in seconds, to wait after a command from the
previous batch is processed before beginning to process the command on the next client. Adjust the
java.salt_batch_delay parameter. Defaults to 1.0 seconds.

12.2. Disabling the Salt Mine
In older versions, Uyuni used a tool called Salt mine to check client availability. The Salt mine would
cause clients to contact the server every hour, which created significant load. With the introduction of a
more efficient mechanism in Uyuni 3.2, the Salt mine is no longer required. Instead, the Uyuni Server
uses Taskomatic to ping only the clients that appear to have been offline for twelve hours or more, with all
clients being contacted at least once in every twenty four hour period by default. You can adjust this by
changing the web.system_checkin_threshold parameter in rhn.conf. The value is expressed in
days, and the default value is 1.

Newly registered Salt clients will have the Salt mine disabled by default. If the Salt mine is running on

12.1. Batching

74 / 83 12.1. Batching | Uyuni 2021.12

your system, you can reduce load by disabling it. This is especially effective if you have a large number of
clients.

Disable the Salt mine by running this command on the server:

salt '*' state.sls util.mgr_mine_config_clean_up

This will restart the clients and generate some Salt events to be processed by the server. If you have a
large number of clients, handling these events could create excessive load. To avoid this, you can execute
the command in batch mode with this command:

salt --batch-size 50 '*' state.sls util.mgr_mine_config_clean_up

You will need to wait for this command to finish executing. Do not end the process with Ctrl+C.

12.2. Disabling the Salt Mine

75 / 83 12.2. Disabling the Salt Mine | Uyuni 2021.12

Chapter 13. Large Scale Deployments
Uyuni is designed by default to work on small and medium scale installations. For installations with more
than 1000 clients per Uyuni Server, adequate hardware sizing and parameter tuning must be performed.

For more information on managing large scale deployments, see Large-deployments › Large-
deployments-overview.

76 / 83 Chapter 13. Large Scale Deployments | Uyuni 2021.12

Chapter 14. GNU Free Documentation License
Copyright © 2000, 2001, 2002 Free Software Foundation, Inc. 51 Franklin St, Fifth Floor, Boston, MA
02110-1301 USA. Everyone is permitted to copy and distribute verbatim copies of this license document,
but changing it is not allowed.

0. PREAMBLE
The purpose of this License is to make a manual, textbook, or other functional and useful document
"free" in the sense of freedom: to assure everyone the effective freedom to copy and redistribute it, with
or without modifying it, either commercially or noncommercially. Secondarily, this License preserves for
the author and publisher a way to get credit for their work, while not being considered responsible for
modifications made by others.

This License is a kind of "copyleft", which means that derivative works of the document must themselves
be free in the same sense. It complements the GNU General Public License, which is a copyleft license
designed for free software.

We have designed this License in order to use it for manuals for free software, because free software
needs free documentation: a free program should come with manuals providing the same freedoms that
the software does. But this License is not limited to software manuals; it can be used for any textual work,
regardless of subject matter or whether it is published as a printed book. We recommend this License
principally for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS
This License applies to any manual or other work, in any medium, that contains a notice placed by the
copyright holder saying it can be distributed under the terms of this License. Such a notice grants a world-
wide, royalty-free license, unlimited in duration, to use that work under the conditions stated herein. The
"Document", below, refers to any such manual or work. Any member of the public is a licensee, and is
addressed as "you". You accept the license if you copy, modify or distribute the work in a way requiring
permission under copyright law.

A "Modified Version" of the Document means any work containing the Document or a portion of it,
either copied verbatim, or with modifications and/or translated into another language.

A "Secondary Section" is a named appendix or a front-matter section of the Document that deals
exclusively with the relationship of the publishers or authors of the Document to the Document’s overall
subject (or to related matters) and contains nothing that could fall directly within that overall subject.
(Thus, if the Document is in part a textbook of mathematics, a Secondary Section may not explain any
mathematics.) The relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding them.

The "Invariant Sections" are certain Secondary Sections whose titles are designated, as being those of
Invariant Sections, in the notice that says that the Document is released under this License. If a section
does not fit the above definition of Secondary then it is not allowed to be designated as Invariant. The
Document may contain zero Invariant Sections. If the Document does not identify any Invariant Sections

77 / 83 Chapter 14. GNU Free Documentation License | Uyuni 2021.12

then there are none.

The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover
Texts, in the notice that says that the Document is released under this License. A Front-Cover Text may
be at most 5 words, and a Back-Cover Text may be at most 25 words.

A "Transparent" copy of the Document means a machine-readable copy, represented in a format whose
specification is available to the general public, that is suitable for revising the document straightforwardly
with generic text editors or (for images composed of pixels) generic paint programs or (for drawings)
some widely available drawing editor, and that is suitable for input to text formatters or for automatic
translation to a variety of formats suitable for input to text formatters. A copy made in an otherwise
Transparent file format whose markup, or absence of markup, has been arranged to thwart or discourage
subsequent modification by readers is not Transparent. An image format is not Transparent if used for any
substantial amount of text. A copy that is not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input
format, LaTeX input format, SGML or XML using a publicly available DTD, and standard-conforming
simple HTML, PostScript or PDF designed for human modification. Examples of transparent image
formats include PNG, XCF and JPG. Opaque formats include proprietary formats that can be read and
edited only by proprietary word processors, SGML or XML for which the DTD and/or processing tools
are not generally available, and the machine-generated HTML, PostScript or PDF produced by some
word processors for output purposes only.

The "Title Page" means, for a printed book, the title page itself, plus such following pages as are needed
to hold, legibly, the material this License requires to appear in the title page. For works in formats which
do not have any title page as such, "Title Page" means the text near the most prominent appearance of the
work’s title, preceding the beginning of the body of the text.

A section "Entitled XYZ" means a named subunit of the Document whose title either is precisely XYZ or
contains XYZ in parentheses following text that translates XYZ in another language. (Here XYZ stands
for a specific section name mentioned below, such as "Acknowledgements", "Dedications",
"Endorsements", or "History".) To "Preserve the Title" of such a section when you modify the Document
means that it remains a section "Entitled XYZ" according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that this License applies
to the Document. These Warranty Disclaimers are considered to be included by reference in this License,
but only as regards disclaiming warranties: any other implication that these Warranty Disclaimers may
have is void and has no effect on the meaning of this License.

2. VERBATIM COPYING
You may copy and distribute the Document in any medium, either commercially or noncommercially,
provided that this License, the copyright notices, and the license notice saying this License applies to the
Document are reproduced in all copies, and that you add no other conditions whatsoever to those of this
License. You may not use technical measures to obstruct or control the reading or further copying of the
copies you make or distribute. However, you may accept compensation in exchange for copies. If you
distribute a large enough number of copies you must also follow the conditions in section 3.

78 / 83 Chapter 14. GNU Free Documentation License | Uyuni 2021.12

You may also lend copies, under the same conditions stated above, and you may publicly display copies.

3. COPYING IN QUANTITY
If you publish printed copies (or copies in media that commonly have printed covers) of the Document,
numbering more than 100, and the Document’s license notice requires Cover Texts, you must enclose the
copies in covers that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front cover,
and Back-Cover Texts on the back cover. Both covers must also clearly and legibly identify you as the
publisher of these copies. The front cover must present the full title with all words of the title equally
prominent and visible. You may add other material on the covers in addition. Copying with changes
limited to the covers, as long as they preserve the title of the Document and satisfy these conditions, can
be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed
(as many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must either
include a machine-readable Transparent copy along with each Opaque copy, or state in or with each
Opaque copy a computer-network location from which the general network-using public has access to
download using public-standard network protocols a complete Transparent copy of the Document, free of
added material. If you use the latter option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this Transparent copy will remain thus accessible
at the stated location until at least one year after the last time you distribute an Opaque copy (directly or
through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before redistributing
any large number of copies, to give them a chance to provide you with an updated version of the
Document.

4. MODIFICATIONS
You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and
3 above, provided that you release the Modified Version under precisely this License, with the Modified
Version filling the role of the Document, thus licensing distribution and modification of the Modified
Version to whoever possesses a copy of it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and from
those of previous versions (which should, if there were any, be listed in the History section of the
Document). You may use the same title as a previous version if the original publisher of that version
gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of the
modifications in the Modified Version, together with at least five of the principal authors of the
Document (all of its principal authors, if it has fewer than five), unless they release you from this
requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the publisher.

79 / 83 Chapter 14. GNU Free Documentation License | Uyuni 2021.12

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public permission to use
the Modified Version under the terms of this License, in the form shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given in
the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled "History", Preserve its Title, and add to it an item stating at least the
title, year, new authors, and publisher of the Modified Version as given on the Title Page. If there is
no section Entitled "History" in the Document, create one stating the title, year, authors, and
publisher of the Document as given on its Title Page, then add an item describing the Modified
Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to a Transparent copy
of the Document, and likewise the network locations given in the Document for previous versions it
was based on. These may be placed in the "History" section. You may omit a network location for a
work that was published at least four years before the Document itself, or if the original publisher of
the version it refers to gives permission.

K. For any section Entitled "Acknowledgements" or "Dedications", Preserve the Title of the section,
and preserve in the section all the substance and tone of each of the contributor acknowledgements
and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles. Section
numbers or the equivalent are not considered part of the section titles.

M. Delete any section Entitled "Endorsements". Such a section may not be included in the Modified
Version.

N. Do not retitle any existing section to be Entitled "Endorsements" or to conflict in title with any
Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary
Sections and contain no material copied from the Document, you may at your option designate some or
all of these sections as invariant. To do this, add their titles to the list of Invariant Sections in the
Modified Version’s license notice. These titles must be distinct from any other section titles.

You may add a section Entitled "Endorsements", provided it contains nothing but endorsements of your
Modified Version by various parties—for example, statements of peer review or that the text has been
approved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as a
Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of
Front-Cover Text and one of Back-Cover Text may be added by (or through arrangements made by) any
one entity. If the Document already includes a cover text for the same cover, previously added by you or
by arrangement made by the same entity you are acting on behalf of, you may not add another; but you
may replace the old one, on explicit permission from the previous publisher that added the old one.

80 / 83 Chapter 14. GNU Free Documentation License | Uyuni 2021.12

The author(s) and publisher(s) of the Document do not by this License give permission to use their names
for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS
You may combine the Document with other documents released under this License, under the terms
defined in section 4 above for modified versions, provided that you include in the combination all of the
Invariant Sections of all of the original documents, unmodified, and list them all as Invariant Sections of
your combined work in its license notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invariant Sections
may be replaced with a single copy. If there are multiple Invariant Sections with the same name but
different contents, make the title of each such section unique by adding at the end of it, in parentheses, the
name of the original author or publisher of that section if known, or else a unique number. Make the same
adjustment to the section titles in the list of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled "History" in the various original documents,
forming one section Entitled "History"; likewise combine any sections Entitled "Acknowledgements", and
any sections Entitled "Dedications". You must delete all sections Entitled "Endorsements".

6. COLLECTIONS OF DOCUMENTS
You may make a collection consisting of the Document and other documents released under this License,
and replace the individual copies of this License in the various documents with a single copy that is
included in the collection, provided that you follow the rules of this License for verbatim copying of each
of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under this
License, provided you insert a copy of this License into the extracted document, and follow this License
in all other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS
A compilation of the Document or its derivatives with other separate and independent documents or
works, in or on a volume of a storage or distribution medium, is called an "aggregate" if the copyright
resulting from the compilation is not used to limit the legal rights of the compilation’s users beyond what
the individual works permit. When the Document is included in an aggregate, this License does not apply
to the other works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the
Document is less than one half of the entire aggregate, the Document’s Cover Texts may be placed on
covers that bracket the Document within the aggregate, or the electronic equivalent of covers if the
Document is in electronic form. Otherwise they must appear on printed covers that bracket the whole
aggregate.

8. TRANSLATION

81 / 83 Chapter 14. GNU Free Documentation License | Uyuni 2021.12

Translation is considered a kind of modification, so you may distribute translations of the Document
under the terms of section 4. Replacing Invariant Sections with translations requires special permission
from their copyright holders, but you may include translations of some or all Invariant Sections in
addition to the original versions of these Invariant Sections. You may include a translation of this License,
and all the license notices in the Document, and any Warranty Disclaimers, provided that you also include
the original English version of this License and the original versions of those notices and disclaimers. In
case of a disagreement between the translation and the original version of this License or a notice or
disclaimer, the original version will prevail.

If a section in the Document is Entitled "Acknowledgements", "Dedications", or "History", the
requirement (section 4) to Preserve its Title (section 1) will typically require changing the actual title.

9. TERMINATION
You may not copy, modify, sublicense, or distribute the Document except as expressly provided for under
this License. Any other attempt to copy, modify, sublicense or distribute the Document is void, and will
automatically terminate your rights under this License. However, parties who have received copies, or
rights, from you under this License will not have their licenses terminated so long as such parties remain
in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE
The Free Software Foundation may publish new, revised versions of the GNU Free Documentation
License from time to time. Such new versions will be similar in spirit to the present version, but may
differ in detail to address new problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies that a
particular numbered version of this License "or any later version" applies to it, you have the option of
following the terms and conditions either of that specified version or of any later version that has been
published (not as a draft) by the Free Software Foundation. If the Document does not specify a version
number of this License, you may choose any version ever published (not as a draft) by the Free Software
Foundation.

ADDENDUM: How to use this License for your documents

Copyright (c) YEAR YOUR NAME.
 Permission is granted to copy, distribute and/or modify this document
 under the terms of the GNU Free Documentation License, Version 1.2
 or any later version published by the Free Software Foundation;
 with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
 A copy of the license is included in the section entitled{ldquo}GNU
 Free Documentation License{rdquo}.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the “ with…Texts.” line
with this:

82 / 83 Chapter 14. GNU Free Documentation License | Uyuni 2021.12

http://www.gnu.org/copyleft/

with the Invariant Sections being LIST THEIR TITLES, with the
 Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combination of the three, merge those
two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing these examples
in parallel under your choice of free software license, such as the GNU General Public License, to permit
their use in free software.

83 / 83 Chapter 14. GNU Free Documentation License | Uyuni 2021.12

	Uyuni 2021.12: Salt Guide
	Table of Contents
	Salt Guide Overview
	Chapter 1. Terminology
	Chapter 2. The Salt Command
	2.1. Salt Targets
	2.2. Salt Execution Modules
	2.3. Salt Function Arguments

	Chapter 3. Often Used Salt Commands
	Chapter 4. Salt States and Pillars
	4.1. Group States
	4.2. Salt Pillars
	4.3. Download Endpoint

	Chapter 5. Custom Salt States
	5.1. Create a New Custom Salt Channel
	5.2. Example Custom State Files
	5.3. Custom State to Trust a GPG Key
	5.4. Apply a custom state at highstate

	Chapter 6. Salt File Locations and Structure
	Chapter 7. The gitfs Fileserver Backend
	Chapter 8. Install with Yomi
	8.1. Install the Yomi Formula
	8.2. Install the PXE Image
	8.3. Register Yomi in Cobbler
	8.4. Example Salt Pillar Preparation
	8.5. Monitor the Installation

	Chapter 9. Configuration Modules
	9.1. Install Configuration Modules

	Chapter 10. Formulas
	10.1. Formulas Provided by Uyuni
	10.1.1. Install Formulas with Zypper
	10.1.2. Activate Formulas from the Web UI

	10.2. Bind Formula
	10.3. Branch Network Formula
	10.3.1. Set Up a Branch Server Networking
	10.3.2. Set up Branch Server Terminal Naming

	10.4. DHCPd Formula
	10.5. Image Synchronization Formula
	10.6. Monitoring Formula
	10.7. PXE Formula
	10.7.1. Saltboot Kernel Command Line Parameters

	10.8. Saltboot Formula
	10.8.1. Special Partition Types
	10.8.2. Disk Selection in Saltboot Formula
	10.8.3. Troubleshooting the Saltboot Formula

	10.9. TFTPD Formula
	10.10. VsFTPd Formula
	10.11. Yomi Formula
	10.12. Custom Salt Formulas
	10.12.1. File Structure Overview
	10.12.2. Define Formula with Forms Data
	10.12.3. Writing Salt Formulas
	10.12.4. Separate Data
	10.12.5. Generated Pillar Data

	Chapter 11. Salt SSH
	11.1. SSH Connection Methods
	11.2. Salt SSH Integration
	11.3. Authentication
	11.4. User Account
	11.5. HTTP Redirection
	11.6. Call Sequence
	11.7. Bootstrap Sequence
	11.8. Proxy Support
	11.9. Users and SSH Key Management
	11.10. Repository Access with a Proxy
	11.11. Proxy Setup

	Chapter 12. Rate Limiting
	12.1. Batching
	12.2. Disabling the Salt Mine

	Chapter 13. Large Scale Deployments
	Chapter 14. GNU Free Documentation License

