
Uyuni 2021.12
Large Deployments Guide
December 07 2021

Table of Contents
Large Deployments Guide Overview 1

1. Hardware Requirements 2
2. Using a Single Server to Manage Large Scale Deployments 3

2.1. Operation Recommendations . 3
2.1.1. Salt Client Onboarding Rate . 3
2.1.2. Salt Clients and the RNG . 3
2.1.3. Clients Running with Unaccepted Salt Keys . 3
2.1.4. Disabling the Salt Mine . 4
2.1.5. Disable Unnecessary Taskomatic jobs . 4
2.1.6. Swap and Monitoring . 5
2.1.7. AES Key Rotation . 5

3. Using Multiple Servers to Manage Large Scale Deployments 6
3.1. Hub Requirements . 6

3.1.1. Peripheral Servers. 6
3.2. Hub Installation . 6
3.3. Using the Hub API . 7
3.4. Hub XMLRPC API Namespaces . 8
3.5. Hub XMLRPC API Authentication Modes . 9

3.5.1. Authentication Examples . 9
4. Managing Large Scale Deployments in a Retail Environment 13
5. Tuning Large Scale Deployments 14

5.1. The Tuning Process . 14
5.2. Environmental Variables. 16
5.3. Parameters . 16

5.3.1. MaxClients . 16
5.3.2. ServerLimit . 17
5.3.3. maxThreads . 18
5.3.4. connectionTimeout . 18
5.3.5. keepAliveTimeout . 19
5.3.6. Tomcat’s -Xmx . 19
5.3.7. java.message_queue_thread_pool_size . 20
5.3.8. java.salt_batch_size . 20
5.3.9. java.salt_presence_ping_timeout . 21
5.3.10. java.salt_presence_ping_gather_job_timeout. 21
5.3.11. java.taskomatic_channel_repodata_workers . 22
5.3.12. taskomatic.java.maxmemory . 23
5.3.13. org.quartz.threadPool.threadCount. 24
5.3.14. org.quartz.scheduler.idleWaitTime. 24
5.3.15. MinionActionExecutor.parallel_threads . 24
5.3.16. SSHMinionActionExecutor.parallel_threads . 25
5.3.17. hibernate.c3p0.max_size. 25
5.3.18. rhn-search.java.maxmemory . 26
5.3.19. shared_buffers . 26
5.3.20. max_connections . 27

5.3.21. work_mem . 27
5.3.22. effective_cache_size . 28
5.3.23. thread_pool . 29
5.3.24. worker_threads . 29
5.3.25. pub_hwm . 30
5.3.26. zmq_backlog . 30
5.3.27. swappiness . 31
5.3.28. Memory Usage . 32

6. GNU Free Documentation License 33

Large Deployments Guide Overview
Updated: 2021-12-07

Uyuni is designed by default to work on small and medium scale installations. For installations with more
than 1000 clients per Uyuni Server, adequate hardware sizing and parameter tuning must be performed.

There is no hard maximum number of supported systems. Many factors can affect how many clients can
reliably be used in a particular installation. Factors can include which features are used, and how the
hardware and systems are configured.

Large installations require standard Salt clients. These instructions cannot be
used in environments using traditional clients or Salt SSH minions.

There are two main ways to manage large scale deployments. You can manage them with a single Uyuni
Server, or you can use multiple servers in a hub. Both methods are described in this book.

Additionally, if you are operating within a Retail environment, you can use Uyuni for Retail to manage
large deployments of point-of-service terminals. There is an introduction to Uyuni for Retail in this book.

Tuning and monitoring large scale deployments can differ from smaller installations. This book contains
guidance for both tuning and monitoring within larger installations.

1 / 39 | Uyuni 2021.12

Chapter 1. Hardware Requirements
Not all problems can be solved with better hardware, but choosing the right hardware is an absolute
necessity for large scale deployments.

The minimum requirements for the Uyuni Server are:

• Eight or more recent x86-64 CPU cores.

• 32 GiB RAM. For installations with thousands of clients, use 64 GB or more.

• Fast I/O storage devices, such as locally attached SSDs. For PostgreSQL data directories, we
recommend locally attached RAID-0 SSDs.

If the Uyuni Server is virtualized, enable the elevator=noop kernel command line option, for the best
input/output performance. You can check the current status with cat
/sys/block/<DEVICE>/queue/scheduler. This command will display a list of available schedulers
with the currently active one in brackets. To change the scheduler before a reboot, use echo noop >
/sys/block/<DEVICE>/queue/scheduler.

The minimum requirements for the Uyuni Proxy are:

• One Uyuni Proxy per 500-1000 clients, depending on available network bandwidth.

• Two or more recent x86-64 CPU cores.

• 16 GB RAM, and sufficient storage for caching.

Clients should never be directly attached to the Uyuni Server in production systems.

In large scale installations, the Uyuni Proxy is used primarily as a local cache for content between the
server and clients. Using proxies in this way can substantially reduce download time for clients, and
decrease Server egress bandwidth use.

The number of clients per proxy will affect the download time. Always take network structure and
available bandwidth into account.

We recommend you estimate the download time of typical usage to determine how many clients to
connnect to each proxy. To do this, you will need to estimate the number of package upgrades required in
every patch cycle. You can use this formula to calculate the download time:

Size of updates * Number of clients / Theoretical download speed / 60

For example, the total time needed to transfer 400 MB of upgrades through a physical link speed of
1 GB/s to 3000 clients:

400 MB * 3000 / 119 MB/s / 60 = 169 min

2 / 39 Chapter 1. Hardware Requirements | Uyuni 2021.12

Chapter 2. Using a Single Server to Manage Large Scale
Deployments
This section discusses how to set up a single Uyuni Server to manage a large number of clients. It
contains some recommendations for hardware and networking, and an overview of the tuning parameters
that you need to consider in a large scale deployment.

2.1. Operation Recommendations
This section contains a range of recommendations for large scale deployments.

Always start small and scale up gradually. Monitor the server as you scale to
identify problems early.

2.1.1. Salt Client Onboarding Rate

The rate at which Uyuni can onboard clients is limited and depends on hardware resources. Onboarding
clients at a faster rate than Uyuni is configured for will build up a backlog of unprocessed keys. This
slows down the process and can potentially exhaust resources. We recommend that you limit the
acceptance key rate programmatically. A safe starting point would be to onboard a client every 15
seconds. You can do that with this command:

for k in $(salt-key -l un|grep -v Unaccepted); do salt-key -y -a $k; sleep 15; done

2.1.2. Salt Clients and the RNG

All communication to and from Salt clients is encrypted. During client onboarding, Salt uses asymmetric
cryptography, which requires available entropy from the Random Number Generator (RNG) facility in the
kernel. If sufficient entropy is not available from the RNG, it will significantly slow down
communications. This is especially true in virtualized environments. Ensure enough entropy is present, or
change the virtualization host options.

You can check the amount of available entropy with the cat
/proc/sys/kernel/random/entropy_avail. It should never be below 100-200.

2.1.3. Clients Running with Unaccepted Salt Keys

Idle clients which have not been onboarded, that is clients running with unaccepted Salt keys, consume
more resources than idle clients that have been onboarded. Generally, this consumes about an extra
2.5 Kb/s of inbound network bandwidth per client. For example, 1000 idle clients will consume about
2.5 Mb/s extra. This consumption will reduce almost to zero when onboarding has been completed for all
clients. Limit the number of non-onboarded clients for optimal performance.

2.1. Operation Recommendations

3 / 39 2.1. Operation Recommendations | Uyuni 2021.12

2.1.4. Disabling the Salt Mine

In older versions, Uyuni used a tool called Salt mine to check client availability. The Salt mine would
cause clients to contact the server every hour, which created significant load. With the introduction of a
more efficient mechanism in Uyuni 3.2, the Salt mine is no longer required. Instead, the Uyuni Server
uses Taskomatic to ping only the clients that appear to have been offline for twelve hours or more, with all
clients being contacted at least once in every twenty four hour period by default. You can adjust this by
changing the web.system_checkin_threshold parameter in rhn.conf. The value is expressed in
days, and the default value is 1.

Newly registered Salt clients will have the Salt mine disabled by default. If the Salt mine is running on
your system, you can reduce load by disabling it. This is especially effective if you have a large number of
clients.

Disable the Salt mine by running this command on the server:

salt '*' state.sls util.mgr_mine_config_clean_up

This will restart the clients and generate some Salt events to be processed by the server. If you have a
large number of clients, handling these events could create excessive load. To avoid this, you can execute
the command in batch mode with this command:

salt --batch-size 50 '*' state.sls util.mgr_mine_config_clean_up

You will need to wait for this command to finish executing. Do not end the process with Ctrl+C.

2.1.5. Disable Unnecessary Taskomatic jobs

To minimize wasted resources, you can disable non-essential or unused Taskomatic jobs.

You can see the list of Taskomatic jobs in the Uyuni Web UI, at Admin › Task Schedules.

To disable a job, click the name of the job you want to disable, select Disable Schedule, and click
[Update Schedule].

To delete a job, click the name of the job you want to delete, and click [Delete Schedule].

We recommend disabling these jobs:

• Daily comparison of configuration files: compare-configs-default

• Hourly synchronization of Cobbler files: cobbler-sync-default

• Daily gatherer and subscription matcher: gatherer-matcher-default

Do not attempt to disable any other jobs, as it could prevent Uyuni from functioning correctly.

2.1. Operation Recommendations

4 / 39 2.1. Operation Recommendations | Uyuni 2021.12

2.1.6. Swap and Monitoring

It is especially important in large scale deployments that you keep your Uyuni Server constantly
monitored and backed up.

Swap space use can have significant impacts on performance. If significant non-transient swap usage is
detected, you can increase the available hardware RAM.

You can also consider tuning the Server to consume less memory. For more information on tuning, see
Salt › Large-scale-tuning.

2.1.7. AES Key Rotation

Communications from the Salt Master to clients is encrypted with a single AES key. The key is rotated
when:

• The salt-master process is restarted, or

• Any minion key is deleted (for example, when a client is deleted from Uyuni)

After the AES key has been rotated, all clients must re-authenticate to the master. By default, this happens
next time a client receives a message. If you have a large number of clients (several thousands), this can
cause a high CPU load on the Uyuni Server. If the CPU load is excessive, we recommend that you delete
keys in batches, and in off-peak hours if possible, to avoid overloading the server.

For more information, see:

• https://docs.saltstack.com/en/latest/topics/tutorials/intro_scale.html#too-many-minions-re-authing

• https://docs.saltstack.com/en/getstarted/system/communication.html

2.1. Operation Recommendations

5 / 39 2.1. Operation Recommendations | Uyuni 2021.12

https://docs.saltstack.com/en/latest/topics/tutorials/intro_scale.html#too-many-minions-re-authing
https://docs.saltstack.com/en/getstarted/system/communication.html

Chapter 3. Using Multiple Servers to Manage Large Scale
Deployments
If you need to manage a large number of clients, in most cases you can do so with a single Uyuni Server,
tuned appropriately. However, if you need to manage tens of thousands of clients, you might find it easier
to use multiple Uyuni Servers, in a hub, to manage them.

Uyuni Hub helps you manage very large deployments. The typical Hub topology looks like this:

Hub

Server1 Server2 Server .. Server ...

Proxy1 Proxy2

Client_1001 Client_1002 Client_1999 Client_2001 Client_2002 Client_2999

3.1. Hub Requirements
To set up a Hub installation, you require:

• One central Uyuni Server, which acts as the Hub Server.

• One or more additional Uyuni Servers, registered to the Hub as Salt clients. This document refers to
these as peripheral servers.

• Any number of clients registered to the peripheral servers.

• Ensure the Hub Server and all peripheral servers are running Uyuni 4.1 or higher.

The Hub Server must not have clients registered to it. Clients should only be
registered to the peripheral servers.

3.1.1. Peripheral Servers

Peripheral servers must be registered to the Hub Server as Salt clients. When you register the peripheral
servers, assign them the appropriate SUSE Manager Server software channel as their base channel.
Additionally, they must be registered to the Hub Server directly, do not use a proxy.

For more information about registering clients, see Client-configuration › Registration-webui.

You need credentials to access the XMLRPC APIs on each server, including the Hub Server.

3.2. Hub Installation
Before you begin, you need to install the hub-xmlrpc-api package, and configure the Hub Server to

3.1. Hub Requirements

6 / 39 3.1. Hub Requirements | Uyuni 2021.12

use the API.

Procedure: Installing and Configuring the Hub XMLRPC API

1. On the Hub Server, or on a host that has access to all peripheral servers' XMLRPC APIs, install the
hub-xmlrpc-api package. The package is available in the Uyuni 2021.12 repositories.

2. OPTIONAL: Set the Hub XMLRPC API service to start automatically at boot time, and start it
immediately:

sudo systemctl enable hub-xmlrpc-api.service
sudo systemctl start hub-xmlrpc-api.service

3. OPTIONAL: Check that these parameters in the /etc/hub/hub.conf configuration file are
correct:

◦ HUB_API_URL: URL to the Hub Server XMLRPC API endpoint. Use the default value if you
are installing hub-xmlrpc-api on the Hub Server.

◦ HUB_CONNECT_TIMEOUT: the maximum number of seconds to wait for a response when
connecting to a Server. Use the default value in most cases.

◦ HUB_REQUEST_TIMEOUT: the maximum number of seconds to wait for a response when
calling a Server method. Use the default value in most cases.

◦ HUB_CONNECT_USING_SSL: use HTTPS instead of HTTP for communicating with peripheral
Servers. Recommended for a secure environment.

4. Restart services to pick up configuration changes.

To use HTTPS to connect to peripheral Servers, you must set the
HUB_CONNECT_USING_SSL parameter to true, and ensure that the SSL
certificates for all the peripheral Servers are installed on the machine where the
hub-xmlrpc-api service runs. Do this by copying the RHN-ORG-TRUSTED-
SSL-CERT certificate file from each peripheral Server’s http://<server-
url>/pub/ directory to /etc/pki/trust/anchors/, and run update-
ca-certificates.

3.3. Using the Hub API
Make sure the hub-xmlrpc-api service is started:

systemctl start hub-xmlrpc-api

Once it is running, connect to the service at port 2830 using any XMLRPC-compliant client libraries.

For examples, see Large-deployments › Hub-auth.

3.3. Using the Hub API

7 / 39 3.3. Using the Hub API | Uyuni 2021.12

http://<server-url>/pub/
http://<server-url>/pub/
http://<server-url>/pub/
http://<server-url>/pub/

Logs are saved in /var/log/hub/hub-xmlrpc-api.log. Logs are rotated weekly, or when the log
file size reaches the specified limit. By default, the log file size limit is 10 MB.

3.4. Hub XMLRPC API Namespaces
The Hub XMLRPC API operates in a similar way to the Uyuni API. For Uyuni API documentation, see
https://documentation.suse.com/suma.

The Hub XMLRPC API exposes the same methods that are available from the server’s XMLRPC API,
with a few differences in parameter and return types. Additionally, the Hub XMLRPC API supports some
Hub-specific end points which are not available in the Uyuni API.

The Hub XMLRPC API supports three different namespaces:

• The hub namespace is used to target the Hub XMLRPC API Server. It supports Hub-specific
XMLRPC endpoints which are primarily related to authentication.

• The unicast namespace is used to target a single server registered in the hub. It redirects any call
transparently to one specific server and returns any value as if the server’s XMLRPC API endpoint
was used directly.

• The multicast namespace is used to target multiple peripheral servers registered in the hub. It
redirects any call transparently to all the specified servers and returns the results in the form of a
map.

• If you do not specify a namespace, all calls are transparently redirected to the underlying Uyuni
Server XMLRPC API of the Hub Server. This allows you to call all available methods on the Uyuni
Server XMLRPC API.

Methods called without specifying any of the above namespaces will be forwarded to the normal
XMLRPC API of the hub. This is the API exposed on ports 80 and 443.

Some important considerations for hub namespaces:

• Individual server IDs can be obtained using client.hub.listServerIds(hubSessionKey).

• The unicast namespace assumes all methods receive hubSessionKey and serverID as their first
two parameters, then any other parameter as specified by the regular Server API.

client.unicast.[namespace].[methodName](hubSessionKey, serverId, param1, param2)

• The hubSessionKey can be obtained using different authentication methods. For more
information, see Large-deployments › Hub-auth.

• The multicast namespace assumes all methods receive hubSessionKey, a list of ServerID
values, then lists of per-server parameters as specified by the regular server XMLRPC API. The
return value is a map, with Successful and Failed entries for each server involved in the call.

3.4. Hub XMLRPC API Namespaces

8 / 39 3.4. Hub XMLRPC API Namespaces | Uyuni 2021.12

https://documentation.suse.com/suma

client.multicast.[namespace].[methodname](hubSessionKey, [serverId1, serverId2],
[param1_s1, param1_s2], [param2_s1, param2_s2])

3.5. Hub XMLRPC API Authentication Modes
The Hub XMLRPC API supports three different authentication modes:

• Manual mode (default): API credentials must be explicitly provided for each server.

• Relay mode: the credentials used to authenticate with the Hub are also used to authenticate to each
server. You must provide a list of servers to connect to.

• Auto-connect mode: credentials are reused for each server, and any peripheral server you have access
to is automatically connected.

3.5.1. Authentication Examples

This section provides examples of each authentication method.

Example: Manual Authentication

In manual mode, credentials have to be explicitly provided for each peripheral server before you can
connect to it.

A typical workflow for manual authentication is:

1. Credentials for the Hub are passed to the login method, and a session key for the Hub is returned
(hubSessionKey).

2. Using the session key from the previous step, Uyuni Server IDs are obtained for all the peripheral
servers attached to the Hub via the hub.listServerIds method.

3. Credentials for each peripheral server are provided to the attachToServers method. This
performs authentication against each server’s XMLRPC API endpoint.

4. A multicast call is performed on a set of servers. This is defined by serverIds, which contains
the IDs of the servers to target. In the background, system.list_system is called on each
server’s XMLRPC API

5. Hub aggregates the results and returns the response in the form of a map. The map has two entries:

◦ Successful: list of responses for those peripheral servers where the call succeeded.

◦ Failed: list of responses for those peripheral servers where the call failed.

If you want to call a method on just one Uyuni Server, then Hub API also
provides a unicast namespace. In this case, the response will be a single value
and not a map, in the same way as if you called that Uyuni server’s API directly.

3.5. Hub XMLRPC API Authentication Modes

9 / 39 3.5. Hub XMLRPC API Authentication Modes | Uyuni 2021.12

Listing 1. Example Python Script for Manual Authentication:

#!/usr/bin/python
import xmlrpclib

HUB_XMLRPC_API_URL = "<HUB_XMLRPC_API_URL>"
HUB_USERNAME = "<USERNAME>"
HUB_PASSWORD = "<PASSWORD>"

client = xmlrpclib.Server(HUB_XMLRPC_API_URL, verbose=0)

hubSessionKey = client.hub.login(HUB_USERNAME, HUB_PASSWORD)

Get the server IDs
serverIds = client.hub.listServerIds(hubSessionKey)

For simplicity, this example assumes you are using the same username and password here, as
on the hub server.
However, in most cases, every server has its own individual credentials.
usernames = [HUB_USERNAME for s in serverIds]
passwords = [HUB_PASSWORD for s in serverIds]

Each server uses the credentials set above, client.hub.attachToServers needs
them passed as lists with as many elements as there are servers.
client.hub.attachToServers(hubSessionKey, serverIds, usernames, passwords)

Perform the operation
systemsPerServer = client.multicast.system.list_systems(hubSessionKey, serverIds)
successfulResponses = systemsPerServer["Successful"]["Responses"]
failedResponses = systemsPerServer["Failed"]["Responses"]

for system in successfulResponses:
 print (system)

#logout
client.hub.logout(hubSessionKey)

Example: Relay Authentication

In relay authentication mode, the credentials used to sign in to the Hub API are also used to sign in into
the APIs of the peripheral servers the user wants to work with. In this authentication mode, it is assumed
that the same credentials are valid for every server, and that they correspond to a user with appropriate
permissions.

After signing in, you must call the attachToServers method. This method defines the servers to target
in all subsequent calls.

A typical workflow for relay authentication is:

1. Credentials for the Hub are passed to the loginWithAuthRelayMode method, and a session key
for the Hub is returned (hubSessionKey).

2. Using the session key from the previous step, Uyuni Server IDs are obtained for all the peripheral
servers attached to the Hub via the hub.listServerIds method

3. A call to attachToServers is made, and the same credentials used to sign in to the Hub are
passed to each server. This performs authentication against each server’s XMLRPC API endpoint.

4. A multicast call is performed on a set of servers. This is defined by serverIds, which contains

3.5. Hub XMLRPC API Authentication Modes

10 / 39 3.5. Hub XMLRPC API Authentication Modes | Uyuni 2021.12

the IDs of the servers to target. In the background, system.list_system is called on each
server’s XMLRPC API.

5. Hub aggregates the results and returns the response in the form of a map. The map has two entries:

◦ Successful: list of responses for those peripheral servers where the call succeeded.

◦ Failed: list of responses for those peripheral servers the call failed.

Listing 2. Example Python Script for Relay Authentication:

#!/usr/bin/python
import xmlrpclib

HUB_XMLRPC_API_URL = "<HUB_XMLRPC_API_URL>"
HUB_USERNAME = "<USERNAME>"
HUB_PASSWORD = "<PASSWORD>"

client = xmlrpclib.Server(HUB_XMLRPC_API_URL, verbose=0)

hubSessionKey = client.hub.loginWithAuthRelayMode(HUB_USERNAME, HUB_PASSWORD)

#Get the server IDs
serverIds = client.hub.listServerIds(hubSessionKey)

#authenticate those servers(same credentials will be used as of hub to authenticate)
client.hub.attachToServers(hubSessionKey, serverIds)

perform the needed operation
systemsPerServer = client.multicast.system.list_systems(hubSessionKey, serverIds)
successfulResponses = systemsPerServer["Successful"]["Responses"]
failedResponses = systemsPerServer["Failed"]["Responses"]

for system in successfulResponses:
 print (system)

#logout
client.hub.logout(hubSessionKey)

Example: Auto-Connect Authentication

Auto-connect mode is similar to relay mode, it uses the Hub credentials to sign in in to all peripheral
servers. However, there is no need to use the attachToServers method, as auto-connect mode
connects to all available peripheral servers. This occurs at the same time as you sign in to the Hub.

A typical workflow for auto-connect authentication is:

1. Credentials for the Hub are passed to the loginWithAutoconnectMode method, and a session
key for the Hub is returned (hubSessionKey).

2. A multicast call is performed on a set of servers. This is defined by serverIds, which contains
the IDs of the servers to target. In the background, system.list_system is called on each
server’s XMLRPC API.

3. Hub aggregates the results and returns the response in the form of a map. The map has two entries:

◦ Successful: list of responses for those peripheral servers where the call succeeded.

3.5. Hub XMLRPC API Authentication Modes

11 / 39 3.5. Hub XMLRPC API Authentication Modes | Uyuni 2021.12

◦ Failed: list of responses for those peripheral servers where the call failed.

Listing 3. Example Python Script for Auto-Connect Authentication:

#!/usr/bin/python
import xmlrpclib

HUB_XMLRPC_API_URL = "<HUB_XMLRPC_API_URL>"
HUB_USERNAME = "<USERNAME>"
HUB_PASSWORD = "<PASSWORD>"

client = xmlrpclib.Server(HUB_XMLRPC_API_URL, verbose=0)

loginResponse = client.hub.loginWithAutoconnectMode(HUB_USERNAME, HUB_PASSWORD)
hubSessionKey = loginResponse["SessionKey"]

#Get the server IDs
serverIds = client.hub.listServerIds(hubSessionKey)

perform the needed operation
systemsPerServer = client.multicast.system.list_systems(hubSessionKey, serverIds)
successfulResponses = systemsPerServer["Successful"]["Responses"]
failedResponses = systemsPerServer["Failed"]["Responses"]

for system in successfulResponses:
 print (system)

#logout
client.hub.logout(hubSessionKey)

3.5. Hub XMLRPC API Authentication Modes

12 / 39 3.5. Hub XMLRPC API Authentication Modes | Uyuni 2021.12

Chapter 4. Managing Large Scale Deployments in a Retail
Environment
Uyuni for Retail 2021.12 is an open source infrastructure management solution, optimized and tailored
specifically for the retail industry. It uses the same technology as SUSE Manager, but is customized to
address the needs of retail organizations.

Uyuni for Retail is designed for use in retail situations where customers can use point-of-service terminals
to purchase or exchange goods, take part in promotions, or collect loyalty points. In addition to retail
installations, it can also be used for novel purposes, such as maintaining student computers in an
educational environment, or self-service kiosks in banks or hospitals.

Uyuni for Retail is intended for use in installations that include servers, workstations, point-of-service
terminals, and other devices. It allows administrators to install, configure, and update the software on their
servers, and manage the deployment and provisioning of point-of-service machines.

Point-of-Service (POS) terminals can come in many different formats, such as point-of-sale terminals,
kiosks, digital scales, self-service systems, and reverse-vending systems. Every terminal, however, is
provided by a vendor, who set basic information about the device in the firmware. Uyuni for Retail
accesses this vendor information to determine how best to work with the terminal in use.

In most cases, different terminals will require a different operating system (OS) image to ensure they work
correctly. For example, an information kiosk has a high-resolution touchscreen, where a cashier terminal
might only have a very basic display. While both of these terminals require similar processing and
network functionality, they will require different OS images. The OS images ensure that the different
display mechanisms work correctly.

For more information about setting up and using Uyuni for Retail, see Retail › Retail-overview.

13 / 39 Chapter 4. Managing Large Scale Deployments in a Retail Environment | Uyuni 2021.12

Chapter 5. Tuning Large Scale Deployments
Uyuni is designed by default to work on small and medium scale installations. For installations with more
than 1000 clients per Uyuni Server, adequate hardware sizing and parameter tuning must be performed.

The instructions in this section can have severe and catastrophic performance
impacts when improperly used. In some cases, they can cause Uyuni to
completely cease functioning. Always test changes before implementing them in
a production environment. During implementation, take care when changing
parameters. Monitor performance before and after each change, and revert any
steps that do not produce the expected result.

Tuning is not required on installations of fewer than 1000 clients. Do not
perform these instructions on small or medium scale installations.

5.1. The Tuning Process
Any Uyuni installation is subject to a number of design and infrastructure constraints that, for the
purposes of tuning, we call environmental variables. Environmental variables can include the total number
of clients, the number of different operating systems under management, and the number of software
channels.

Environmental variables influence, either directly or indirectly, the value of most configuration
parameters. During the tuning process, the configuration parameters are manipulated to improve system
performance.

Before you begin tuning, you will need to estimate the best setting for each environment variable, and
adjust the configuration parameters to suit.

To help you with the estimation process, we have provided you with a dependency graph. Locate the
environmental variables on the dependency graph to determine how they will influence other variables
and parameters.

Environmental variables are represented by graph nodes in a rectangle at the top of the dependency graph.
Each node is connected to the relevant parameters that might need tuning. Consult the relevant sections in
this document for more information about recommended values.

Tuning one parameter might require tuning other parameters, or changing hardware, or the infrastructure.
When you change a parameter, follow the arrows from that node on the graph to determine what other
parameters might need adjustment. Continue through each parameter until you have visited all nodes on
the graph.

5.1. The Tuning Process

14 / 39 5.1. The Tuning Process | Uyuni 2021.12

Network
Bandwidth

Proxy count

Client count

java.message_queue_thread_pool_size java.salt_batch_size

java.salt_presence_ping_gather_job_timeout

java.salt_presence_ping_timeout

org.quartz.threadPool.threadCount

org.quartz.scheduler.idleWaitTime

rhn-search.java.maxmemory

worker_threads

pub_hwm zmq_backlog

MinionActionExecutor.parallel_threads

connectionTimeout keepAliveTimeout

Channel count

java.taskomatic_channel_repodata_workers

OS mix

taskomatic.java.maxmemory

User count

MaxClients

hibernate.c3p0.max_size thread_pool Tomcat -Xmx

memory usage

work_mem

maxThreadsServerLimit

max_connections

effective_cache_size

RAM

shared_buffersswappiness

Key to the Dependency Graph

• 3D boxes are hardware design variables or constraints

• Oval-shaped boxes are software or system design variables or constraints

• Rectangle-shaped boxes are configurable parameters, color-coded by configuration file:

◦ Red: Apache httpd configuration files

◦ Blue: Salt configuration files

◦ Brown: Tomcat configuration files

◦ Grey: PostgreSQL configuration files

◦ Purple: /etc/rhn/rhn.conf

• Dashed connecting lines indicate a variable or constraint that might require a change to another
parameter

• Solid connecting lines indicate that changing a configuration parameter requires checking another
one to prevent issues

After the initial tuning has been completed, you will need to consider tuning again in these cases:

• If your tuning inputs change significantly

• If special conditions arise that require a certain parameter to be changed. For example, if specific
warnings appear in a log file.

• If performance is not satisfactory

To re-tune your installation, you will need to use the dependency graph again. Start from the node where
significant change has happened.

5.1. The Tuning Process

15 / 39 5.1. The Tuning Process | Uyuni 2021.12

5.2. Environmental Variables
This section contains information about environmental variables (inputs to the tuning process).

Network Bandwidth

A measure of the typically available egress bandwith from the Uyuni Server host to the clients or
Uyuni Proxy hosts. This should take into account network hardware and topology as well as possible
capacity limits on switches, routers, and other network equipment between the server and clients.

Channel count

The number of expected channels to manage. Includes any vendor-provided, third-party, and cloned
or staged channels.

Client count

The total number of actual or expected clients. It is important to tune any parameters in advance of a
client count increase, whenever possible.

OS mix

The number of distinct operating system versions that managed clients have installed. This is ordered
by family (SUSE Linux Enterprise, openSUSE, Red Hat Enterprise Linux, or Ubuntu based). Storage
and computing requirements are different in each case.

User count

The expected maximum amount of concurrent users interacting with the Web UI plus the number of
programs simultaneously using the XMLRPC API. Includes spacecmd, spacewalk-clone-by-
date, and similar.

5.3. Parameters
This section contains information about the available parameters.

5.3.1. MaxClients

Description The maximum number of HTTP requests served
simultaneously by Apache httpd. Proxies, Web UI,
and XMLRPC API clients each consume one.
Requests exceeding the parameter will be queued
and might result in timeouts.

5.2. Environmental Variables

16 / 39 5.2. Environmental Variables | Uyuni 2021.12

Tune when User count and proxy count increase significantly
and this line appears in
/var/log/apache2/error_log: […]
[mpm_prefork:error] [pid …]
AH00161: server reached
MaxRequestWorkers setting, consider
raising the MaxRequestWorkers
setting.

Value default 150

Value recommendation 150-500

Location /etc/apache2/server-tuning.conf, in the
prefork.c section

Example MaxClients = 200

After changing Immediately change ServerLimit and check
maxThreads for possible adjustment.

Notes This parameter was renamed to
MaxRequestWorkers, both names are valid.

More information https://httpd.apache.org/docs/2.4/en/mod/
mpm_common.html#maxrequestworkers

5.3.2. ServerLimit

Description The number of Apache httpd processes serving
HTTP requests simultaneously. The number must
equal MaxClients.

Tune when MaxClients changes

Value default 150

Value recommendation The same value as MaxClients

Location /etc/apache2/server-tuning.conf, in the
prefork.c section

Example ServerLimit = 200

More information https://httpd.apache.org/docs/2.4/en/mod/
mpm_common.html#serverlimit

5.3. Parameters

17 / 39 5.3. Parameters | Uyuni 2021.12

https://httpd.apache.org/docs/2.4/en/mod/mpm_common.html#maxrequestworkers
https://httpd.apache.org/docs/2.4/en/mod/mpm_common.html#maxrequestworkers
https://httpd.apache.org/docs/2.4/en/mod/mpm_common.html#serverlimit
https://httpd.apache.org/docs/2.4/en/mod/mpm_common.html#serverlimit

5.3.3. maxThreads

Description The number of Tomcat threads dedicated to serving
HTTP requests

Tune when MaxClients changes. maxThreads must always
be equal or greater than MaxClients

Value default 150

Value recommendation The same value as MaxClients

Location /etc/tomcat/server.xml

Example <Connector port="8009"
protocol="AJP/1.3"
redirectPort="8443"
URIEncoding="UTF-8"
address="127.0.0.1" maxThreads="200"
connectionTimeout="20000"/>

More information https://tomcat.apache.org/tomcat-9.0-doc/config/
http.html

5.3.4. connectionTimeout

Description The number of milliseconds before a non-
responding AJP connection is forcibly closed.

Tune when Client count increases significantly and AH00992,
AH00877, and AH01030 errors appear in Apache
error logs during a load peak.

Value default 900000

Value recommendation 20000-3600000

Location /etc/tomcat/server.xml

Example <Connector port="8009"
protocol="AJP/1.3"
redirectPort="8443"
URIEncoding="UTF-8"
address="127.0.0.1" maxThreads="200"
connectionTimeout="1000000"
keepAliveTimeout="300000"/>

5.3. Parameters

18 / 39 5.3. Parameters | Uyuni 2021.12

https://tomcat.apache.org/tomcat-9.0-doc/config/http.html
https://tomcat.apache.org/tomcat-9.0-doc/config/http.html

More information https://tomcat.apache.org/tomcat-9.0-doc/config/
http.html

5.3.5. keepAliveTimeout

Description The number of milliseconds without data exchange
from the JVM before a non-responding AJP
connection is forcibly closed.

Tune when Client count increases significantly and AH00992,
AH00877, and AH01030 errors appear in Apache
error logs during a load peak.

Value default 300000

Value recommendation 20000-600000

Location /etc/tomcat/server.xml

Example <Connector port="8009"
protocol="AJP/1.3"
redirectPort="8443"
URIEncoding="UTF-8"
address="127.0.0.1" maxThreads="200"
connectionTimeout="1000000"
keepAliveTimeout="400000"/>

More information https://tomcat.apache.org/tomcat-9.0-doc/config/
http.html

5.3.6. Tomcat’s -Xmx

Description The maximum amount of memory Tomcat can use

Tune when java.message_queue_thread_pool_size is
increased or OutOfMemoryException errors
appear in /var/log/rhn/rhn_web_ui.log

Value default 1 GiB

Value recommendation 4-8 GiB

Location /etc/sysconfig/tomcat

Example JAVA_OPTS="… -Xmx8G …"

After changing Check memory usage

5.3. Parameters

19 / 39 5.3. Parameters | Uyuni 2021.12

https://tomcat.apache.org/tomcat-9.0-doc/config/http.html
https://tomcat.apache.org/tomcat-9.0-doc/config/http.html
https://tomcat.apache.org/tomcat-9.0-doc/config/http.html
https://tomcat.apache.org/tomcat-9.0-doc/config/http.html

More information https://docs.oracle.com/javase/8/docs/technotes/
tools/windows/java.html

5.3.7. java.message_queue_thread_pool_size

Description The maximum number of threads in Tomcat
dedicated to asynchronous operations, including
handling of incoming Salt events

Tune when Client count increases significantly

Value default 5

Value recommendation 50 - 150

Location /etc/rhn/rhn.conf

Example java.message_queue_thread_pool_size
= 50

After changing Check hibernate.c3p0.max_size, as each
thread consumes a PostgreSQL connection,
starvation might happen if the allocated connection
pool is insufficient. Check thread_pool, as each
thread might perform Salt API calls, starvation
might happen if the allocated Salt thread pool is
insufficient. Check Tomcat’s -Xmx, as each thread
consumes memory, OutOfMemoryException
might be raised if insufficient.

More information man rhn.conf

5.3.8. java.salt_batch_size

Description The maximum number of minions concurrently
executing a scheduled action.

Tune when Client count reaches several thousands and actions
are not executed quickly enough.

Value default 200

Value recommendation 200-500

Location /etc/rhn/rhn.conf

Example java.salt_batch_size = 300

5.3. Parameters

20 / 39 5.3. Parameters | Uyuni 2021.12

https://docs.oracle.com/javase/8/docs/technotes/tools/windows/java.html
https://docs.oracle.com/javase/8/docs/technotes/tools/windows/java.html

After changing Check memory usage. Monitor memory usage
closely before and after the change.

More information Salt › Salt-rate-limiting

5.3.9. java.salt_presence_ping_timeout

Description Before any action is executed on a client, a
presence ping is executed to make sure the client is
reachable. This parameter sets the amount of time
before a second command (find_job) is sent to
the client to verify its presence. Having many
clients typically means some will respond faster
than others, so this timeout could be raised to
accommodate for the slower ones.

Tune when Client count increases significantly, or some clients
are responding correctly but too slowly, and Uyuni
excludes them from calls. This line appears in
/var/log/rhn/rhn_web_ui.log: "Got no
result for <COMMAND> on minion
<MINION_ID> (minion did not respond
in time)"

Value default 4 seconds

Value recommendation 4-400 seconds

Location /etc/rhn/rhn.conf

Example java.salt_presence_ping_timeout = 40

More information Salt › Salt-timeouts

5.3.10. java.salt_presence_ping_gather_job_timeout

5.3. Parameters

21 / 39 5.3. Parameters | Uyuni 2021.12

Description Before any action is executed on a client, a
presence ping is executed to make sure the client is
reachable. After
java.salt_presence_ping_timeout
seconds have elapsed without a response, a second
command (find_job) is sent to the client for a
final check. This parameter sets the number of
seconds after the second command after which the
client is definitely considered offline. Having many
clients typically means some will respond faster
than others, so this timeout could be raised to
accommodate for the slower ones.

Tune when Client count increases significantly, or some clients
are responding correctly but too slowly, and Uyuni
excludes them from calls. This line appears in
/var/log/rhn/rhn_web_ui.log: "Got no
result for <COMMAND> on minion
<MINION_ID> (minion did not respond
in time)"

Value default 1 second

Value recommendation 1-100 seconds

Location /etc/rhn/rhn.conf

Example java.salt_presence_ping_gather_job_t
imeout = 10

More information Salt › Salt-timeouts

5.3.11. java.taskomatic_channel_repodata_workers

Description Whenever content is changed in a software channel,
its metadata needs to be recomputed before clients
can use it. Channel-altering operations include the
addition of a patch, the removal of a package or a
repository synchronization run. This parameter
specifies the maximum number of Taskomatic
threads that Uyuni will use to recompute the
channel metadata. Channel metadata computation
is both CPU-bound and memory-heavy, so raising
this parameter and operating on many channels
simultaneously could cause Taskomatic to consume
significant resources, but channels will be available
to clients sooner.

5.3. Parameters

22 / 39 5.3. Parameters | Uyuni 2021.12

Tune when Channel count increases significantly (more than
50), or more concurrent operations on channels are
expected.

Value default 2

Value recommendation 2-10

Location /etc/rhn/rhn.conf

Example java.taskomatic_channel_repodata_wor
kers = 4

After changing Check taskomatic.java.maxmemory for
adjustment, as every new thread will consume
memory

More information man rhn.conf

5.3.12. taskomatic.java.maxmemory

Description The maximum amount of memory Taskomatic can
use. Generation of metadata, especially for some
OSs, can be memory-intensive, so this parameter
might need raising depending on the managed OS
mix.

Tune when java.taskomatic_channel_repodata_wor
kers increases, OSs are added to Uyuni
(particularly Red Hat Enterprise Linux or Ubuntu),
or OutOfMemoryException errors appear in
/var/log/rhn/rhn_taskomatic_daemon.l
og.

Value default 4096 MiB

Value recommendation 4096-16384 MiB

Location /etc/rhn/rhn.conf

Example taskomatic.java.maxmemory = 8192

After changing Check memory usage.

More information man rhn.conf

5.3. Parameters

23 / 39 5.3. Parameters | Uyuni 2021.12

5.3.13. org.quartz.threadPool.threadCount

Description The number of Taskomatic worker threads.
Increasing this value allows Taskomatic to serve
more clients in parallel.

Tune when Client count increases significantly

Value default 20

Value recommendation 20-200

Location /etc/rhn/rhn.conf

Example org.quartz.threadPool.threadCount =
100

After changing Check hibernate.c3p0.max_size and
thread_pool for adjustment

More information http://www.quartz-scheduler.org/documentation/
2.4.0-SNAPSHOT/configuration.html

5.3.14. org.quartz.scheduler.idleWaitTime

Description Cycle time for Taskomatic. Decreasing this value
lowers the latency of Taskomatic.

Tune when Client count is in the thousands.

Value default 5000 ms

Value recommendation 1000-5000 ms

Location /etc/rhn/rhn.conf

Example org.quartz.scheduler.idleWaitTime =
1000

More information http://www.quartz-scheduler.org/documentation/
2.4.0-SNAPSHOT/configuration.html

5.3.15. MinionActionExecutor.parallel_threads

Description Number of Taskomatic threads dedicated to
sending commands to Salt clients as a result of
actions being executed.

Tune when Client count is in the thousands.

5.3. Parameters

24 / 39 5.3. Parameters | Uyuni 2021.12

http://www.quartz-scheduler.org/documentation/2.4.0-SNAPSHOT/configuration.html
http://www.quartz-scheduler.org/documentation/2.4.0-SNAPSHOT/configuration.html
http://www.quartz-scheduler.org/documentation/2.4.0-SNAPSHOT/configuration.html
http://www.quartz-scheduler.org/documentation/2.4.0-SNAPSHOT/configuration.html

Value default 1

Value recommendation 1-10

Location /etc/rhn/rhn.conf

Example taskomatic.com.redhat.rhn.taskomatic
.task.MinionActionExecutor.parallel_
threads = 10

5.3.16. SSHMinionActionExecutor.parallel_threads

Description Number of Taskomatic threads dedicated to
sending commands to Salt SSH clients as a result of
actions being executed.

Tune when Client count is in the hundreds.

Value default 20

Value recommendation 20-100

Location /etc/rhn/rhn.conf

Example taskomatic.com.redhat.rhn.taskomatic
.task.SSHMinionActionExecutor.parall
el_threads = 40

5.3.17. hibernate.c3p0.max_size

Description Maximum number of PostgreSQL connections
simultaneously available to both Tomcat and
Taskomatic. If any of those components requires
more concurrent connections, their requests will be
queued.

Tune when java.message_queue_thread_pool_size
or maxThreads increase significantly, or when
org.quartz.threadPool.threadCount has
changed significantly. Each thread consumes one
connection in Taskomatic and Tomcat, having more
threads than connections might result in starving.

Value default 20

5.3. Parameters

25 / 39 5.3. Parameters | Uyuni 2021.12

Value recommendation 100 to 200, higher than the maximum of
java.message_queue_thread_pool_size +
maxThreads and
org.quartz.threadPool.threadCount

Location /etc/rhn/rhn.conf

Example hibernate.c3p0.max_size = 100

After changing Check max_connections for adjustment.

More information https://www.mchange.com/projects/c3p0/#
maxPoolSize

5.3.18. rhn-search.java.maxmemory

Description The maximum amount of memory that the rhn-
search service can use.

Tune when Client count increases significantly, and
OutOfMemoryException errors appear in
journalctl -u rhn-search.

Value default 512 MiB

Value recommendation 512-4096 MiB

Location /etc/rhn/rhn.conf

Example rhn-search.java.maxmemory = 4096

After changing Check memory usage.

5.3.19. shared_buffers

Description The amount of memory reserved for PostgreSQL
shared buffers, which contain caches of database
tables and index data.

Tune when RAM changes

Value default 25% of total RAM

Value recommendation 25-40% of total RAM

Location /var/lib/pgsql/data/postgresql.conf

Example shared_buffers = 8192MB

5.3. Parameters

26 / 39 5.3. Parameters | Uyuni 2021.12

https://www.mchange.com/projects/c3p0/#maxPoolSize
https://www.mchange.com/projects/c3p0/#maxPoolSize

After changing Check memory usage.

More information https://www.postgresql.org/docs/10/runtime-
config-resource.html#GUC-SHARED-BUFFERS

5.3.20. max_connections

Description Maximum number of PostgreSQL connections
available to applications. More connections allow
for more concurrent threads/workers in various
components (in particular Tomcat and Taskomatic),
which generally improves performance. However,
each connection consumes resources, in particular
work_mem megabytes per sort operation per
connection.

Tune when hibernate.c3p0.max_size changes
significantly, as that parameter determines the
maximum number of connections available to
Tomcat and Taskomatic

Value default 400

Value recommendation 2 * hibernate.c3p0.max_size + 50, if less than 1000

Location /var/lib/pgsql/data/postgresql.conf

Example max_connections = 250

After changing Check memory usage. Monitor memory usage
closely before and after the change.

More information https://www.postgresql.org/docs/10/runtime-
config-connection.html#GUC-MAX-
CONNECTIONS

5.3.21. work_mem

Description The amount of memory allocated by PostgreSQL
every time a connection needs to do a sort or hash
operation. Every connection (as specified by
max_connections) might make use of an
amount of memory equal to a multiple of
work_mem.

5.3. Parameters

27 / 39 5.3. Parameters | Uyuni 2021.12

https://www.postgresql.org/docs/10/runtime-config-resource.html#GUC-SHARED-BUFFERS
https://www.postgresql.org/docs/10/runtime-config-resource.html#GUC-SHARED-BUFFERS
https://www.postgresql.org/docs/10/runtime-config-connection.html#GUC-MAX-CONNECTIONS
https://www.postgresql.org/docs/10/runtime-config-connection.html#GUC-MAX-CONNECTIONS
https://www.postgresql.org/docs/10/runtime-config-connection.html#GUC-MAX-CONNECTIONS

Tune when Database operations are slow because of excessive
temporary file disk I/O. To test if that is happening,
add log_temp_files = 5120 to
/var/lib/pgsql/data/postgresql.conf,
restart PostgreSQL, and monitor the PostgreSQL
log files. If you see lines containing LOG:
temporary file: try raising this parameter’s
value to help reduce disk I/O and speed up database
operations.

Value recommendation 2-20 MB

Location /var/lib/pgsql/data/postgresql.conf

Example work_mem = 10MB

After changing check if the Uyuni Server might need additional
RAM.

More information https://www.postgresql.org/docs/10/runtime-
config-resource.html#GUC-WORK-MEM

5.3.22. effective_cache_size

Description Estimation of the total memory available to
PostgreSQL for caching. It is the explicitly reserved
memory (shared_buffers) plus any memory
used by the kernel as cache/buffer.

Tune when Hardware RAM or memory usage increase
significantly

Value recommendation Start with 75% of total RAM. For finer settings,
use shared_buffers + free memory +
buffer/cache memory. Free and buffer/cache can be
determined via the free -m command (free and
buff/cache in the output respectively)

Location /var/lib/pgsql/data/postgresql.conf

Example effective_cache_size = 24GB

After changing Check memory usage

Notes This is an estimation for the query planner, not an
allocation.

5.3. Parameters

28 / 39 5.3. Parameters | Uyuni 2021.12

https://www.postgresql.org/docs/10/runtime-config-resource.html#GUC-WORK-MEM
https://www.postgresql.org/docs/10/runtime-config-resource.html#GUC-WORK-MEM

More information https://www.postgresql.org/docs/10/runtime-
config-query.html#GUC-EFFECTIVE-CACHE-
SIZE

5.3.23. thread_pool

Description The number of worker threads serving Salt API
HTTP requests. A higher number can improve
parallelism of Uyuni Server-initiated Salt
operations, but will consume more memory.

Tune when java.message_queue_thread_pool_size
or org.quartz.threadPool.threadCount
are changed. Starvation can occur when there are
more Tomcat or Taskomatic threads making
simultaneous Salt API calls than there are Salt API
worker threads.

Value default 100

Value recommendation 100-500, but should be higher than the sum of
java.message_queue_thread_pool_size
and org.quartz.threadPool.threadCount

Location /etc/salt/master.d/susemanager.conf,
in the rest_cherrypy section.

Example thread_pool: 100

After changing Check worker_threads for adjustment.

More information https://docs.saltstack.com/en/latest/ref/netapi/all/
salt.netapi.rest_cherrypy.html#performance-tuning

5.3.24. worker_threads

Description The number of salt-master worker threads that
process commands and replies from minions and
the Salt API. Increasing this value, assuming
sufficient resources are available, allows Salt to
process more data in parallel from minions without
timing out, but will consume significantly more
RAM (typically about 70 MiB per thread).

5.3. Parameters

29 / 39 5.3. Parameters | Uyuni 2021.12

https://www.postgresql.org/docs/10/runtime-config-query.html#GUC-EFFECTIVE-CACHE-SIZE
https://www.postgresql.org/docs/10/runtime-config-query.html#GUC-EFFECTIVE-CACHE-SIZE
https://www.postgresql.org/docs/10/runtime-config-query.html#GUC-EFFECTIVE-CACHE-SIZE
https://docs.saltstack.com/en/latest/ref/netapi/all/salt.netapi.rest_cherrypy.html#performance-tuning
https://docs.saltstack.com/en/latest/ref/netapi/all/salt.netapi.rest_cherrypy.html#performance-tuning

Tune when Client count increases significantly, thread_pool
increases significantly, or
SaltReqTimeoutError or Message timed
out errors appear in /var/log/salt/master.

Value default 8

Value recommendation 8-200

Location /etc/salt/master.d/tuning.conf

Example worker_threads: 50

After changing Check memory usage. Monitor memory usage
closely before and after the change.

More information https://docs.saltstack.com/en/latest/ref/
configuration/master.html#worker-threads

5.3.25. pub_hwm

Description The maximum number of outstanding messages
sent by salt-master. If more than this number
of messages need to be sent concurrently,
communication with clients slows down, potentially
resulting in timeout errors during load peaks.

Tune when Client count increases significantly and Salt
request timed out. The master is not
responding. errors appear when pinging
minions during a load peak.

Value default 1000

Value recommendation 10000-100000

Location /etc/salt/master.d/tuning.conf

Example pub_hwm: 10000

More information https://docs.saltstack.com/en/latest/ref/
configuration/master.html#pub-hwm,
https://zeromq.org/socket-api/#high-water-mark

5.3.26. zmq_backlog

5.3. Parameters

30 / 39 5.3. Parameters | Uyuni 2021.12

https://docs.saltstack.com/en/latest/ref/configuration/master.html#worker-threads
https://docs.saltstack.com/en/latest/ref/configuration/master.html#worker-threads
https://docs.saltstack.com/en/latest/ref/configuration/master.html#pub-hwm
https://docs.saltstack.com/en/latest/ref/configuration/master.html#pub-hwm
https://zeromq.org/socket-api/#high-water-mark

Description The maximum number of allowed client
connections that have started but not concluded the
opening process. If more than this number of
clients connects in a very short time frame,
connections are dropped and clients experience a
delay re-connecting.

Tune when Client count increases significantly and very many
clients reconnect in a short time frame, TCP
connections to the salt-master process get
dropped by the kernel.

Value default 1000

Value recommendation 1000-5000

Location /etc/salt/master.d/tuning.conf

Example zmq_backlog: 2000

More information https://docs.saltstack.com/en/latest/ref/
configuration/master.html#zmq-backlog,
http://api.zeromq.org/3-0:zmq-getsockopt
(ZMQ_BACKLOG)

5.3.27. swappiness

Description How aggressively the kernel moves unused data
from memory to the swap partition. Setting a lower
parameter typically reduces swap usage and results
in better performance, especially when RAM
memory is abundant.

Tune when RAM increases, or swap is used when RAM
memory is sufficient.

Value default 60

Value recommendation 1-60. For 128 GB of RAM, 10 is expected to give
good results.

Location /etc/sysctl.conf

Example vm.swappiness = 20

More information https://documentation.suse.com/sles/15-SP3/html/
SLES-all/cha-tuning-memory.html#cha-tuning-
memory-vm

5.3. Parameters

31 / 39 5.3. Parameters | Uyuni 2021.12

https://docs.saltstack.com/en/latest/ref/configuration/master.html#zmq-backlog
https://docs.saltstack.com/en/latest/ref/configuration/master.html#zmq-backlog
http://api.zeromq.org/3-0:zmq-getsockopt
https://documentation.suse.com/sles/15-SP3/html/SLES-all/cha-tuning-memory.html#cha-tuning-memory-vm
https://documentation.suse.com/sles/15-SP3/html/SLES-all/cha-tuning-memory.html#cha-tuning-memory-vm
https://documentation.suse.com/sles/15-SP3/html/SLES-all/cha-tuning-memory.html#cha-tuning-memory-vm

5.3.28. Memory Usage

Adjusting some of the parameters listed in this section can result in a higher amount of RAM being used
by various components. It is important that the amount of hardware RAM is adequate after any
significant change.

To determine how RAM is being used, you will need to check each process that consumes it.

Operating system

Stop all Uyuni services and inspect the output of free -h.

Java-based components

This includes Taskomatic, Tomcat, and rhn-search. These services support a configurable memory
cap.

The Uyuni Server

Depends on many factors and can only be estimated. Measure PostgreSQL reserved memory by
checking shared_buffers, permanently. You can also multiply work_mem and
max_connections, and multiply by three for a worst case estimate of per-query RAM. You will
also need to check the operating system buffers and caches, which are used by PostgreSQL to host
copies of database data. These often automatically occupy any available RAM.

It is important that the Uyuni Server has sufficient RAM to accommodate all of these processes,
especially OS buffers and caches, to have reasonable PostgreSQL performance. We recommend you keep
several gigabytes available at all times, and add more as the database size on disk increases.

Whenever the expected amount of memory available for OS buffers and caches changes, update the
effective_cache_size parameter to have PostgreSQL use it correctly. You can calculate the total
available by finding the total RAM available, less the expected memory usage.

To get a live breakdown of the memory used by services on the Uyuni Server, use this command:

pidstat -p ALL -r --human 1 60 | tee pidstat-memory.log

This command will save a copy of displayed data in the pidstat-memory.log file for later analysis.

5.3. Parameters

32 / 39 5.3. Parameters | Uyuni 2021.12

Chapter 6. GNU Free Documentation License
Copyright © 2000, 2001, 2002 Free Software Foundation, Inc. 51 Franklin St, Fifth Floor, Boston, MA
02110-1301 USA. Everyone is permitted to copy and distribute verbatim copies of this license document,
but changing it is not allowed.

0. PREAMBLE
The purpose of this License is to make a manual, textbook, or other functional and useful document
"free" in the sense of freedom: to assure everyone the effective freedom to copy and redistribute it, with
or without modifying it, either commercially or noncommercially. Secondarily, this License preserves for
the author and publisher a way to get credit for their work, while not being considered responsible for
modifications made by others.

This License is a kind of "copyleft", which means that derivative works of the document must themselves
be free in the same sense. It complements the GNU General Public License, which is a copyleft license
designed for free software.

We have designed this License in order to use it for manuals for free software, because free software
needs free documentation: a free program should come with manuals providing the same freedoms that
the software does. But this License is not limited to software manuals; it can be used for any textual work,
regardless of subject matter or whether it is published as a printed book. We recommend this License
principally for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS
This License applies to any manual or other work, in any medium, that contains a notice placed by the
copyright holder saying it can be distributed under the terms of this License. Such a notice grants a world-
wide, royalty-free license, unlimited in duration, to use that work under the conditions stated herein. The
"Document", below, refers to any such manual or work. Any member of the public is a licensee, and is
addressed as "you". You accept the license if you copy, modify or distribute the work in a way requiring
permission under copyright law.

A "Modified Version" of the Document means any work containing the Document or a portion of it,
either copied verbatim, or with modifications and/or translated into another language.

A "Secondary Section" is a named appendix or a front-matter section of the Document that deals
exclusively with the relationship of the publishers or authors of the Document to the Document’s overall
subject (or to related matters) and contains nothing that could fall directly within that overall subject.
(Thus, if the Document is in part a textbook of mathematics, a Secondary Section may not explain any
mathematics.) The relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding them.

The "Invariant Sections" are certain Secondary Sections whose titles are designated, as being those of
Invariant Sections, in the notice that says that the Document is released under this License. If a section
does not fit the above definition of Secondary then it is not allowed to be designated as Invariant. The
Document may contain zero Invariant Sections. If the Document does not identify any Invariant Sections

33 / 39 Chapter 6. GNU Free Documentation License | Uyuni 2021.12

then there are none.

The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover
Texts, in the notice that says that the Document is released under this License. A Front-Cover Text may
be at most 5 words, and a Back-Cover Text may be at most 25 words.

A "Transparent" copy of the Document means a machine-readable copy, represented in a format whose
specification is available to the general public, that is suitable for revising the document straightforwardly
with generic text editors or (for images composed of pixels) generic paint programs or (for drawings)
some widely available drawing editor, and that is suitable for input to text formatters or for automatic
translation to a variety of formats suitable for input to text formatters. A copy made in an otherwise
Transparent file format whose markup, or absence of markup, has been arranged to thwart or discourage
subsequent modification by readers is not Transparent. An image format is not Transparent if used for any
substantial amount of text. A copy that is not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input
format, LaTeX input format, SGML or XML using a publicly available DTD, and standard-conforming
simple HTML, PostScript or PDF designed for human modification. Examples of transparent image
formats include PNG, XCF and JPG. Opaque formats include proprietary formats that can be read and
edited only by proprietary word processors, SGML or XML for which the DTD and/or processing tools
are not generally available, and the machine-generated HTML, PostScript or PDF produced by some
word processors for output purposes only.

The "Title Page" means, for a printed book, the title page itself, plus such following pages as are needed
to hold, legibly, the material this License requires to appear in the title page. For works in formats which
do not have any title page as such, "Title Page" means the text near the most prominent appearance of the
work’s title, preceding the beginning of the body of the text.

A section "Entitled XYZ" means a named subunit of the Document whose title either is precisely XYZ or
contains XYZ in parentheses following text that translates XYZ in another language. (Here XYZ stands
for a specific section name mentioned below, such as "Acknowledgements", "Dedications",
"Endorsements", or "History".) To "Preserve the Title" of such a section when you modify the Document
means that it remains a section "Entitled XYZ" according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that this License applies
to the Document. These Warranty Disclaimers are considered to be included by reference in this License,
but only as regards disclaiming warranties: any other implication that these Warranty Disclaimers may
have is void and has no effect on the meaning of this License.

2. VERBATIM COPYING
You may copy and distribute the Document in any medium, either commercially or noncommercially,
provided that this License, the copyright notices, and the license notice saying this License applies to the
Document are reproduced in all copies, and that you add no other conditions whatsoever to those of this
License. You may not use technical measures to obstruct or control the reading or further copying of the
copies you make or distribute. However, you may accept compensation in exchange for copies. If you
distribute a large enough number of copies you must also follow the conditions in section 3.

34 / 39 Chapter 6. GNU Free Documentation License | Uyuni 2021.12

You may also lend copies, under the same conditions stated above, and you may publicly display copies.

3. COPYING IN QUANTITY
If you publish printed copies (or copies in media that commonly have printed covers) of the Document,
numbering more than 100, and the Document’s license notice requires Cover Texts, you must enclose the
copies in covers that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front cover,
and Back-Cover Texts on the back cover. Both covers must also clearly and legibly identify you as the
publisher of these copies. The front cover must present the full title with all words of the title equally
prominent and visible. You may add other material on the covers in addition. Copying with changes
limited to the covers, as long as they preserve the title of the Document and satisfy these conditions, can
be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed
(as many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must either
include a machine-readable Transparent copy along with each Opaque copy, or state in or with each
Opaque copy a computer-network location from which the general network-using public has access to
download using public-standard network protocols a complete Transparent copy of the Document, free of
added material. If you use the latter option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this Transparent copy will remain thus accessible
at the stated location until at least one year after the last time you distribute an Opaque copy (directly or
through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before redistributing
any large number of copies, to give them a chance to provide you with an updated version of the
Document.

4. MODIFICATIONS
You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and
3 above, provided that you release the Modified Version under precisely this License, with the Modified
Version filling the role of the Document, thus licensing distribution and modification of the Modified
Version to whoever possesses a copy of it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and from
those of previous versions (which should, if there were any, be listed in the History section of the
Document). You may use the same title as a previous version if the original publisher of that version
gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of the
modifications in the Modified Version, together with at least five of the principal authors of the
Document (all of its principal authors, if it has fewer than five), unless they release you from this
requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the publisher.

35 / 39 Chapter 6. GNU Free Documentation License | Uyuni 2021.12

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public permission to use
the Modified Version under the terms of this License, in the form shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given in
the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled "History", Preserve its Title, and add to it an item stating at least the
title, year, new authors, and publisher of the Modified Version as given on the Title Page. If there is
no section Entitled "History" in the Document, create one stating the title, year, authors, and
publisher of the Document as given on its Title Page, then add an item describing the Modified
Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to a Transparent copy
of the Document, and likewise the network locations given in the Document for previous versions it
was based on. These may be placed in the "History" section. You may omit a network location for a
work that was published at least four years before the Document itself, or if the original publisher of
the version it refers to gives permission.

K. For any section Entitled "Acknowledgements" or "Dedications", Preserve the Title of the section,
and preserve in the section all the substance and tone of each of the contributor acknowledgements
and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles. Section
numbers or the equivalent are not considered part of the section titles.

M. Delete any section Entitled "Endorsements". Such a section may not be included in the Modified
Version.

N. Do not retitle any existing section to be Entitled "Endorsements" or to conflict in title with any
Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary
Sections and contain no material copied from the Document, you may at your option designate some or
all of these sections as invariant. To do this, add their titles to the list of Invariant Sections in the
Modified Version’s license notice. These titles must be distinct from any other section titles.

You may add a section Entitled "Endorsements", provided it contains nothing but endorsements of your
Modified Version by various parties—for example, statements of peer review or that the text has been
approved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as a
Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of
Front-Cover Text and one of Back-Cover Text may be added by (or through arrangements made by) any
one entity. If the Document already includes a cover text for the same cover, previously added by you or
by arrangement made by the same entity you are acting on behalf of, you may not add another; but you
may replace the old one, on explicit permission from the previous publisher that added the old one.

36 / 39 Chapter 6. GNU Free Documentation License | Uyuni 2021.12

The author(s) and publisher(s) of the Document do not by this License give permission to use their names
for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS
You may combine the Document with other documents released under this License, under the terms
defined in section 4 above for modified versions, provided that you include in the combination all of the
Invariant Sections of all of the original documents, unmodified, and list them all as Invariant Sections of
your combined work in its license notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invariant Sections
may be replaced with a single copy. If there are multiple Invariant Sections with the same name but
different contents, make the title of each such section unique by adding at the end of it, in parentheses, the
name of the original author or publisher of that section if known, or else a unique number. Make the same
adjustment to the section titles in the list of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled "History" in the various original documents,
forming one section Entitled "History"; likewise combine any sections Entitled "Acknowledgements", and
any sections Entitled "Dedications". You must delete all sections Entitled "Endorsements".

6. COLLECTIONS OF DOCUMENTS
You may make a collection consisting of the Document and other documents released under this License,
and replace the individual copies of this License in the various documents with a single copy that is
included in the collection, provided that you follow the rules of this License for verbatim copying of each
of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under this
License, provided you insert a copy of this License into the extracted document, and follow this License
in all other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS
A compilation of the Document or its derivatives with other separate and independent documents or
works, in or on a volume of a storage or distribution medium, is called an "aggregate" if the copyright
resulting from the compilation is not used to limit the legal rights of the compilation’s users beyond what
the individual works permit. When the Document is included in an aggregate, this License does not apply
to the other works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the
Document is less than one half of the entire aggregate, the Document’s Cover Texts may be placed on
covers that bracket the Document within the aggregate, or the electronic equivalent of covers if the
Document is in electronic form. Otherwise they must appear on printed covers that bracket the whole
aggregate.

8. TRANSLATION

37 / 39 Chapter 6. GNU Free Documentation License | Uyuni 2021.12

Translation is considered a kind of modification, so you may distribute translations of the Document
under the terms of section 4. Replacing Invariant Sections with translations requires special permission
from their copyright holders, but you may include translations of some or all Invariant Sections in
addition to the original versions of these Invariant Sections. You may include a translation of this License,
and all the license notices in the Document, and any Warranty Disclaimers, provided that you also include
the original English version of this License and the original versions of those notices and disclaimers. In
case of a disagreement between the translation and the original version of this License or a notice or
disclaimer, the original version will prevail.

If a section in the Document is Entitled "Acknowledgements", "Dedications", or "History", the
requirement (section 4) to Preserve its Title (section 1) will typically require changing the actual title.

9. TERMINATION
You may not copy, modify, sublicense, or distribute the Document except as expressly provided for under
this License. Any other attempt to copy, modify, sublicense or distribute the Document is void, and will
automatically terminate your rights under this License. However, parties who have received copies, or
rights, from you under this License will not have their licenses terminated so long as such parties remain
in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE
The Free Software Foundation may publish new, revised versions of the GNU Free Documentation
License from time to time. Such new versions will be similar in spirit to the present version, but may
differ in detail to address new problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies that a
particular numbered version of this License "or any later version" applies to it, you have the option of
following the terms and conditions either of that specified version or of any later version that has been
published (not as a draft) by the Free Software Foundation. If the Document does not specify a version
number of this License, you may choose any version ever published (not as a draft) by the Free Software
Foundation.

ADDENDUM: How to use this License for your documents

Copyright (c) YEAR YOUR NAME.
 Permission is granted to copy, distribute and/or modify this document
 under the terms of the GNU Free Documentation License, Version 1.2
 or any later version published by the Free Software Foundation;
 with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
 A copy of the license is included in the section entitled{ldquo}GNU
 Free Documentation License{rdquo}.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the “ with…Texts.” line
with this:

38 / 39 Chapter 6. GNU Free Documentation License | Uyuni 2021.12

http://www.gnu.org/copyleft/

with the Invariant Sections being LIST THEIR TITLES, with the
 Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combination of the three, merge those
two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing these examples
in parallel under your choice of free software license, such as the GNU General Public License, to permit
their use in free software.

39 / 39 Chapter 6. GNU Free Documentation License | Uyuni 2021.12

	Uyuni 2021.12: Large Deployments Guide
	Table of Contents
	Large Deployments Guide Overview
	Chapter 1. Hardware Requirements
	Chapter 2. Using a Single Server to Manage Large Scale Deployments
	2.1. Operation Recommendations
	2.1.1. Salt Client Onboarding Rate
	2.1.2. Salt Clients and the RNG
	2.1.3. Clients Running with Unaccepted Salt Keys
	2.1.4. Disabling the Salt Mine
	2.1.5. Disable Unnecessary Taskomatic jobs
	2.1.6. Swap and Monitoring
	2.1.7. AES Key Rotation

	Chapter 3. Using Multiple Servers to Manage Large Scale Deployments
	3.1. Hub Requirements
	3.1.1. Peripheral Servers

	3.2. Hub Installation
	3.3. Using the Hub API
	3.4. Hub XMLRPC API Namespaces
	3.5. Hub XMLRPC API Authentication Modes
	3.5.1. Authentication Examples

	Chapter 4. Managing Large Scale Deployments in a Retail Environment
	Chapter 5. Tuning Large Scale Deployments
	5.1. The Tuning Process
	5.2. Environmental Variables
	5.3. Parameters
	5.3.1. MaxClients
	5.3.2. ServerLimit
	5.3.3. maxThreads
	5.3.4. connectionTimeout
	5.3.5. keepAliveTimeout
	5.3.6. Tomcat’s -Xmx
	5.3.7. java.message_queue_thread_pool_size
	5.3.8. java.salt_batch_size
	5.3.9. java.salt_presence_ping_timeout
	5.3.10. java.salt_presence_ping_gather_job_timeout
	5.3.11. java.taskomatic_channel_repodata_workers
	5.3.12. taskomatic.java.maxmemory
	5.3.13. org.quartz.threadPool.threadCount
	5.3.14. org.quartz.scheduler.idleWaitTime
	5.3.15. MinionActionExecutor.parallel_threads
	5.3.16. SSHMinionActionExecutor.parallel_threads
	5.3.17. hibernate.c3p0.max_size
	5.3.18. rhn-search.java.maxmemory
	5.3.19. shared_buffers
	5.3.20. max_connections
	5.3.21. work_mem
	5.3.22. effective_cache_size
	5.3.23. thread_pool
	5.3.24. worker_threads
	5.3.25. pub_hwm
	5.3.26. zmq_backlog
	5.3.27. swappiness
	5.3.28. Memory Usage

	Chapter 6. GNU Free Documentation License

