
Administration Guide
Uyuni 2020.09
September 17, 2020

Table of Contents
Administration Guide Overview 1

Image Building and Management 2
Image Building Overview . 2
Container Images . 2

Requirements . 3
Create a Build Host . 3
Create an Activation Key for Containers . 3
Create an Image Store . 4
Create an Image Profile . 5
Build an Image . 8
Import an Image . 9
Troubleshooting . 10

OS Images . 10
Requirements . 10
Create a Build Host . 11
Create an Activation Key for OS Images . 13
Create an Image Store . 14
Create an Image Profile . 14
Build an Image . 17
Troubleshooting . 19
Limitations . 19

List Image Profiles Available for Building . 19
Channel Management 20

Channel Administration . 20
Custom Channels . 20

Creating Custom Channels and Repositories . 21
Add Packages and Patches to Custom Channels . 23
Manage Custom Channels . 23

Subscription Matching 25
Pin Clients to Subscriptions . 25

Live Patching with SUSE Manager 27
Set up Channels for Live Patching . 27

Use spacewalk-manage-channel-lifecycle for Live Patching . 27
Live Patching on SLES 15 . 28
Live Patching on SLES 12 . 30

Monitoring with Prometheus and Grafana 32
Prometheus and Grafana . 32
Set up the Monitoring Server . 33

Install Prometheus . 33
Install Grafana . 34

Configure Uyuni Monitoring . 36
Server Self Monitoring . 36
Monitoring Managed Systems . 37

Network Boundaries . 38
Reverse Proxy Setup . 39

Organizations 40

Manage Organizations . 40
Organization Users . 41
Trusted Organizations . 41
Configure Organizations . 41

Manage States . 41
Manage Configuration Channels . 41

Content Staging 43
Enable Content Staging . 43
Configure Content Staging . 43

Disconnected Setup 45
Synchronize RMT . 45
Synchronize SMT . 46
Synchronize a Disconnected Server . 47

Content Lifecycle Management 49
Create a Content Lifecycle Project . 49
Filter Types . 50

Filter rule Parameter . 51
Build a Content Lifecycle Project . 51
Promote Environments . 52
Assign Clients to Environments . 52
Content Lifecycle Management Examples . 52

Creating a Project for a Monthly Patch Cycle . 52
Update an Existing Monthly Patch Cycle . 54
Enhance a Project with Live Patching . 55
Switch to a New Kernel Version for Live Patching . 56
AppStream Filters . 56

Authentication Methods 58
Authentication With Single Sign-On (SSO) . 58

Prerequisites . 58
Enable SSO . 59

Authentication With PAM . 60
SSL Certificates 62

Self-Signed SSL Certificates . 63
Re-Create Existing Server Certificates . 63
Create and Replace CA and Server Certificates . 64

Import SSL Certificates . 67
Import Certificates for New Installations . 68
Import Certificates for New Proxy Installations . 68
Replace Certificates with a Third Party Certificate . 69

Inter-Server Synchronization 71
Actions 73

Recurring Actions . 73
Action Chains . 74
Remote Commands . 75

Task Schedules 77
Crash Reporting 80

Crash Notes . 80
Organization Crash Configuration . 80
Reporting . 80

Managing Crash Reports with the API . 80
Maintenance Windows 82

Maintenance Schedule Types . 84
Restricted and Unrestricted Actions . 85
Maintenance Window Tasks . 85

Server . 86
Inter-Server Synchronization Slave Server . 86
Monitoring Server . 86
Proxy . 86

Backup and Restore 88
Backing up Uyuni . 88
Administering the Database with smdba . 90
Database Backup with smdba . 91

Performing a Manual Database Backup . 91
Scheduling Automatic Backups . 92

Restoring from Backup . 93
Archive Log Settings . 93
Retrieving an Overview of Occupied Database Space . 94
Moving the Database . 94
Recovering from a Crashed Root Partition . 96
Database Connection Information . 96

Managing Disk Space 97
Monitored Directories . 97
Thresholds . 97
Shut Down Services . 97
Disable Space Checking . 98

Using mgr-sync 99
Security 101

Set up a Client to Master Validation Fingerprint . 101
Signing Repository Metadata . 101
Mirror Source Packages . 103
System Security with OpenSCAP . 104

About SCAP . 104
Prepare Clients for an SCAP Scan . 104
OpenSCAP Content Files . 105
Perform an Audit Scan . 105
Scan Results . 106

Auditing . 106
CVE Audits . 107
CVE Status . 108

Generate Reports 109
Tuning Changelogs 113
Troubleshooting 114

Troubleshooting Corrupt Repositories . 114
Troubleshooting Disk Space . 114
Troubleshooting Firewalls . 114
Troubleshooting Inactive clients . 115
Troubleshooting Local Issuer Certificates . 116
Troubleshooting Login Timeouts . 116

Troubleshooting Notifications . 117
Troubleshooting OSAD and jabberd . 117
Troubleshooting Package Inconsistencies . 118
Troubleshooting Registering Cloned Clients . 118
Troubleshooting Renaming Uyuni Server . 121
Troubleshooting RPC Connection Timeouts . 122
Troubleshooting the Saltboot Formula . 122
Troubleshooting Package Synchronization . 123
Troubleshooting Taskomatic . 123

GNU Free Documentation License 125

Administration Guide Overview
Publication Date: 2020-09-17

This book provides guidance on performing administration tasks on the Uyuni Server.

1 / 131 | Uyuni 2020.09

Image Building and Management
Image Building Overview
Uyuni enables system administrators to build containers and OS Images and push the result in image
stores. The workflow looks like this:

1. Define an image store

2. Define an image profile and associate it with a source (either a git repository or a directory)

3. Build the image

4. Push the image to the image store

Uyuni supports two distinct build types: dockerfile, and the Kiwi image system.

The Kiwi build type is used to build system, virtual, and other images. The image store for the Kiwi build
type is pre-defined as a file system directory at /srv/www/os-images on the server. Uyuni serves the
image store over HTTPS from //<SERVER-FQDN>/os-images/. The image store location is unique
and is not customizable.

Images are always stored in /srv/www/os-image/<organization id>.

Container Images

Image Building Overview

2 / 131 Image Building Overview | Uyuni 2020.09

Requirements

The containers feature is available for Salt clients running SUSE Linux Enterprise Server 12 or later.
Before you begin, ensure your environment meets these requirements:

• A published git repository containing a dockerfile and configuration scripts. The repository can be
public or private, and should be hosted on GitHub, GitLab, or BitBucket.

• A properly configured image store, such as a Docker registry.

If you require a private image registry you can use an open source solution
such as Portus. For additional information on setting up Portus as a
registry provider, see the Portus Documentation.

For more information on Containers or SUSE CaaS Platform, see:

• https://documentation.suse.com/sles/15-SP2/html/SLES-all/book-sles-docker.html

• https://documentation.suse.com/suse-caasp/4/

Create a Build Host

To build images with Uyuni, you will need to create and configure a build host. Container build hosts are
Salt clients running SUSE Linux Enterprise 12 or later. This section guides you through the initial
configuration for a build host.

From the Uyuni WebUI, perform these steps to configure a build host:

1. Select a Salt client to be designated as a build host from the Systems › Overview page.

2. From the System Details page of the selected client assign the containers modules. Go to
Software › Software Channels and enable the containers module (for example, SLE-Module-
Containers15-Pool and SLE-Module-Containers15-Updates). Confirm by clicking
[ Change Subscriptions ].

3. From the System Details › Properties page, enable Container Build Host from the Add-on
System Types list and confirm by clicking [ Update Properties ].

4. Install all required packages by applying Highstate. From the system details page select States ›
Highstate and click Apply Highstate. Alternatively, apply Highstate from the Uyuni Server
command line:

salt '$your_client' state.highstate

Create an Activation Key for Containers

The containers built using Uyuni will use channel(s) associated to the activation key as repositories when
building the image. This section will guide you into creating an ad-hoc activation key for this purpose.

Container Images

3 / 131 Container Images | Uyuni 2020.09

http://port.us.org/
https://documentation.suse.com/sles/15-SP2/html/SLES-all/book-sles-docker.html
https://documentation.suse.com/suse-caasp/4/

 To build a container, you will need an activation key that is associated with a
channel other than SUSE Manager Default.

1. Select Systems › Activation Keys.

2. Click [ Create Key ].

3. Enter a Description and a Key name. Use the drop-down menu to select the Base Channel to
associate with this key.

4. Confirm with [ Create Activation Key ].

For more information, see [bp.key.managment].

Create an Image Store

All built images are pushed to an image store. This section contains information about creating an image
store.

Container Images

4 / 131 Container Images | Uyuni 2020.09

1. Select Images › Stores.

2. Click Create to create a new store.

3. Define a name for the image store in the Label field.

4. Provide the path to your image registry by filling in the URI field, as a fully qualified domain name
(FQDN) for the container registry host (whether internal or external).

registry.example.com

The Registry URI can also be used to specify an image store on a registry that is already in use.

registry.example.com:5000/myregistry/myproject

5. Click [ Create ] to add the new image store.

Create an Image Profile

All container images are built using an image profile, which contains the building instructions. This
section contains information about creating an image profile with the Uyuni WebUI.

Procedure: Create an Image Profile

1. To create an image profile select Images › Profiles and click [ Create ].

Container Images

5 / 131 Container Images | Uyuni 2020.09

2. Provide a name for the image profile by filling in the Label field.

 If your container image tag is in a format such as myproject/myimage,
make sure your image store registry URI contains the /myproject suffix.

3. Use a dockerfile as the Image Type.

4. Use the drop-down menu to select your registry from the Target Image Store field.

5. In the Path field, type a GitHub, GitLab or BitBucket repository URL. The URL should be be http,
https, or a token authentication URL. Use one of these formats:

GitHub Path Options

• GitHub single user project repository

https://github.com/USER/project.git#branchname:folder

• GitHub organization project repository

https://github.com/ORG/project.git#branchname:folder

• GitHub token authentication

If your git repository is private, modify the profile’s URL to include authentication. Use this URL
format to authenticate with a GitHub token:

https://USER:<AUTHENTICATION_TOKEN>@github.com/USER/project.git#master:/container/

GitLab Path Options

• GitLab single user project repository

https://gitlab.example.com/USER/project.git#master:/container/

Container Images

6 / 131 Container Images | Uyuni 2020.09

• GitLab groups project repository

https://gitlab.example.com/GROUP/project.git#master:/container/

• GitLab token authentication

If your git repository is private and not publicly accessible, you need to modify the profile’s git URL
to include authentication. Use this URL format to authenticate with a GitLab token:

https://gitlab-ci-
token:<AUTHENTICATION_TOKEN>@gitlab.example.com/USER/project.git#master:/container/

If you do not specify a git branch, the master branch will be used by
default. If a folder is not specified, the image sources (dockerfile sources)
are expected to be in the root directory of the GitHub or GitLab checkout.

1. Select an Activation Key. Activation keys ensure that images using a profile are assigned to
the correct channel and packages.

When you associate an activation key with an image profile you are
ensuring any image using the profile will use the correct software
channel and any packages in the channel.

2. Click the [ Create ] button.

Example Dockerfile Sources

An Image Profile that can be reused is published at https://github.com/SUSE/manager-build-profiles

The ARG parameters ensure that the built image is associated with the desired
repository served by Uyuni. The ARG parameters also allow you to build image
versions of SUSE Linux Enterprise Server which may differ from the version of
SUSE Linux Enterprise Server used by the build host itself.

For example: The ARG repo parameter and the echo command pointing to the
repository file, creates and then injects the correct path into the repository file
for the desired channel version.

The repository is determined by the activation key that you assigned to your
image profile.

Container Images

7 / 131 Container Images | Uyuni 2020.09

https://github.com/SUSE/manager-build-profiles

The python and python-xml packages must be installed in the container. They
are required for inspecting images, and for providing the package and product
list of a container to the Uyuni WebUI. If you do not install them, images will
still build but the package and product list will not available in the WebUI.

FROM registry.example.com/sles12sp2
MAINTAINER Tux Administrator "tux@example.com"

Begin: These lines Required for use with {productname}

ARG repo
ARG cert

Add the correct certificate
RUN echo "$cert" > /etc/pki/trust/anchors/RHN-ORG-TRUSTED-SSL-CERT.pem

Update certificate trust store
RUN update-ca-certificates

Add the repository path to the image
RUN echo "$repo" > /etc/zypp/repos.d/susemanager:dockerbuild.repo

End: These lines required for use with {productname}

Add the package script
ADD add_packages.sh /root/add_packages.sh

Run the package script
RUN /root/add_packages.sh

After building remove the repository path from image
RUN rm -f /etc/zypp/repos.d/susemanager:dockerbuild.repo

Using Custom Info Key-value Pairs as Docker Buildargs

You can assign custom info key-value pairs to attach information to the image profiles. Additionally, these
key-value pairs are passed to the Docker build command as buildargs.

For more information about the available custom info keys and creating additional ones, see [Reference ›
Systems ›].

Build an Image

There are two ways to build an image. You can select Images › Build from the left navigation bar, or click
the build icon in the Images › Profiles list.

Container Images

8 / 131 Container Images | Uyuni 2020.09

Procedure: Building an Image

1. Select Images › Build.

2. Add a different tag name if you want a version other than the default latest (only relevant to
containers).

3. Select Build Profile and Build Host.

Notice the Profile Summary to the right of the build fields. When you
have selected a build profile, detailed information about the selected profile
will be displayed in this area.

4. To schedule a build click the [ Build ] button.

Import an Image

You can import and inspect arbitrary images. Select Images › Image List from the left navigation bar.
Complete the text boxes of the Import dialog. When it has processed, the imported image will be listed
on the Image List page.

Procedure: Importing an Image

1. From Images › Image list click [ Import ] to open the Import Image dialog.

2. In the Import Image dialog complete these fields:

Image store

The registry from where the image will be pulled for inspection.

Image name

The name of the image in the registry.

Image version

The version of the image in the registry.

Build host

The build host that will pull and inspect the image.

Activation key

The activation key that provides the path to the software channel that the image will be inspected
with.

3. For confirmation, click [ Import ].

The entry for the image is created in the database, and an Inspect Image action on Uyuni is
scheduled.

When it has been processed, you can find the imported image in the Image List. It has a different icon

Container Images

9 / 131 Container Images | Uyuni 2020.09

in the Build column, to indicate that the image is imported. The status icon for the imported image can
also be seen on the Overview tab for the image.

Troubleshooting

These are some known problems when working with images:

• HTTPS certificates to access the registry or the git repositories should be deployed to the client by a
custom state file.

• SSH git access using Docker is currently unsupported.

• If the python and python-xml packages are not installed in your images during the build process,
reporting of installed packages or products will fail. This will result in an unknown update status.

OS Images
OS Images are built by the Kiwi image system. The output image is customizable and can be PXE,
QCOW2, LiveCD, or other types of images.

For more information about the Kiwi build system, see the Kiwi documentation.

Requirements

The Kiwi image building feature is available for Salt clients running SUSE Linux Enterprise Server 12
and SUSE Linux Enterprise Server 11.

Kiwi image configuration files and configuration scripts must be accessible in one of these locations:

• Git repository

• HTTP hosted tarball

• Local build host directory

For an example of a complete Kiwi repository served by git, see https://github.com/SUSE/manager-build-
profiles/tree/master/OSImage

You will need at least 1 GB of RAM available for Hosts running OS Images
built with Kiwi. Disk space depends on the actual size of the image. For more
information, see the documentation of the underlying system.

 The build host must be a Salt client. Do not install the build host as a traditional
client.

OS Images

10 / 131 OS Images | Uyuni 2020.09

https://doc.opensuse.org/projects/kiwi/doc/
https://github.com/SUSE/manager-build-profiles/tree/master/OSImage
https://github.com/SUSE/manager-build-profiles/tree/master/OSImage

Create a Build Host

To build all kinds of images with Uyuni, create and configure a build host. OS Image build hosts are Salt
clients running on SUSE Linux Enterprise Server 15 SP2, SUSE Linux Enterprise Server 12 (SP3 or
later) or SUSE Linux Enterprise Server 11 SP4.

This procedure will guide you through the initial configuration for a build host.

The operating system on the build host must match the operating system on the
targeted image.

For example, build SUSE Linux Enterprise Server 15 based images on a build
host running SUSE Linux Enterprise Server 15 SP2 OS version. Build SUSE
Linux Enterprise Server 12 based images on a build host running SUSE Linux
Enterprise Server 12 SP4 or SUSE Linux Enterprise Server 12 SP3 OS version.
Build SUSE Linux Enterprise Server 11 based images on a build host running
SUSE Linux Enterprise Server 11 SP4 OS version.

Configure the build host in the Uyuni WebUI:

1. Select a client that will be designated as a build host from the Systems › Overview page.

2. Navigate to the System Details › Properties tab, enable the Add-on System Type OS Image
Build Host. Confirm with [ Update Properties ].

3. Navigate to System Details › Software › Software Channels, and enable the required software
channels depending on the build host version.

OS Images

11 / 131 OS Images | Uyuni 2020.09

◦ SUSE Linux Enterprise Server 11 build hosts require Uyuni Client tools (SLE-Manager-
Tools11-Pool and SLE-Manager-Tools11-Updates).

◦ SUSE Linux Enterprise Server 12 build hosts require Uyuni Client tools (SLE-Manager-
Tools12-Pool and SLE-Manager-Tools12-Updates).

◦ SUSE Linux Enterprise Server 15 build hosts require SUSE Linux Enterprise Server modules
SLE-Module-DevTools15-SP2-Pool and SLE-Module-DevTools15-SP2-Updates.
Schedule and click [ Confirm ].

4. Install Kiwi and all required packages by applying Highstate. From the system details page select
States › Highstate and click [ Apply Highstate ]. Alternatively, apply Highstate from the Uyuni
Server command line:

salt '$your_client' state.highstate

Uyuni Web Server Public Certificate RPM

Build host provisioning copies the Uyuni certificate RPM to the build host. This certificate is used for
accessing repositories provided by Uyuni.

The certificate is packaged in RPM by the mgr-package-rpm-certificate-osimage package
script. The package script is called automatically during a new Uyuni installation.

When you upgrade the spacewalk-certs-tools package, the upgrade scenario will call the package
script using the default values. However if the certificate path was changed or unavailable, you will need to
call the package script manually using --ca-cert-full-path <path_to_certificate> after the
upgrade procedure has finished.

Listing 1. Package script call example

/usr/sbin/mgr-package-rpm-certificate-osimage --ca-cert-full-path /root/ssl-build/RHN-ORG-
TRUSTED-SSL-CERT

The RPM package with the certificate is stored in a salt-accessible directory such as:

/usr/share/susemanager/salt/images/rhn-org-trusted-ssl-cert-osimage-1.0-1.noarch.rpm

The RPM package with the certificate is provided in the local build host repository:

/var/lib/Kiwi/repo

OS Images

12 / 131 OS Images | Uyuni 2020.09

Specify the RPM package with the Uyuni SSL certificate in the build source,
and make sure your Kiwi configuration contains rhn-org-trusted-ssl-
cert-osimage as a required package in the bootstrap section.

Listing 2. config.xml

...
 <packages type="bootstrap">
 ...
 <package name="rhn-org-trusted-ssl-cert-osimage" bootinclude="
true"/>
 </packages>
...

Create an Activation Key for OS Images

Create an activation key associated with the channel that your OS Images will use as repositories when
building the image.

Activation keys are mandatory for OS Image building.

 To build OS Images, you will need an activation key that is associated with a
channel other than SUSE Manager Default.

1. In the WebUI, select Systems › Activation Keys.

OS Images

13 / 131 OS Images | Uyuni 2020.09

2. Click Create Key.

3. Enter a Description, a Key name, and use the drop-down box to select a Base Channel to
associate with the key.

4. Confirm with [ Create Activation Key ].

For more information, see [bp.key.managment].

Create an Image Store

OS Images can require a significant amount of storage space. Therefore, we recommended that the OS
Image store is located on a partition of its own or on a Btrfs subvolume, separate from the root partition.
By default, the image store will be located at /srv/www/os-images.

Image stores for Kiwi build type, used to build system, virtual, and other images,
are not supported yet.

Images are always stored in /srv/www/os-images/<organization id>
and are accessible via HTTP/HTTPS https://<susemanager_host>/os-
images/<organization id>.

Create an Image Profile

Manage image profiles using the WebUI.

Procedure: Create an Image Profile

1. To create an image profile select from Images › Profiles and click [ Create ].

OS Images

14 / 131 OS Images | Uyuni 2020.09

https://<susemanager_host>/os-images/<organization
https://<susemanager_host>/os-images/<organization
https://<susemanager_host>/os-images/<organization
https://<susemanager_host>/os-images/<organization
https://<susemanager_host>/os-images/<organization
https://<susemanager_host>/os-images/<organization

2. In the Label field, provide a name for the Image Profile.

3. Use Kiwi as the Image Type.

4. Image store is automatically selected.

5. Enter a Config URL to the directory containing the Kiwi configuration files:

a. git URI

b. HTTPS tarball

c. Path to build host local directory

6. Select an Activation Key. Activation keys ensure that images using a profile are assigned to the
correct channel and packages.

 Associate an activation key with an image profile to ensure the image
profile uses the correct software channel, and any packages.

7. Confirm with the [ Create ] button.

Source format options

• git/HTTP(S) URL to the repository

URL to the git repository containing the sources of the image to be built. Depending on the layout of
the repository the URL can be:

https://github.com/SUSE/manager-build-profiles

You can specify a branch after the # character in the URL. In this example, we use the master
branch:

https://github.com/SUSE/manager-build-profiles#master

You can specify a directory that contains the image sources after the : character. In this example, we
use OSImage/POS_Image-JeOS6:

https://github.com/SUSE/manager-build-profiles#master:OSImage/POS_Image-JeOS6

• HTTP(S) URL to the tarball

URL to the tar archive, compressed or uncompressed, hosted on the webserver.

https://myimagesourceserver.example.org/MyKiwiImage.tar.gz

OS Images

15 / 131 OS Images | Uyuni 2020.09

• Path to the directory on the build host

Enter the path to the directory with the Kiwi build system sources. This directory must be present on
the selected build host.

/var/lib/Kiwi/MyKiwiImage

Example of Kiwi Sources

Kiwi sources consist at least of config.xml. Usually, config.sh and images.sh are present as well.
Sources can also contain files to be installed in the final image under the root subdirectory.

For information about the Kiwi build system, see the Kiwi documentation.

SUSE provides examples of fully functional image sources at the SUSE/manager-build-profiles public
GitHub repository.

OS Images

16 / 131 OS Images | Uyuni 2020.09

https://doc.opensuse.org/projects/kiwi/doc/
https://github.com/SUSE/manager-build-profiles

Listing 3. Example of JeOS config.xml

<?xml version="1.0" encoding="utf-8"?>

<image schemaversion="6.1" name="POS_Image_JeOS6">
 <description type="system">
 <author>Admin User</author>
 <contact>noemail@example.com</contact>
 <specification>SUSE Linux Enterprise 12 SP3 JeOS</specification>
 </description>
 <preferences>
 <version>6.0.0</version>
 <packagemanager>zypper</packagemanager>
 <bootsplash-theme>SLE</bootsplash-theme>
 <bootloader-theme>SLE</bootloader-theme>

 <locale>en_US</locale>
 <keytable>us.map.gz</keytable>
 <timezone>Europe/Berlin</timezone>
 <hwclock>utc</hwclock>

 <rpm-excludedocs>true</rpm-excludedocs>
 <type boot="saltboot/suse-SLES12" bootloader="grub2" checkprebuilt="true" compressed
="false" filesystem="ext3" fsmountoptions="acl" fsnocheck="true" image="pxe" kernelcmdline=
"quiet"></type>
 </preferences>
 <!-- CUSTOM REPOSITORY
 <repository type="rpm-dir">
 <source path="this://repo"/>
 </repository>
 -->
 <packages type="image">
 <package name="patterns-sles-Minimal"/>
 <package name="aaa_base-extras"/> <!-- wouldn't be SUSE without that ;-) -->
 <package name="kernel-default"/>
 <package name="salt-minion"/>
 ...
 </packages>
 <packages type="bootstrap">
 ...
 <package name="sles-release"/>
 <!-- this certificate package is required to access {productname} repositories
 and is provided by {productname} automatically -->
 <package name="rhn-org-trusted-ssl-cert-osimage" bootinclude="true"/>

 </packages>
 <packages type="delete">
 <package name="mtools"/>
 <package name="initviocons"/>
 ...
 </packages>
</image>

Build an Image

There are two ways to build an image using the WebUI. Either select Images › Build, or click the build
icon in the Images › Profiles list.

OS Images

17 / 131 OS Images | Uyuni 2020.09

Procedure: Building an Image

1. Select Images › Build.

2. Add a different tag name if you want a version other than the default latest (applies only to
containers).

3. Select the Image Profile and a Build Host.

A Profile Summary is displayed to the right of the build fields. When
you have selected a build profile, detailed information about the selected
profile will show up in this area.

4. To schedule a build, click the [ Build ] button.

The build server cannot run any form of automounter during the image building
process. If applicable, ensure that you do not have your Gnome session running
as root. If an automounter is running, the image build will finish successfully, but
the checksum of the image will be different and will fail later.

After the image is successfully built, the inspection phase begins. During the inspection phase SUSE
Manager collects information about the image:

• List of packages installed in the image

• Checksum of the image

• Image type and other image details

If the built image type is PXE, a Salt pillar will also be generated. Image pillars
are stored in the /srv/susemanager/pillar_data/images/ directory
and the Salt subsystem can access details about the generated image. Details
include where the pillar is located and provided, image checksums, information
needed for network boot, and more.

The generated pillar is available to all connected clients.

OS Images

18 / 131 OS Images | Uyuni 2020.09

Troubleshooting

Building an image requires several dependent steps. When the build fails, investigating Salt states results
can help identify the source of the failure. You can carry out these checks when the build fails:

• The build host can access the build sources

• There is enough disk space for the image on both the build host and the Uyuni server

• The activation key has the correct channels associated with it

• The build sources used are valid

• The RPM package with the Uyuni public certificate is up to date and available at
/usr/share/susemanager/salt/images/rhn-org-trusted-ssl-cert-osimage-
1.0-1.noarch.rpm. For more on how to refresh a public certificate RPM, see Create a Build
Host.

Limitations

The section contains some known issues when working with images.

• HTTPS certificates used to access the HTTP sources or git repositories should be deployed to the
client by a custom state file, or configured manually.

• Importing Kiwi-based images is not supported.

List Image Profiles Available for Building
To list images available for building select Images › Image List. A list of all images will be displayed.

Displayed data about images includes an image Name, its Version and the build Status. You will also
see the image update status with a listing of possible patch and package updates that are available for the
image.

Clicking the [ Details ] button on an image will provide a detailed view. The detailed view includes an
exact list of relevant patches and a list of all packages installed within the image.

 The patch and the package list is only available if the inspect state after a build
was successful.

List Image Profiles Available for Building

19 / 131 List Image Profiles Available for Building | Uyuni 2020.09

Channel Management
Channels are a method of grouping software packages.

In Uyuni, channels are grouped into base and child channels, with base channels grouped by operating
system type, version, and architecture, and child channels being compatible with their related base
channel. When a client has been assigned to a base channel, it is only possible for that system to install the
related child channels. Organizing channels in this way ensures that only compatible packages are installed
on each system.

Software channels use repositories to provide packages. The channels mirror the repositories in Uyuni,
and the package names and other data are stored in the Uyuni database. You can have any number of
repositories associated with a channel. The software from those repositories can then be installed on
clients by subscribing the client to the appropriate channel.

Clients can only be assigned to one base channel. The client can then install or update packages from the
repositories associated with that base channel and any of its child channels.

Uyuni provides a number of vendor channels, which provide you everything you need to run Uyuni.
Uyuni Administrators and Channel Administrators have channel management authority, which gives them
the ability to create and manage their own custom channels. If you want to use your own packages in your
environment, you can create custom channels. Custom channels can be used as a base channel, or you can
associate them with a vendor base channel.

For more on creating custom channels, see [Administration › Custom-channels ›].

Channel Administration
By default, any user can subscribe channels to a system. You can implement restrictions on the channel
using the WebUI.

Procedure: Restricting Subscriber Access to a Channel

1. In the Uyuni WebUI, navigate to Software › Channel List, and select the channel to edit.

2. Locate the Per-User Subscription Restrictions section and check Only selected
users within your organization may subscribe to this channel. Click
[ Update ] to save the changes.

3. Navigate to the Subscribers tab and select or deselect users as required.

Custom Channels
Custom channels give you the ability to create your own software packages and repositories, which you
can use to update your clients. They also allow you to use software provided by third party vendors in
your environment.

You must have administrator privileges to be able to create and manage custom channels.

Channel Administration

20 / 131 Channel Administration | Uyuni 2020.09

Before you create a custom channel, determine which base channel you want to associate it with, and
which repositories you want to use for content.

This section gives more detail on how to create, administer, and delete custom channels.

Creating Custom Channels and Repositories

If you have custom software packages that you need to install on your Uyuni systems, you can create a
custom child channel to manage them. You will need to create the channel in the Uyuni WebUI and
create a repository for the packages, before assigning the channel to your systems.

You can select a vendor channel as the base channel if you want to use packages provided by a vendor.
Alternatively, select none to make your custom channel a base channel.

Custom channels will sometimes require additional security settings. Many third party vendors secure
packages with GPG. If you want to use GPG-protected packages in your custom channel, you will need to
trust the GPG key which has been used to sign the metadata. You can then check the Has Signed
Metadata? check box to match the package metadata against the trusted GPG keys. For more
information on importing GPG keys, see [Reference › Systems ›].

 Do not create child channels containing packages that are not compatible with
the client system.

Procedure: Creating a Custom Channel

1. In the Uyuni WebUI, navigate to Software › Manage › Channels, and click [ Create Channel ].

2. On the Create Software Channel page, give your channel a name (for example, My Tools
SLES 15 SP1 x86_64) and a label (for example, my-tools-sles15sp1-x86_64). Labels
must not contain spaces or uppercase letters.

3. In the Parent Channel drop down, choose the relevant base channel (for example, SLE-
Product-SLES15-SP1-Pool for x86_64). Ensure that you choose the compatible parent
channel for your packages.

4. In the Architecture drop down, choose the appropriate hardware architecture (for example,
x86_64).

5. Provide any additional information in the contact details, channel access control, and GPG fields, as
required for your environment.

6. Click [ Create Channel ].

By default, the Enable GPG Check field is checked when you create a new
channel. If you would like to add custom packages and applications to your
channel, make sure you uncheck this field to be able to install unsigned
packages. Disabling the GPG check is a security risk if packages are from an
untrusted source.

Custom Channels

21 / 131 Custom Channels | Uyuni 2020.09

Procedure: Creating a Software Repository

1. In the Uyuni WebUI, navigate to Software › Manage › Repositories, and click [ Create
Repository ].

2. On the Create Repository page, give your repository a label (for example, my-tools-
sles15sp1-x86_64-repo).

3. In the Repository URL field, provide the path to the directory that contains the repodata file
(for example, file:///opt/mytools/). You can use any valid addressing protocol in this field.

4. Uncheck the Has Signed Metadata? check box.

5. OPTIONAL: Complete the SSL fields if your repository requires client certificate authentication.

6. Click [ Create Repository ].

Procedure: Assigning the Repository to a Channel

1. Assign your new repository to your custom channel by navigating to Software › Manage ›
Channels, clicking the name of your newly created custom channel, and navigating to the
Repositories tab.

2. Ensure the repository you want to assign to the channel is checked, and click [ Update
Repositories ].

3. Navigate to the Sync tab and click [ Sync Now ] to synchronize immediately. You can also set an
automated synchronization schedule on this tab.

There are several ways to check if a channel has finished synchronizing:

• In the Uyuni WebUI, navigate to Admin › Setup Wizard and select the Products tab. This dialog
displays a completion bar for each product when they are being synchronized.

• In the Uyuni WebUI, navigate to Software › Manage › Channels, then click the channel associated
to the repository. Navigate to the menu:[Repositories > Sync] tab. The Sync Status is shown next
to the repository name..

• Check the synchronization log file at the command prompt:

tail -f /var/log/rhn/reposync/<channel-label>.log

Each child channel will generate its own log during the synchronization progress. You will need to
check all the base and child channel log files to be sure that the synchronization is complete.

Procedure: Adding Custom Channels to an Activation Key

1. In the Uyuni WebUI, navigate to Systems › Activation Keys, and select the key you want to add the
custom channel to.

2. On the Details tab, in the Child Channels listing, select the channel to associate. You can
select multiple channels, if you need to.

3. Click [ Update Activation Key ].

Custom Channels

22 / 131 Custom Channels | Uyuni 2020.09

file:///opt/mytools/
file:///opt/mytools/
file:///opt/mytools/
file:///opt/mytools/
file:///opt/mytools/

Add Packages and Patches to Custom Channels

When you create a new custom channel without cloning it from an existing channel, it will not contain
any packages or patches. You can add the packages and patches you require using the Uyuni WebUI.

Custom channels can only include packages or patches that are cloned or custom, and they must match the
base architecture of the channel. Patches added to custom channels must apply to a package that exists in
the channel.

Procedure: Adding Packages to Custom Channels

1. In the Uyuni WebUI, navigate to Software › Manage › Channels, and go to the Packages tab.

2. OPTIONAL: See all packages currently in the channel by navigating to the List/Remove tab.

3. Add new packages to the channel by navigating to the Add tab.

4. Select the parent channel to provide packages, and click [ View Packages ] to populate the list.

5. Check the packages to add to the custom channel, and click [ Add Packages ].

6. When you are satisfied with the selection, click [ Confirm Addition ] to add the packages to the
channel.

7. OPTIONAL: You can compare the packages in the current channel with those in a different channel
by navigating to Software › Manage › Channels, and going to the Packages › Compare tab. To
make the two channels the same, click the [ Merge Differences ] button, and resolve any conflicts.

Procedure: Adding Patches to a Custom Channel

1. In the Uyuni WebUI, navigate to Software › Manage › Channels, and go to the Patches tab.

2. OPTIONAL: See all patches currently in the channel by navigating to the List/Remove tab.

3. Add new patches to the channel by navigating to the Add tab, and selecting what kind of patches you
want to add.

4. Select the parent channel to provide patches, and click [ View Associated Patches ] to populate the
list.

5. Check the patches to add to the custom channel, and click [ Confirm ].

6. When you are satisfied with the selection, click [ Confirm ] to add the patches to the channel.

Manage Custom Channels

Uyuni administrators and channel administrators can alter or delete any channel.

To grant other users rights to alter or delete a channel, navigate to Software › Manage › Channels and
select the channel you want to edit. Navigate to the Managers tab, and check the user to grant
permissions. Click [ Update ] to save the changes.

Custom Channels

23 / 131 Custom Channels | Uyuni 2020.09

If you delete a channel that has been assigned to a set of clients, it will trigger an
immediate update of the channel state for any clients associated with the deleted
channel. This is to ensure that the changes are reflected accurately in the
repository file.

You cannot delete Uyuni channels with the WebUI. Only custom channels can be deleted.

Procedure: Deleting Custom Channels

1. In the Uyuni WebUI, navigate to Software › Manage › Channels, and select the channel you want
to delete.

2. Click [ Delete software channel ].

3. On the Delete Channel page, check the details of the channel you are deleting, and check the
Unsubscribe Systems checkbox to remove the custom channel from any systems that might still
be subscribed.

4. Click [ Delete Channel ].

When channels are deleted, the packages that are part of the deleted channel are not automatically
removed. You will not be able to update packages that have had their channel deleted.

You can delete packages that are not associated with a channel in the Uyuni WebUI. Navigate to
Software › Manage › Packages, check the packages to remove, and click [ Delete Packages ].

Custom Channels

24 / 131 Custom Channels | Uyuni 2020.09

Subscription Matching
Your SUSE products require subscriptions, which are managed by the SUSE Customer Center (SCC).
Uyuni runs a nightly report checking the subscription status of all your registered clients against your SCC
account. The report gives you information about which clients consume which subscriptions, how many
subscriptions you have remaining and available to use, and which clients do not have a current
subscription.

Navigate to Audit › Subscription Matching to see the report.

The Subscriptions Report tab gives information about current and expiring subscriptions.

The Unmatched Products Report tab gives a list of clients that do not have a current subscription.
This includes clients that could not be matched, or that are not currently registered with Uyuni. The report
includes product names and the number of systems that remain unmatched.

The Pins tab allows you to associate individual clients to the relevant subscription. This is especially
useful if the subscription manager is not automatically associating clients to subscriptions successfully.

The Messages tab shows any errors that occurred during the matching process.

You can also download the reports in .csv format, or access them from that command prompt in the
/var/lib/spacewalk/subscription-matcher/ directory.

By default, the subscription matcher runs daily, at midnight. To change this, navigate to Admin › Task
Schedules and click gatherer-matcher-default. Change the schedule as required, and click
[ Update Schedule ].

Because the report can only match current clients with current subscriptions, you might find that the
matches change over time. The same client will not always match the same subscription. This can be due
to new clients being registered or unregistered, or because of the addition or expiration of subscriptions.

The subscription matcher will automatically attempt to reduce the number of unmatched products, limited
by the terms and conditions of the subscriptions in your account. However, if you have incomplete
hardware information, unknown virtual machine host assignments, or clients running in unknown public
clouds, the matcher might show that you do not have enough subscriptions available. Always ensure you
have complete data about your clients included in Uyuni, to help ensure accuracy.

 The subscription matcher will not always match clients and subscriptions
accurately. It is not intended to be a replacement for auditing.

Pin Clients to Subscriptions
If the subscription matcher is not automatically matching a particular client with the correct subscription,
you can manually pin them. When you have created a pin, the subscription matcher favors matching a
specific subscription with a given system or group of systems.

Pin Clients to Subscriptions

25 / 131 Pin Clients to Subscriptions | Uyuni 2020.09

However, the matcher will not always respect a pin. It depends on the subscription being available, and
whether or not the subscription can be applied to the client. Additionally, pins will be ignored if they
result in a match that violates the terms and conditions of the subscription, or if the matcher detects a
more accurate match if the pin is ignored.

To add a new pin, click [ Add a Pin ], and select the client to pin.

 We do not recommend using pinning regularly, or for a large number of clients.
The subscription matcher tool is generally accurate enough for most installations.

Pin Clients to Subscriptions

26 / 131 Pin Clients to Subscriptions | Uyuni 2020.09

Live Patching with SUSE Manager
Performing a kernel update usually requires a system reboot. Common vulnerability and exposure (CVE)
patches should be applied as soon as possible, but if you cannot afford the downtime, you can use Live
Patching to inject these important updates and skip the need to reboot.

The procedure for setting up Live Patching is slightly different for SLES 12 and SLES 15. Both
procedures are documented in this section.

Set up Channels for Live Patching
A reboot is required every time you update the full kernel package. Therefore, it is important that clients
using Live Patching do not have newer kernels available in the channels they are assigned to. Clients using
live patching have updates for the running kernel in the live patching channels.

There are two ways to manage channels for live patching:

Use content lifecycle management to clone the product tree and remove kernel versions newer than the
running one. This procedure is explained in the Content Livecycle Management Examples. This is the
recommended solution.

Alternatively, use the spacewalk-manage-channel-lifecycle tool. This procedure is more
manual and requires command line tools as well as the WebUI. This procedure is explained in this section
for SLES 15 SP1, but it also works for SLE 12 SP4 or later.

Use spacewalk-manage-channel-lifecycle for Live Patching

Cloned vendor channels should be prefixed by dev for development, testing, or prod for production.
In this procedure, you will create a dev cloned channel and then promote the channel to testing.

Procedure: Cloning Live Patching Channels

1. At the command prompt on the client, as root, obtain the current package channel tree:

spacewalk-manage-channel-lifecycle --list-channels
Spacewalk Username: admin
Spacewalk Password:
Channel tree:

 1. sles15-{sp-vert}-pool-x86_64
 __ sle-live-patching15-pool-x86_64-{sp-vert}
 __ sle-live-patching15-updates-x86_64-{sp-vert}
 __ sle-manager-tools15-pool-x86_64-{sp-vert}
 __ sle-manager-tools15-updates-x86_64-{sp-vert}
 __ sles15-{sp-vert}-updates-x86_64

2. Use the spacewalk-manage-channel command with the init argument to automatically create
a new development clone of the original vendor channel:

Set up Channels for Live Patching

27 / 131 Set up Channels for Live Patching | Uyuni 2020.09

content-lifecycle-examples.pdf#enhance-project-with-livepatching

spacewalk-manage-channel-lifecycle --init -c sles15-{sp-vert}-pool-x86_64

3. Check that dev-sles15-{sp-vert}-updates-x86_64 is available in your channel list.

Check the dev cloned channel you created, and remove any kernel updates that require a reboot.

Procedure: Removing Non-Live Kernel Patches from Cloned Channels

1. Check the current kernel version by selecting the client from Systems › System List, and taking note
of the version displayed in the Kernel field.

2. In the Uyuni WebUI, select the client from Systems › Overview, navigate to the Software › Manage
› Channels tab, and select dev-sles15-sp{sp-vert}-updates-x86_64. Navigate to the
Patches tab, and click [ List/Remove Patches ].

3. In the search bar, type kernel and identify the kernel version that matches the kernel currently used
by your client.

4. Remove all kernel versions that are newer than the currently installed kernel.

Your channel is now set up for live patching, and can be promoted to testing. In this procedure, you
will also add the live patching child channels to your client, ready to be applied.

Procedure: Promoting Live Patching Channels

1. At the command prompt on the client, as root, promote and clone the dev-sles15-{sp-vert}-
pool-x86_64 channel to a new testing channel:

spacewalk-manage-channel-lifecycle --promote -c dev-sles15-{sp-vert}-pool-x86_64

2. In the Uyuni WebUI, select the client from Systems › Overview, and navigate to the Software ›
Software Channels tab.

3. Check the new test-sles15-sp{sp-vert}-pool-x86_64 custom channel to change the base
channel, and check both corresponding live patching child channels.

4. Click [ Next ], confirm that the details are correct, and click [ Confirm ] to save the changes.

You can now select and view available CVE patches, and apply these important kernel updates with Live
Patching.

Live Patching on SLES 15
On SLES 15 systems and newer, live patching is managed by the klp livepatch tool.

Before you begin, ensure:

• Uyuni is fully updated.

Live Patching on SLES 15

28 / 131 Live Patching on SLES 15 | Uyuni 2020.09

• You have one or more Salt clients running SLES 15 (SP1 or later).

• Your SLES 15 Salt clients are registered with Uyuni.

• You have access to the SLES 15 channels appropriate for your architecture, including the live
patching child channel (or channels).

• The clients are fully synchronized.

• Assign the clients to the cloned channels prepared for live patching. For more information on
preparation, see [Administration › Live-patching-channel-setup ›].

Procedure: Setting up for Live Patching

1. Select the client you want to manage with Live Patching from Systems › Overview, and navigate to
the Software › Packages › Install tab. Search for the kernel-livepatch package, and install it.

2. Apply the highstate to enable Live Patching, and reboot the client.

3. Repeat for each client that you want to manage with Live Patching.

4. To check that live patching has been enabled correctly, select the client from Systems › System List,
and ensure that Live Patch appears in the Kernel field.

Procedure: Applying Live Patches to a Kernel

1. In the Uyuni WebUI, select the client from Systems › Overview. You will see a banner at the top of
the screen showing the number of critical and non-critical packages available for the client:

Live Patching on SLES 15

29 / 131 Live Patching on SLES 15 | Uyuni 2020.09

2. Click [ Critical ] to see a list of the available critical patches.

3. Select any patch with a synopsis reading Important: Security update for the Linux
kernel. Security bugs will also include their CVE number, where applicable.

4. OPTIONAL: If you know the CVE number of a patch you want to apply, you can search for it in
Audit › CVE Audit, and apply the patch to any clients that require it.

Not all kernel patches are Live Patches! Non-Live kernel patches are represented
by a Reboot Required icon located next to the Security shield icon. These
patches will always require a reboot.

Not all security issues can be fixed by applying a live patch. Some security issues
can only be fixed by applying a full kernel update and will require a reboot. The
assigned CVE numbers for these issues are not included in live patches. A CVE
audit will display this requirement.

Live Patching on SLES 12
On SLES 12 systems, live patching is managed by kGraft. For in depth information covering kGraft use,
see https://documentation.suse.com/sles/12-SP4/html/SLES-all/cha-kgraft.html.

Before you begin, ensure:

• Uyuni is fully updated.

• You have one or more Salt clients running SLES 12 (SP1 or later).

• Your SLES 12 Salt clients are registered with Uyuni.

• You have access to the SLES 12 channels appropriate for your architecture, including the live
patching child channel (or channels).

• The clients are fully synchronized.

• Assign the clients to the cloned channels prepared for live patching. For more information on
preparation, see [Administration › Live-patching-channel-setup ›].

Procedure: Setting up for Live Patching

1. Select the client you want to manage with Live Patching from Systems › Overview, and on the
system details page navigate to the Software › Packages › Install tab. Search for the kgraft
package, and install it.

Live Patching on SLES 12

30 / 131 Live Patching on SLES 12 | Uyuni 2020.09

https://documentation.suse.com/sles/12-SP4/html/SLES-all/cha-kgraft.html

2. Apply the highstate to enable Live Patching, and reboot the client.

3. Repeat for each client that you want to manage with Live Patching.

4. To check that live patching has been enabled correctly, select the client from Systems › System List,
and ensure that Live Patching appears in the Kernel field.

Procedure: Applying Live Patches to a Kernel

1. In the Uyuni WebUI, select the client from Systems › Overview. You will see a banner at the top of
the screen showing the number of critical and non-critical packages available for the client:

2. Click [ Critical ] to see a list of the available critical patches.

3. Select any patch with a synopsis reading Important: Security update for the Linux
kernel. Security bugs will also include their CVE number, where applicable.

4. OPTIONAL: If you know the CVE number of a patch you want to apply, you can search for it in
Audit › CVE Audit, and apply the patch to any clients that require it.

Not all kernel patches are Live Patches! Non-Live kernel patches are represented
by a Reboot Required icon located next to the Security shield icon. These
patches will always require a reboot.

Not all security issues can be fixed by applying a live patch. Some security issues
can only be fixed by applying a full kernel update and will require a reboot. The
assigned CVE numbers for these issues are not included in live patches. A CVE
audit will display this requirement.

Live Patching on SLES 12

31 / 131 Live Patching on SLES 12 | Uyuni 2020.09

Monitoring with Prometheus and Grafana
You can monitor your Uyuni environment using Prometheus and Grafana. Uyuni Server and Proxy are
able to provide self-health metrics. You can also install and manage a number of Prometheus exporters on
Salt clients.

Prometheus and Grafana packages are included in the Uyuni Client Tools for:

• SUSE Linux Enterprise 12

• SUSE Linux Enterprise 15

• CentOS 6

• CentOS 7

• CentOS 8

• and openSUSE 15.x

You need to install Prometheus and Grafana on a machine separate from the Uyuni Server. We
recommend you use a managed Salt client as your monitoring server.

Prometheus fetches metrics using a pull mechanism, so the server must be able to establish TCP
connections to monitored clients. Clients must have corresponding open ports and be reachable over the
network. Alternatively, you can use reverse proxies to establish a connection.

Prometheus and Grafana
Prometheus

Prometheus is an open-source monitoring tool that is used to record real-time metrics in a time-series
database. Metrics are pulled via HTTP, enabling high performance and scalability.

Prometheus metrics are time series data, or timestamped values belonging to the same group or
dimension. A metric is uniquely identified by its name and set of labels.

 metric name labels timestamp value
┌────────┴───────┐ ┌───────────┴───────────┐
┌──────┴──────┐ ┌─┴─┐
http_requests_total{status="200", method="GET"} @1557331801.111 42236

Each application or system being monitored must expose metrics in the format above, either through code
instrumentation or Prometheus exporters.

Prometheus Exporters

Exporters are libraries that help with exporting metrics from third-party systems as Prometheus metrics.
Exporters are useful whenever it is not feasible to instrument a given application or system with
Prometheus metrics directly. Multiple exporters can run on a monitored host to export local metrics.

The Prometheus community provides a list of official exporters, and more can be found as community

Prometheus and Grafana

32 / 131 Prometheus and Grafana | Uyuni 2020.09

contributions. For more information and an extensive list of exporters, see
https://prometheus.io/docs/instrumenting/exporters/.

Grafana

Grafana is a tool for data visualization, monitoring, and analysis. It is used to create dashboards with
panels representing specific metrics over a set period of time. Grafana is commonly used together with
Prometheus, but also supports other data sources such as ElasticSearch, MySQL, PostgreSQL, and Influx
DB. For more information about Grafana, see https://grafana.com/docs/.

Set up the Monitoring Server
To set up your monitoring server, you need to install Prometheus and Grafana, and configure them.

Install Prometheus

If your monitoring server is a Uyuni Salt client, you can install the Prometheus package using the Uyuni
WebUI. Otherwise you can download and install the package on your monitoring server manually.

Procedure: Installing Prometheus Using the WebUI

1. In the Uyuni WebUI, open the details page of the system where Prometheus is to be installed, and
navigate to the Formulas tab.

2. Check the Prometheus checkbox to enable monitoring formulas, and click [ Save ].

3. Navigate to the Prometheus tab in the top menu.

4. In the Uyuni Server section, enter valid Uyuni API credentials. Make sure that the credentials you
have entered allow access to the set of systems you want to monitor.

5. Customize any other configuration options according to your needs.

6. Click [ Save Formula ].

7. Apply the highstate and confirm that it completes successfully.

8. Check that the Prometheus interface loads correctly. In your browser, navigate to the URL of the
server where Prometheus is installed, on port 9090 (for example, http://example.com:9090).

For more information about the monitoring formulas, see [Salt › Formula-monitoring ›].

Procedure: Manually Installing and Configuring Prometheus

1. On the monitoring server, install the golang-github-prometheus-prometheus package:

zypper in golang-github-prometheus-prometheus

2. Enable the Prometheus service:

systemctl enable --now prometheus

Set up the Monitoring Server

33 / 131 Set up the Monitoring Server | Uyuni 2020.09

https://prometheus.io/docs/instrumenting/exporters/
https://prometheus.io/docs/instrumenting/exporters/
https://grafana.com/docs/
http://example.com:9090

3. Check that the Prometheus interface loads correctly. In your browser, navigate to the URL of the
server where Prometheus is installed, on port 9090 (for example, http://example.com:9090).

4. Open the configuration file at /etc/prometheus/prometheus.yml and add this configuration
information. Replace server.url with your Uyuni server URL and adjust username and
password fields to match your Uyuni credentials.

{productname} self-health metrics
scrape_configs:
- job_name: 'mgr-server'
 static_configs:
 - targets:
 - 'server.url:9100' # Node exporter
 - 'server.url:9187' # PostgreSQL exporter
 - 'server.url:5556' # JMX exporter (Tomcat)
 - 'server.url:5557' # JMX exporter (Taskomatic)
 - 'server.url:9800' # Taskomatic
 - targets:
 - 'server.url:80' # Message queue
 labels:
 __metrics_path__: /rhn/metrics

Managed systems metrics:
- job_name: 'mgr-clients'
 uyuni_sd_configs:
 - host: "http://server.url"
 username: "admin"
 password: "admin"

5. Save the configuration file.

6. Restart the Prometheus service:

systemctl restart prometheus

For more information about the Prometheus configuration options, see the official Prometheus
documentation at https://prometheus.io/docs/prometheus/latest/configuration/configuration/

Install Grafana

If your monitoring server is a Uyuni Salt client, you can install the Grafana package using the Uyuni
WebUI. Otherwise you can download and install the package on your monitoring server manually.

Procedure: Installing Grafana Using the WebUI

1. In the Uyuni WebUI, open the details page of the system where Grafana is to be installed, and
navigate to the Formulas tab.

2. Check the Grafana checkbox to enable monitoring formulas, and click [ Save ].

3. Navigate to the Grafana tab in the top menu.

4. In the Enable and configure Grafana section, enter the admin credentials you want to use to
log in Grafana.

Set up the Monitoring Server

34 / 131 Set up the Monitoring Server | Uyuni 2020.09

http://example.com:9090
https://prometheus.io/docs/prometheus/latest/configuration/configuration/

5. On the Datasources section, make sure that the Prometheus URL field points to the system where
Prometheus is running.

6. Customize any other configuration options according to your needs.

7. Click [ Save Formula ].

8. Apply the highstate and confirm that it completes successfully.

9. Check that the Grafana interface is loading correctly. In your browser, navigate to the URL of the
server where Grafana is installed, on port 3000 (for example, http://example.com:3000).

Uyuni provides pre-built dashboards for server self-health, basic client
monitoring, and more. You can choose which dashboards to provision in the
formula configuration page.

For more information about the monitoring formulas, see [Salt › Formula-monitoring ›].

Procedure: Manually Installing Grafana

1. Install the grafana package:

zypper in grafana

2. Enable the Grafana service:

systemctl enable --now grafana-server

3. Check that the Grafana interface is loading correctly. In your browser, navigate to the URL of the
server where Grafana is installed, on port 3000 (for example, http://example.com:3000).

For more information on how to manually install and configure Grafana, see https://grafana.com/docs.

For more information about the monitoring formulas with forms, see [Salt › Formula-monitoring ›].

Set up the Monitoring Server

35 / 131 Set up the Monitoring Server | Uyuni 2020.09

http://example.com:3000
http://example.com:3000
https://grafana.com/docs

Configure Uyuni Monitoring
With Uyuni 4 and higher, you can enable the server to expose Prometheus self-health metrics, and also
install and configure exporters on client systems.

Server Self Monitoring

The Server self-health metrics cover hardware, operating system and Uyuni internals. These metrics are
made available by instrumentation of the Java application, combined with Prometheus exporters.

These exporter packages are shipped with Uyuni Server:

• Node exporter: golang-github-prometheus-node_exporter. See https://github.com/
prometheus/node_exporter.

• PostgreSQL exporter: golang-github-wrouesnel-postgres_exporter. See
https://github.com/wrouesnel/postgres_exporter.

• JMX exporter: prometheus-jmx_exporter. See https://github.com/prometheus/jmx_exporter.

• Apache exporter: golang-github-lusitaniae-apache_exporter. See https://github.com/
Lusitaniae/apache_exporter.

These exporter packages are shipped with Uyuni Proxy:

• Node exporter: golang-github-prometheus-node_exporter. See https://github.com/
prometheus/node_exporter.

• Squid exporter: golang-github-boynux-squid_exporter. See https://github.com/boynux/
squid-exporter.

The exporter packages are pre-installed in Uyuni Server and Proxy, but their respective systemd daemons
are disabled by default.

Procedure: Enabling Self Monitoring

1. In the Uyuni WebUI, navigate to Admin › Manager Configuration › Monitoring.

2. Click [ Enable services ].

3. Restart Tomcat and Taskomatic.

4. Navigate to the URL of your Prometheus server, on port 9090 (for example,
http://example.com:9090)

5. In the Prometheus UI, navigate to menu:[Status > Targets] and confirm that all the endpoints on the
mgr-server group are up.

6. If you have also installed Grafana with the WebUI, the server insights will be visible on the Uyuni
Server dashboard.

Configure Uyuni Monitoring

36 / 131 Configure Uyuni Monitoring | Uyuni 2020.09

https://github.com/prometheus/node_exporter
https://github.com/prometheus/node_exporter
https://github.com/wrouesnel/postgres_exporter
https://github.com/prometheus/jmx_exporter
https://github.com/Lusitaniae/apache_exporter
https://github.com/Lusitaniae/apache_exporter
https://github.com/prometheus/node_exporter
https://github.com/prometheus/node_exporter
https://github.com/boynux/squid-exporter
https://github.com/boynux/squid-exporter
http://example.com:9090

Only server self-health monitoring can be enabled using the WebUI. Metrics for
a proxy are not automatically collected by Prometheus. To enable self-health
monitoring on a proxy, you will need to manually install exporters and enable
them.

Monitoring Managed Systems

Prometheus metrics exporters can be installed and configured on Salt clients using formulas. The
packages are available from the Uyuni client tools channels, and can be enabled and configured directly in
the Uyuni WebUI.

These exporters can be installed on managed systems:

• Node exporter: golang-github-prometheus-node_exporter. See https://github.com/
prometheus/node_exporter.

• PostgreSQL exporter: golang-github-wrouesnel-postgres_exporter. See
https://github.com/wrouesnel/postgres_exporter.

• Apache exporter: golang-github-lusitaniae-apache_exporter. See https://github.com/
Lusitaniae/apache_exporter.

When you have the exporters installed and configured, you can start using Prometheus to collect metrics
from monitored systems. If you have configured your monitoring server with the WebUI, metrics
collection will happen automatically.

Procedure: Configuring Prometheus Exporters on a Client

1. In the Uyuni WebUI, open the details page of the client to be monitored, and navigate to the
menu:Formulas tab.

2. Check the Enabled checkbox on the Prometheus Exporters formula.

3. Click [ Save ].

4. Navigate to the Formulas › Prometheus Exporters tab.

Configure Uyuni Monitoring

37 / 131 Configure Uyuni Monitoring | Uyuni 2020.09

https://github.com/prometheus/node_exporter
https://github.com/prometheus/node_exporter
https://github.com/wrouesnel/postgres_exporter
https://github.com/Lusitaniae/apache_exporter
https://github.com/Lusitaniae/apache_exporter

5. Select the exporters you want to enable and customize arguments according to your needs. The
Address field accepts either a port number preceded by a colon (:9100), or a fully resolvable
address (example:9100).

6. Click [ Save Formula ].

7. Apply the highstate.

 Monitoring formulas can also be configured for System Groups, by applying the
same configuration used for individual systems inside the corresponding group.

For more information about the monitoring formulas, see [Salt › Formula-monitoring ›].

Network Boundaries
Prometheus fetches metrics using a pull mechanism, so the server must be able to establish TCP
connections to monitored clients. By default, Prometheus uses these ports:

• Node exporter: 9100

• PostgreSQL exporter: 9187

• Apache exporter: 9117

Additionally, if you are running the alert manager on a different host than where you run Prometheus, you
will also need to open port 9093.

For clients installed on cloud instances, you can add the required ports to a security group that has access
to the monitoring server.

Alternatively, you can deploy a Prometheus instance in the exporters' local network, and configure
federation. This allows the main monitoring server to scrape the time series from the local Prometheus
instance. If you use this method, you only need to open the Prometheus API port, which is 9090.

For more information on Prometheus federation, see https://prometheus.io/docs/prometheus/latest/
federation/.

Network Boundaries

38 / 131 Network Boundaries | Uyuni 2020.09

https://prometheus.io/docs/prometheus/latest/federation/
https://prometheus.io/docs/prometheus/latest/federation/

You can also proxy requests through the network boundary. Tools like PushProx deploy a proxy and a
client on both sides of the network barrier and allow Prometheus to work across network topologies such
as NAT.

For more information on PushProx, see https://github.com/RobustPerception/PushProx.

Reverse Proxy Setup

Prometheus fetches metrics using a pull mechanism, so the server must be able to establish TCP
connections to each exporter on the monitored clients. To simplify your firewall configuration, you can
use reverse proxy for your exporters to expose all metrics on a single port.

Procedure: Installing Prometheus Exporters with Reverse Proxy

1. In the Uyuni WebUI, open the details page of the system to be monitored, and navigate to the
Formulas tab.

2. Check the Prometheus Exporters checkbox to enable the exporters formula, and click [ Save ].

3. Navigate to the Prometheus Exporters tab in the top menu.

4. Check the Enable reverse proxy option, and enter a valid reverse proxy port number. For
example, 9999.

5. Customize the other exporters according to your needs.

6. Click [ Save Formula ].

7. Apply the highstate and confirm that it completes successfully.

For more information about the monitoring formulas, see [Salt › Formula-monitoring ›].

Network Boundaries

39 / 131 Network Boundaries | Uyuni 2020.09

https://github.com/RobustPerception/PushProx

Organizations
Organizations are used to manage user access and permissions within Uyuni.

For most environments, a single organization is enough. However, more complicated environments might
need several organizations. You might like to have an organization for each physical location within your
business, or for different business functions.

When you have created your organizations, you can create and assign users to your organizations. You can
then assign permissions on an organization level, which applies by default to every user assigned to the
organization.

You can also configure authentication methods for your new organization, including PAM and single
sign-on. For more information about authentication, see [Administration › Auth-methods ›].

 You must be logged in as a Uyuni administrator to create and manage
organizations.

Procedure: Creating a New Organization

1. In the Uyuni WebUI, navigate to Admin › Organizations, and click [ Create Organization ].

2. In the Create Organization dialog, complete these fields:

◦ In the Organization Name field, type a name for your new organization. The name should
be between 3 and 128 characters long.

◦ In the Desired Login field, type the login name you want to use for the organization’s
administrator. This must be a new administrator account, you will not be able to use an existing
administrator account to sign in to the new organization, including the one you are currently
signed in with.

◦ In the Desired Password field, type a password for the new organization’s administrator.
Confirm the password by typing it again in the Confirm Password field. Password strength is
indicated by the colored bar beneath the password fields.

◦ In the Email field, type an email address for the new organization’s administrator.

◦ In the First Name field, select a salutation, and type a given name for the new organization’s
administrator.

◦ In the Last Name field, type a surname for the new organization’s administrator.

3. Click [ Create Organization ].

Manage Organizations
In the Uyuni WebUI, navigate to Admin › Organizations to see a list of available organizations. Click
the name of an organization to manage it.

From the Admin › Organizations section, you can access tabs to manage users, trusts, configuration, and

Manage Organizations

40 / 131 Manage Organizations | Uyuni 2020.09

states for your organization.

Organizations can only be managed by their administrators. To manage an
organization, ensure you are signed in as the correct administrator for the
organization you want to change.

Organization Users

Navigate to the Users tab to view the list of all users associated with the organization, and their role.
Clicking a username takes you to the Users menu to add, change, or delete users.

Trusted Organizations

Navigate to the Trusts tab to add or remove trusted organizations. Establishing trust between
organizations allow them to share content between them, and gives you the ability to migrate clients from
one organization to another.

Configure Organizations

Navigate to the Configuration tab to manage the configuration of your organization. This includes the
use of staged contents, setting up crash reporting, and the use of SCAP files.

For more information about content staging, see [Administration › Content-staging ›].

For more information about OpenSCAP, see [Reference › Audit ›].

Manage States
Navigate to the States tab to manage Salt states for all clients in your organization. States allow you to
define global security policies, or add a common admin user to all clients.

For more information about Salt States, see [Salt › Salt-states ›].

Manage Configuration Channels

You can select which configuration channels should be applied across your organization. Configuration
channels can be created in the Uyuni WebUI by navigating to Configuration › Channels. Apply
configuration channels to your organization using the Uyuni WebUI.

Procedure: Applying Configuration Channels to an Organization

1. In the Uyuni WebUI, navigate to Home › My Organization › Configuration Channels.

2. Use the search feature to locate a channel by name.

3. Check the channel to be applied and click [ Save Changes ]. This saves to the database, but does not
apply the changes to the channel.

Manage States

41 / 131 Manage States | Uyuni 2020.09

4. Apply the changes by clicking [ Apply ]. This schedules the task to apply the changes to all clients
within the organization.

Manage States

42 / 131 Manage States | Uyuni 2020.09

Content Staging
Staging is used by clients to download packages in advance, before they are installed. This allows package
installation to begin as soon as it is scheduled, which can reduce the amount of time required for a
maintenance window.

Enable Content Staging
You can manage content staging across your entire organization. In the Uyuni WebUI, navigate to Admin
› Organizations to see a list of available organizations. Click the name of an organization, and check the
Enable Staging Contents box to allow clients in this organization to stage package data.

 You must be logged in as a Uyuni administrator to create and manage
organizations.

You can also enable staging at the command prompt by editing /etc/sysconfig/rhn/up2date, and
adding or editing these lines:

stagingContent=1
stagingContentWindow=24

The stagingContentWindow parameter is a time value expressed in hours and determines when
downloading will start. It is the number of hours before the scheduled installation or update time. In this
example, content will be downloaded 24 hours before the installation time. The start time for download
depends on the selected contact method for a system. The assigned contact method sets the time for when
the next mgr_check will be executed.

Next time an action is scheduled, packages are automatically downloaded, but not installed. At the
scheduled time, the staged packages are installed.

Configure Content Staging
There are two parameters used to configure content staging:

• salt_content_staging_advance is the advance time for the content staging window to open,
in hours. This is the number of hours before installation starts, that package downloads can begin.

• salt_content_staging_window is the duration of the content staging window, in hours. This is
the amount of time clients have to stage packages before installation begins.

For example, if salt_content_staging_advance is set to six hours, and
salt_content_staging_window is set to two hours, the staging window will open six hours before
the installation time, and remain open for two hours. No packages will be downloaded in the four
remaining hours until installation starts.

Enable Content Staging

43 / 131 Enable Content Staging | Uyuni 2020.09

If you set the same value for both salt_content_staging_advance and
salt_content_staging_window packages will be able to be downloaded until installation begins.

Configure the content staging parameters in /usr/share/rhn/config-
defaults/rhn_java.conf.

Default values:

• salt_content_staging_advance: 8 hours

• salt_content_staging_window: 8 hours

 Content staging must be enabled for these parameters to work correctly.

Configure Content Staging

44 / 131 Configure Content Staging | Uyuni 2020.09

Disconnected Setup
When it is not possible to connect Uyuni to the internet, you can use it within a disconnected
environment.

The repository mirroring tool (RMT) is available on SUSE Linux Enterprise 15 and later. RMT replaces
the subscription management tool (SMT), which can be used on older SUSE Linux Enterprise
installations.

In a disconnected Uyuni setup, RMT or SMT uses an external network to connect to SUSE Customer
Center. All software channels and repositories are synchronized to a removable storage device. The
storage device can then be used to update the disconnected Uyuni installation.

This setup allows your Uyuni installation to remain in an offline, disconnected environment.

 Your RMT or SMT instance must be used to managed a Uyuni Server directly.
It cannot be used to manage a second RMT or SMT instance, in a cascade.

For more information on RMT, see https://documentation.suse.com/sles/15-SP2/html/SLES-all/book-
rmt.html.

Synchronize RMT
You can use RMT on SUSE Linux Enterprise 15 installations to manage clients running SUSE Linux
Enterprise 12 or later.

We recommend you set up a dedicated RMT instance for each Uyuni installation.

Procedure: Setting up RMT

1. On the RMT instance, install the RMT package:

zypper in rmt-server

2. Configure RMT using YaST:

yast2 rmt

3. Follow the prompts to complete installation. For more information on setting up RMT, see
https://documentation.suse.com/sles/15-SP2/html/SLES-all/book-rmt.html.

Procedure: Synchronizing RMT with SCC

1. On the RMT instance, list all available products and repositories for your organization:

Synchronize RMT

45 / 131 Synchronize RMT | Uyuni 2020.09

https://documentation.suse.com/sles/15-SP2/html/SLES-all/book-rmt.html
https://documentation.suse.com/sles/15-SP2/html/SLES-all/book-rmt.html
https://documentation.suse.com/sles/15-SP2/html/SLES-all/book-rmt.html

rmt-cli products list --all
rmt-cli repos list --all

2. Synchronize all available updates for your organization:

rmt-cli sync

You can also configure RMT to synchronize regularly using systemd.

3. Enable the products you require. For example, to enable SLES 15:

rmt-cli product enable sles/15/x86_64

4. Export the synchronized data to your removable storage. In this example, the storage medium is
mounted at /mnt/usb:

rmt-cli export data /mnt/usb

5. Export the enabled repositories to your removable storage:

rmt-cli export settings /mnt/usb

Ensure that the external storage is mounted to a directory that is writeable by the
RMT user. You can change RMT user settings in the cli section of
/etc/rmt.conf.

Synchronize SMT
SMT is included with SUSE Linux Enterprise 12, and can be used to manage clients running SUSE Linux
Enterprise 10 or later.

SMT requires you to create a local mirror directory on the SMT instance to synchronize repositories and
packages.

For more details on installing and configuring SMT, see https://documentation.suse.com/sles/12-SP5/
html/SLES-all/book-smt.html.

Procedure: Synchronizing SMT with SCC

1. On the SMT instance, create a database replacement file:

smt-sync --createdbreplacementfile /tmp/dbrepl.xml

Synchronize SMT

46 / 131 Synchronize SMT | Uyuni 2020.09

https://documentation.suse.com/sles/12-SP5/html/SLES-all/book-smt.html
https://documentation.suse.com/sles/12-SP5/html/SLES-all/book-smt.html

2. Export the synchronized data to your removable storage. In this example, the storage medium is
mounted at /mnt/usb:

smt-sync --todir /mnt/usb
smt-mirror --dbreplfile /tmp/dbrepl.xml --directory /mnt/usb \
 --fromlocalsmt -L /var/log/smt/smt-mirror-export.log

3. Export the enabled repositories to your removable storage:

rmt-cli export settings /mnt/usb

 Ensure that the external storage is mounted to a directory that is writeable by the
RMT user. You can change SMT user settings in /etc/smt.conf.

Synchronize a Disconnected Server
When you have removable media loaded with your SUSE Customer Center data, you can use it to
synchronize your disconnected server.

Procedure: Synchronizing a Disconnected Server

1. Mount your removable media device to the Uyuni server. In this example, the mount point is
/media/disk.

2. Open /etc/rhn/rhn.conf and define the mount point by adding or editing this line:

server.susemanager.fromdir = /media/disk

3. Restart the Tomcat service:

systemctl restart tomcat

4. Refresh the local data:

mgr-sync refresh

5. Perform a synchronization:

mgr-sync list channels
mgr-sync add channel channel-label

Synchronize a Disconnected Server

47 / 131 Synchronize a Disconnected Server | Uyuni 2020.09

The removable disk that you use for synchronization must always be available at
the same mount point. Do not trigger a synchronization, if the storage medium is
not mounted. This will result in data corruption.

Synchronize a Disconnected Server

48 / 131 Synchronize a Disconnected Server | Uyuni 2020.09

Content Lifecycle Management
Content lifecycle management allows you to customize and test packages before updating production
clients. This is especially useful if you need to apply updates during a limited maintenance window.

Content lifecycle management allows you to select software channels as sources, adjust them as required
for your environment, and thoroughly test them before installing onto your production clients.

While you cannot directly modify vendor channels, you can clone them and then modify the clones by
adding or removing packages and custom patches. You can assign these cloned channels to test clients to
ensure they work as expected. Then, when all tests pass, you can promote them to production servers.

This is achieved through a series of environments that your software channels can move through on their
lifecycle. Most environment lifecycles include at least test and production environments, but you can have
as many environments as you require.

This section covers the basic content lifecycle procedures, and the filters available. For more specific
examples, see [Administration › Content-lifecycle-examples ›].

Create a Content Lifecycle Project
To set up a content lifecycle, you need to begin with a project. The project defines the software channel
sources, the filters used to find packages, and the build environments.

Procedure: Creating a Content Lifecycle Project

1. In the Uyuni WebUI, navigate to Content Lifecycle › Projects, and click [ Create Project ].

2. In the Label field, enter a label for your project. The Label field only accepts lowercase letters,
numbers, periods, hyphens, and underscores.

3. In the Name field, enter a descriptive name for your project.

4. Click the [ Create ] button to create your project and return to the project page.

5. Click [ Attach/Detach Sources ].

6. In the Sources dialog, select the source type, and select a base channel for your project. The
available child channels for the selected base channel are displayed, including information on whether
the channel is mandatory or recommended.

7. Check the child channels you require, and click [ Save ] to return to the project page. The software
channels you selected should now be showing.

8. Click [ Attach/Detach Filters ].

9. In the Filters dialog, select the filters you want to attach to the project. To create a new filter,
click [ Create new Filter ].

10. Click [ Add Environment ].

11. In the Environment Lifecycle dialog, give the first environment a name and a description, and
click [ Save ]. The Name field only accepts lowercase letters, numbers, periods, hyphens, and

Create a Content Lifecycle Project

49 / 131 Create a Content Lifecycle Project | Uyuni 2020.09

underscores.

12. Continue creating environments until you have all the environments for your lifecycle completed.
You can select the order of the environments in the lifecycle by selecting an environment in the
Insert before field when you create it.

Filter Types
Uyuni allows you to create various types of filters to control the content used for building the project.
Filters allow you to select which packages will be included or excluded from the build. For example, you
could exclude all kernel packages, or include only specific releases of some packages.

The supported filters are:

• package filtering

◦ by name

◦ by name, epoch, version, release, and architecture

• patch filtering

◦ by advisory name

◦ by advisory type

◦ by synopsis

◦ by keyword

◦ by date

◦ by affected package

• module

◦ by stream

 Package dependencies are not resolved during content filtering.

There are multiple matchers you can use with the filter. Which ones are available will depend on the filter
type you choose.

The available matchers are:

• contains

• matches (must take the form of a regular expression)

• equals

• greater

• greater or equal

• lower or equal

Filter Types

50 / 131 Filter Types | Uyuni 2020.09

• lower

• later or equal

Filter rule Parameter

Each filter has a rule parameter that can be set to either Allow or Deny. The filters are processed like
this:

• If a package or patch satisfies a Deny filter, it will be excluded from the result.

• If a package or patch satisfies an Allow filter, it will be included in the result (even if it was excluded
by a Deny filter).

This behavior is useful when you want to exclude large number of packages or patches using a general
Deny filter and "cherry-pick" specific packages or patches with specific Allow filters.

 Content filters are global in your organization and can be shared between
projects.

If your project already contains built sources, when you add an environment it
will automatically populate with the existing content. Content will be drawn
from the previous environment of the cycle if it had one. If there is no previous
environment, it will be left empty until the project sources are built again.

Build a Content Lifecycle Project
When you have created your project, defined environments, and attached sources and filters, you can
build the project for the first time.

Building applies filters to the attached sources and clones them to the first environment in the project.

Procedure: Building a Content Lifecycle Project

1. In the Uyuni WebUI, navigate to Content Lifecycle › Projects, and select the project you want to
build.

2. Review the attached sources and filters, and click [ Build ].

3. Provide a version message to describe the changes or updates in this build.

4. You can monitor build progress in the Environment Lifecycle section.

After the build is finished, the environment version is increased by one and the built sources, such as
software channels, can be assigned to your clients.

Build a Content Lifecycle Project

51 / 131 Build a Content Lifecycle Project | Uyuni 2020.09

Promote Environments
When the project has been built, the built sources can be sequentially promoted to the environments.

Procedure: Promoting Environments

1. In the Uyuni WebUI, navigate to Content Lifecycle › Projects, and select the project you want to
work with.

2. In the Environment Lifecycle section, locate the environment to promote to its successor, and
click [ Promote ].

3. You can monitor build progress in the Environment Lifecycle section.

Assign Clients to Environments
When you build and promote content lifecycle projects, Uyuni creates a tree of software channels. To add
clients to the environment, assign the base and child software channels to your client using Software ›
Software Channels in the System Details page for the client.

Newly added cloned channels are not assigned to clients automatically. If you
add or promote sources you will need to manually check and update your
channel assignments.

Automatic assignment is intended to be added to Uyuni in a future version.

Content Lifecycle Management Examples
This section contains some common examples of how you can use content lifecycle management. Use
these examples to build your own personalized implementation.

Creating a Project for a Monthly Patch Cycle

An example project for a monthly patch cycle consists of:

• Creating a By Date filter

• Adding the filter to the project

• Applying the filter to a new project build

• Excluding a patch from the project

• Including a patch in the project

Creating a By Date filter

The By Date filter excludes all patches released after a specified date. This filter is useful for your
content lifecycle projects that follow a monthly patch cycle.

Promote Environments

52 / 131 Promote Environments | Uyuni 2020.09

Procedure: Creating the By Date Filter

1. In the Uyuni WebUI, navigate to Content Lifecycle › Filters and click [ Create Filter ].

2. In the Filter Name field, type a name for your filter. For example, Exclude patches by
date.

3. In the Filter Type field, select Patch (Issue date).

4. In the Matcher field, later or equal is autoselected.

5. Select the date and time.

6. Click [ Save ].

Adding the Filter to the Project

Procedure: Adding a Filter to a Project

1. In the Uyuni WebUI, navigate to Content Lifecycle › Projects and select a project from the list.

2. Click [ Attach/Detach Filters ] link to see all available filters

3. Select the new Exclude patches by date filter.

4. Click [ Save ].

Applying the Filter to a new Project Build

The new filter is added to your filter list, but it still needs to be applied to the project. To apply the filter
you need to build the first environment.

Procedure: Using the Filter

Click [ Build ] to build the first environment. . OPTIONAL: Add a message. You can use messages to
help track the build history. . Check that the filter has worked correctly by using the new channels on a
test server. . Click [ Promote ] to move the content to the next environment. The build will take longer if
you have a large number of filters, or they are very complex.

Excluding a Patch from the Project

Tests may help you discover issues. When an issue is found, exclude the problem patch released before
the by date filter.

Procedure: Excluding a Patch

1. In the Uyuni WebUI, navigate to Content Lifecycle › Filters and click [ Create Filter ].

2. In the Filter Name field, enter a name for the filter. For example, Exclude openjdk patch.

3. In the Filter Type field, select Patch (Advisory Name).

4. In the Matcher field, select equals.

5. In the Advisory Name field, type a name for the advisory. For example, SUSE-15-2019-1807.

6. Click [ Save ].

Content Lifecycle Management Examples

53 / 131 Content Lifecycle Management Examples | Uyuni 2020.09

7. Navigate to Content Lifecycle › Projects and select your project.

8. Click [ Attach/Detach Filters ] link, select Exclude openjdk patch, and click [ Save ].

When you rebuild the project with the [ Build ] button, the new filter is used together with the by date
filter we added before.

Including a Patch in the Project

In this example, you have received a security alert. An important security patch was released several days
after the first of the month you are currently working on. The name of the new patch is SUSE-15-
2019-2071. You need to include this new patch into your environment.

 The Allow filters rule overrides the exclude function of the Deny filter rule. For
more information, see [Administration › Content-lifecycle ›].

Procedure: Including a Patch in a Project

1. In the Uyuni WebUI, navigate to Content Lifecycle › Filters and click [ Create Filter ].

2. In the Filter Name field, type a name for the filter. For example, Include kernel security
fix.

3. In the Filter Type field, select Patch (Advisory Name).

4. In the Matcher field, select equals.

5. In the Advisory Name field, type SUSE-15-2019-2071, and check Allow.

6. Click [ Save ] to store the filter.

7. Navigate to Content Lifecycle › Projects and select your project from the list.

8. Click [ Attach/Detach Filters ], and select Include kernel security patch.

9. Click [ Save ].

10. Click [ Build ] to rebuild the environment.

Update an Existing Monthly Patch Cycle

When a monthly patch cycle is complete, you can update the patch cycle for the next month.

Procedure: Updating a Monthly Patch Cycle

1. In the by date field, change the date of the filter to the next month. Alternatively, create a new
filter and change the assignment to the project.

2. Check if the exclude filter for SUSE-15-2019-1807 can be detached from the project. There may
be a new patch available to fix this issue.

3. Detach the allow filter you added previously. The patch is included by default.

4. Rebuild the project to create a new environment with patches for the next month.

Content Lifecycle Management Examples

54 / 131 Content Lifecycle Management Examples | Uyuni 2020.09

Enhance a Project with Live Patching

This section covers setting up filters to create environments for live patching.

When you are preparing to use live patching, there are some important
considerations

• Only ever use one kernel version on your systems. The live patching
packages are installed with a specific kernel.

• Live patching updates are shipped as one patch.

• Each kernel patch that begins a new series of live patching kernels will
display the required reboot flag. These kernel patches come with live
patching tools. When you have installed them, you will need to reboot the
system at least once before the next year.

• Only install live patch updates that match the installed kernel version.

• Live patches are provided as stand-alone patches. You must exclude all
regular kernel patches with higher kernel version than the currently installed
one.

Exclude Packages with a Higher Kernel Version

In this example you update your systems with the SUSE-15-2019-1244 patch. This patch contains
kernel-default-4.12.14-150.17.1-x86_64.

You need to exclude all patches which contain a higher version of kernel-default.

Procedure: Excluding Packages with a Higher Kernel Version

1. In the Uyuni WebUI, navigate to Content Lifecycle › Filters, and click [ Create Filter ].

2. In the Filter Name field, type a name for your filter. For example, Exclude kernel greater
than 4.12.14-150.17.1.

3. In the Filter Type field, select Patch (Contains Package).

4. In the Matcher field, select version greater than.

5. In the Package Name field, type kernel-default.

6. Leave the the Epoch field empty.

7. In the Version field, type 4.12.14.

8. In the Release field, type 150.17.1.

9. Click [ Save ] to store the filter.

10. Navigate to Content Lifecycle › Projects and select your project.

11. Click [ Attach/Detach Filters ].

Content Lifecycle Management Examples

55 / 131 Content Lifecycle Management Examples | Uyuni 2020.09

12. Select Exclude kernel greater than 4.12.14-150.17.1, and click [ Save ].

When you click [ Build ], a new environment is created. The new environment contains all the kernel
patches up to the version you installed.

 All kernel patches with higher kernel versions are removed. Live patching
kernels will stay available as long as they are not the first in a series.

Switch to a New Kernel Version for Live Patching

Live Patching for a specific kernel version is only available for one year. After one year you must update
the kernel on your systems. Execute these environment changes:

Procedure: Switch to a New Kernel Version

1. Decide which kernel version you will upgrade to. For example: 4.12.14-150.32.1

2. Create a new kernel version Filter.

3. Detach the previous filter Exclude kernel greater than 4.12.14-150.17.1 and attach the new filter.

Click [ Build ] to rebuild the environment. The new environment contains all kernel patches up to the
new kernel version you selected. Systems using these channels will have the kernel update available for
installation. You will need to reboot systems after they have performed the upgrade. The new kernel will
remain valid for one year. All packages installed during the year will match the current live patching
kernel filter.

AppStream Filters

If you are using Red Hat Enterprise Linux 8 clients, you cannot perform package operations such as
installing or upgrading directly from modular repositories like the Red Hat Enterprise Linux AppStream
repository. You can use the AppStream filter to transform modular repositories into regular repositories. It
does this by keeping the packages in the repository and stripping away the module metadata. The resulting
repository can be used in Uyuni in the same way as a regular repository.

The AppStream filter selects a single module stream to be included in the target repository. You can add
multiple filters to select multiple module streams.

If you do not use an AppStream filter in your CLM project, the module metadata in the modular sources
remains intact, and the target repositories contain the same module metadata. As long as at least one
AppStream filter is enabled in the CLM project, all target repositories are transformed into regular
repositories.

To use the AppStream filter, you need a CLM project with a modular repository such as Red Hat
Enterprise Linux AppStream. Ensure that you included the module you need as a source before
you begin.

Procedure: Using AppStream Filters

Content Lifecycle Management Examples

56 / 131 Content Lifecycle Management Examples | Uyuni 2020.09

1. In the Uyuni WebUI, navigate to your Red Hat Enterprise Linux 8 CLM project. Ensure that you
have included the AppStream channels for your project.

2. Click btn:Create Filter and use these parameters:

◦ In the Filter Name field, type a name for the new filter.

◦ In the Filter Type field, select Module (Stream).

◦ In the Module Name field, type a module name. For example, postgresql.

◦ In the Stream field, type the name of the desired stream. For example, 10. If you leave this
field blank, the default stream for the module is selected.

3. Click [ Save ] to create the new filter.

4. Navigate to Content Lifecycle › Projects and select your project.

5. Click btn:Attach/Detach Filters, select your new AppStream filter, and click [ Save ].

You can use the browse function in the Create/Edit Filter form to select a module from a list of
available module streams for a modular channel.

Procedure: Browsing Available Module Streams

1. In the Uyuni WebUI, navigate to your Red Hat Enterprise Linux 8 CLM project. Ensure that you
have included the AppStream channels for your project.

2. Click btn:Create Filter and use these parameters:

◦ In the Filter Name field, type a name for the new filter.

◦ In the Filter Type field, select Module (Stream).

3. Click Browse available modules to see all modular channels.

4. Select a channel to browse the modules and streams:

◦ In the Module Name field, start typing a module name to search, or select from the list.

◦ In the Stream field, start typing a stream name to search, or select from the list.

 Channel selection is only for browsing modules. The selected channel will not be
saved with the filter, and will not affect the CLM process in any way.

You can create additional AppStream filters for any other module stream to be included in the target
repository. Any module streams that the selected stream depends on will be automatically included.

 Be careful not to specify conflicting, incompatible, or missing module streams.
For example, selecting two streams from the same module is invalid.

When you build your CLM project using the [ Build ] button in the WebUI, the target repository is a
regular repository without any modules, that contains packages from the selected module streams.

Content Lifecycle Management Examples

57 / 131 Content Lifecycle Management Examples | Uyuni 2020.09

Authentication Methods
Uyuni supports several different authentication methods. This section discusses pluggable authentication
modules (PAM) and single sign-on (SSO).

Authentication With Single Sign-On (SSO)
Uyuni supports single sign-on (SSO) by implementing the Security Assertion Markup Language
(SAML) 2 protocol.

Single sign-on is an authentication process that allows a user to access multiple applications with one set
of credentials. SAML is an XML-based standard for exchanging authentication and authorization data. A
SAML identity service provider (IdP) provides authentication and authorization services to service
providers (SP), such as Uyuni. Uyuni exposes three endpoints which must be enabled for single sign-on.

SSO in Uyuni supports:

• Log in with SSO.

• Log out with service provider-initiated single logout (SLO), and Identity service provider single
logout service (SLS).

• Assertion and nameId encryption.

• Assertion signatures.

• Message signatures with AuthNRequest, LogoutRequest, and LogoutResponses.

• Enable an Assertion consumer service endpoint.

• Enable a single logout service endpoint.

• Publish the SP metadata (which can be signed).

SSO in Uyuni does not support:

• Product choosing and implementation for the identity service provider (IdP).

• SAML support for other products (check with the respective product documentation).

For an example implementation of SSO, see [Administration › Auth-methods-sso-example ›].

If you change from the default authentication method to single sign-on, the new
SSO credentials apply only to the WebUI. Client tools such as mgr-sync or
spacecmd will continue to work with the default authentication method only.

Prerequisites

Before you begin, you need to have configured an external identity service provider with these
parameters. Check your IdP documentation for instructions.

Authentication With Single Sign-On (SSO)

58 / 131 Authentication With Single Sign-On (SSO) | Uyuni 2020.09

Your IdP must have a SAML:Attribute containing the username of the IdP user
domain, called uid. The uid attribute passed in the SAML:Attribute must be
created in the Uyuni user base before you activate single sign-on.

You will need these endpoints:

• Assertion consumer service (or ACS): an endpoint to accept SAML messages to establish a session
into the Service Provider. The endpoint for ACS in Uyuni is: https://server.example.com/rhn/
manager/sso/acs

• Single logout service (or SLS): an endpoint to initiate a logout request from the IdP. The endpoint for
SLS in Uyuni is: https://server.example.com/rhn/manager/sso/sls

• Metadata: an endpoint to retrieve Uyuni metadata for SAML. The endpoint for metadata in Uyuni is:
https://server.example.com/rhn/manager/sso/metadata

After the authentication with the IdP using the user orgadmin is successful, you will be logged in into
Uyuni as the orgadmin user, provided that the orgadmin user exists in Uyuni.

Enable SSO

 Using SSO is mutually exclusive with other types of authentication: it is either
enabled or disabled. SSO is disabled by default.

Procedure: Enabling SSO

1. If your users do not yet exist in Uyuni, create them first.

2. Edit /etc/rhn/rhn.conf and add this line at the end of the file:

java.sso = true

3. Find the parameters you want to customize in /usr/share/rhn/config-
defaults/rhn_java_sso.conf. Insert the parameters you want to customize into
/etc/rhn/rhn.conf and prefix them with java.sso. For example, in
/usr/share/rhn/config-defaults/rhn_java_sso.conf find:

onelogin.saml2.sp.assertion_consumer_service.url = https://YOUR-PRODUCT-HOSTNAME-OR-
IP/rhn/manager/sso/acs

To customize it, create the corresponding option in /etc/rhn/rhn.conf by prefixing the option
name with java.sso.:

java.sso.onelogin.saml2.sp.assertion_consumer_service.url = https://YOUR-PRODUCT-
HOSTNAME-OR-IP/rhn/manager/sso/acs

Authentication With Single Sign-On (SSO)

59 / 131 Authentication With Single Sign-On (SSO) | Uyuni 2020.09

https://server.example.com/rhn/manager/sso/acs
https://server.example.com/rhn/manager/sso/acs
https://server.example.com/rhn/manager/sso/sls
https://server.example.com/rhn/manager/sso/metadata

To find all the occurrences you need to change, search in the file for the placeholders YOUR-
PRODUCT and YOUR-IDP-ENTITY. Every parameter comes with a brief explanation of what it is
meant for.

4. Restart the spacewalk service to pick up the changes:

spacewalk-service restart

When you visit the Uyuni URL, you will be redirected to the IdP for SSO where you will be requested to
authenticate. Upon successful authentication, you will be redirected to the Uyuni WebUI, logged in as the
authenticated user. If you encounter problems with logging in using SSO, check the Uyuni logs for more
information.

Authentication With PAM
Uyuni supports network-based authentication systems using pluggable authentication modules (PAM).
PAM is a suite of libraries that allows you to integrate Uyuni with a centralized authentication
mechanism, eliminating the need to remember multiple passwords. Uyuni supports LDAP, Kerberos, and
other network-based authentication systems using PAM.

Procedure: Enabling PAM

1. Create a PAM service file at /etc/pam.d/susemanager. A standard
/etc/pam.d/susemanager file should look like this. It configures Uyuni to use the system wide
PAM configuration:

#%PAM-1.0
auth include common-auth
account include common-account
password include common-password
session include common-session

2. Enforce the use of the service file by adding this line to /etc/rhn/rhn.conf:

pam_auth_service = susemanager

 In this example, the PAM service file is called [systemitem]``susemanager``.
. Restart the {productname} services after a configuration change.
. In the {productname} {webui}, navigate to menu:Users[Create User] and enable a new or
existing user to authenticate with PAM.
. Check the [guimenu]``Pluggable Authentication Modules (PAM)`` checkbox.
 It is below the password and password confirmation fields.

Authentication With PAM

60 / 131 Authentication With PAM | Uyuni 2020.09

Changing the password in the Uyuni WebUI changes only the local password on
the Uyuni Server. If PAM is enabled for that user, the local password might not
be used at all. In the above example, for instance, the Kerberos password will not
be changed. Use the password change mechanism of your network service to
change the password for these users.

To configure system-wide authentication you can use YaST. You will need to install the yast2-ldap-
client and yast2-kerberos-client packages.

For more information about configuring PAM, the SUSE Linux Enterprise Server Security Guide
contains a generic example that will also work for other network-based authentication methods. It also
describes how to configure an active directory service. For more information, see
https://documentation.suse.com/sles/15-SP2/html/SLES-all/part-auth.html.

Authentication With PAM

61 / 131 Authentication With PAM | Uyuni 2020.09

https://documentation.suse.com/sles/15-SP2/html/SLES-all/part-auth.html

SSL Certificates
Uyuni uses SSL certificates to ensure that clients are registered to the correct server.

Every client that uses SSL to register to the Uyuni Server checks that it is connecting to the right server
by validating against a server certificate. This process is called an SSL handshake.

During the SSL handshake, the client will check that the hostname in the server certificate matches what
it expects. The client also needs to check if the server certificate is trusted.

Every Uyuni Server that uses SSL requires an SSL server certificate. Provide the path to the server
certificate using the SERVER_CERT environment variable during setup, or with the --from-server
-cert option of the rhn-ssl-tool command.

Certificate authorities (CAs) are certificates that are used to sign other certificates. All certificates must be
signed by a certificate authority (CA) in order for them to be considered valid, and for clients to be able to
successfully match against them.

When an organization signs its own certificate, the certificate is considered self-signed. A self-signed
certificate is straight-forward to set up, and does not cost any money, but they are considered less secure.
If you are using a self-signed certificate, you will have a root CA that is signed with itself. When you look
at the details of a root CA, you will see that the subject has the same value as the issuer. Provide the path
to your root CA certificate using the CA_CERT environment variable during setup, or with the --ca
-cert option of the rhn-ssl-tool command.

In order for SSL authentication to work correctly, the client must trust the root CA. This means that the
root CA must be installed on every client.

The default method of SSL authentication is for Uyuni to use self-signed certificates. In this case, Uyuni
has generated all the certificates, and the root CA has signed the server certificate directly.

An alternative method is to use an intermediate CA. In this case, the root CA signs the intermediate CA.
The intermediate CA can then sign any number of other intermediate CAs, and the final one signs the
server certificate. This is referred to as a chained certificate.

If you are using intermediate CAs in a chained certificate, the root CA is installed on the client, and the
server certificate is installed on the server. During the SSL handshake, clients must be able to verify the
entire chain of intermediate certificates between the root CA and the server certificate, so they must be
able to access all the intermediate certificates.

There are two main ways of achieving this. In Uyuni, by default, all the intermediate CAs are installed on
the client. However, you could also configure your services on the server to provide them to the client. In
this case, during the SSL handshake, the server presents the server certificate as well as all the
intermediate CAs.

Whichever method you choose, you must ensure that the CA_CERT environment variable points to the
root CA, and all intermediate CAs. It should not contain the server certificate. The server certificate must

62 / 131 SSL Certificates | Uyuni 2020.09

be defined at the SERVER_CERT environment variable.

By default, Uyuni uses a self-signed certificate. For additional security, you can arrange a third party CA
to sign your certificates. Third party CAs perform checks to ensure that the information contained in the
certificate is correct. They will usually charge an annual fee for this service. Using a third party CA makes
certificates harder to spoof, and will provide additional protection for your installation. If you have
certificates signed by a third party CA, you can import them to your Uyuni installation.

• For more on self-signed certificates, see [Administration › Ssl-certs-selfsigned ›].

• For more on imported certificates, see [Administration › Ssl-certs-imported ›].

Self-Signed SSL Certificates
By default, Uyuni uses a self-signed certificate. In this case, the certificate is created and signed by Uyuni.
This method does not use an independent certificate authority to guarantee that the details of the
certificate are correct. Third party CAs perform checks to ensure that the information contained in the
certificate is correct. For more on third party CAs, see [Administration › Ssl-certs-imported ›].

This section covers how to re-create your self-signed certificates on an existing installation. It also covers
how to create new self-signed certificates and authenticate your existing clients to the new certificate,
using an intermediate certificate. Intermediate certificates merge the intermediate and root CA certificates
into one file. Ensure that the intermediate certificate comes first in the combined file.

The host name of the SSL keys and certificates must match the fully qualified host name of the machine
you deploy them on.

Re-Create Existing Server Certificates

If your existing certificates have expired or stopped working for any reason, you can generate a new
server certificate from the existing CA.

Procedure: Re-Creating an Existing Server Certificate

1. On the Uyuni Server, at the command prompt, regenerate the server certificate:

rhn-ssl-tool --gen-server --dir="/root/ssl-build" --set-country="COUNTRY" \
--set-state="STATE" --set-city="CITY" --set-org="ORGANIZATION" \
--set-org-unit="ORGANIZATION UNIT" --set-email="name@example.com" \
--set-hostname="susemanager.example.com" --set-cname="example.com"

Ensure that the set-cname parameter is the fully-qualified domain name of your Uyuni Server. You
can use the the set-cname parameter multiple times if you require multiple aliases.

2. Install the RPM that contains the newly generated certificate. Check that you have the latest version
of the RPM before running this command. The version number is incremented every time you re-
create the certificates.

Self-Signed SSL Certificates

63 / 131 Self-Signed SSL Certificates | Uyuni 2020.09

rpm -Uhv /root/ssl-build/lnx0259a/rhn-org-httpd-ssl-key-pair-lnx0259a-1.0-2.noarch.rpm

3. Restart services to pick up the changes:

spacewalk-service restart

Create and Replace CA and Server Certificates

If you need to create entirely new certificates for an existing installation, you need to create a combined
certificate first. Clients will authenticate to the certificate with both the old and new details. Then you can
go ahead and remove the old details. This maintains the chain of trust.

Be careful with this procedure! It is possible to break the trust chain between the
server and clients using this procedure. If that happens, you will need an
administrative user to log in to every client and deploy the CA directly.

Procedure: Creating New Certificates

1. On the Uyuni Server, at the command prompt, move the old certificate directory to a new location:

mv /root/ssl-build /root/old-ssl-build

2. Generate a new CA certificate and create an RPM:

rhn-ssl-tool --gen-ca --dir="/root/ssl-build" --set-country="COUNTRY" \
--set-state="STATE" --set-city="CITY" --set-org="ORGANIZATION" \
--set-org-unit="ORGANIZATION UNIT" --set-common-name="SUSE Manager CA Certificate" \
--set-email="name@example.com"

3. Generate a new server certificate and create an RPM:

rhn-ssl-tool --gen-server --dir="/root/ssl-build" --set-country="COUNTRY" \
--set-state="STATE" --set-city="CITY" --set-org="ORGANIZATION" \
--set-org-unit="ORGANIZATION UNIT" --set-email="name@example.com" \
--set-hostname="susemanager.example.top" --set-cname="example.com"

Ensure that the set-cname parameter is the fully-qualified domain name of your Uyuni Server. You
can use the the set-cname parameter multiple times if you require multiple aliases.

You will need to generate a server certificate RPM for each proxy, using their host names and
cnames.

When you have new certificates, you can create the combined RPMs to authenticate the clients.

Self-Signed SSL Certificates

64 / 131 Self-Signed SSL Certificates | Uyuni 2020.09

Procedure: Create Combined Certificate RPMs

1. Create a new CA file that combines the old and new certificate details, and generate a new RPM:

mkdir /root/combined-ssl-build
cp /root/old-ssl-build/RHN-ORG-TRUSTED-SSL-CERT /root/combined-ssl-build/
cat /root/ssl-build/RHN-ORG-TRUSTED-SSL-CERT >> /root/combined-ssl-build/RHN-ORG-
TRUSTED-SSL-CERT
cp /root/old-ssl-build/*.rpm /root/combined-ssl-build/
rhn-ssl-tool --gen-ca --rpm-only --dir="/root/combined-ssl-build"

2. Deploy the CA certificate on the server:

/usr/bin/rhn-deploy-ca-cert.pl --source-dir /root/combined-ssl-build \
--target-dir /srv/www/htdocs/pub/ --trust-dir=/etc/pki/trust/anchors/

When you have the combined RPMs, you can deploy the combined CA certificates to your clients.

Procedure: Deploying Combined Certificates on Traditional Clients

1. On the client, create a new custom channel using these details:

◦ Name: SSL-CA-Channel

◦ Label: ssl-ca-channel

◦ Parent Channel: <choose the parent channel of a client>

◦ Summary: SSL-CA-Channel

For more on creating custom channels, see [Administration › Channel-management ›].

2. Upload the CA certificate RPM to the channel:

rhnpush -c ssl-ca-channel --nosig \
--ca-chain=/srv/www/htdocs/pub/RHN-ORG-TRUSTED-SSL-CERT \
/root/combined-ssl-build/rhn-org-trusted-ssl-cert-1.0-2.noarch.rpm

3. Subscribe all clients to the new SSL-CA-Channel channel.

4. Install the CA certificate RPM on all clients by updating the channel.

Procedure: Deploying Combined Certificates on Salt Clients

1. In the Uyuni WebUI, navigate to Systems › Overview.

2. Check all your Salt Clients to add them to the system set manager.

3. Navigate to Systems › System Set Manager › Overview.

4. In the States field, click [ Apply ] to apply the system states.

5. In the Highstate page, click [ Apply Highstate ] to propagate the changes to the clients.

Self-Signed SSL Certificates

65 / 131 Self-Signed SSL Certificates | Uyuni 2020.09

When you have every client trusting both the old and new certificates, you can go ahead and replace the
server certificate on the Uyuni Server and Proxies.

Procedure: Replace Server Certificate on the Server

1. On the Uyuni Server, at the command prompt, install the RPM from the ssl-build directory:

rpm -Uhv ssl-build/susemanager/rhn-org-httpd-ssl-key-pair-susemanager-1.0-2.noarch.rpm

2. Restart services to pick the changes:

spacewalk-service restart

Procedure: Replace Server Certificate on the Proxy

1. On the Uyuni Proxy, at the command prompt, install the RPM from the ssl-build directory:

rpm -Uhv ssl-build/susemanager-proxy/rhn-org-httpd-ssl-key-pair-susemanager-proxy-1.0-
2.noarch.rpm

2. Restart services to pick up the changes:

rhn-proxy restart

3. Test that all clients still operate as expected and can use SSL to reach the Uyuni Server and any
proxies.

When you have replaced the server certificates on your server and any proxies, you need to update the
certificate with only the new details on all the clients. This is done by adding it to the client channels you
set up previously.

Procedure: Adding the New Certificates to the Client Channel

1. Copy the combined certificate RPM into the /root/ssl-build/ directory:

cp /root/combined-ssl-build/*.rpm /root/ssl-build/

2. Generate a new RPM with from the new certificates. Check the release number carefully to ensure
you have the right certificate file:

rhn-ssl-tool --gen-ca --rpm-only --dir="/root/ssl-build"

3. Install the new local certificates on the Uyuni Server:

Self-Signed SSL Certificates

66 / 131 Self-Signed SSL Certificates | Uyuni 2020.09

/usr/bin/rhn-deploy-ca-cert.pl --source-dir /root/ssl-build \
--target-dir /srv/www/htdocs/pub/ --trust-dir=/etc/pki/trust/anchors/

4. Restart services to pick up the changes:

spacewalk-service restart

5. Upload the new RPM into the channel:

rhnpush -c ssl-ca-channel --nosig \
--ca-chain=/srv/www/htdocs/pub/RHN-ORG-TRUSTED-SSL-CERT \
/root/ssl-build/rhn-org-trusted-ssl-cert-1.0-3.noarch.rpm

When you have the new certificate in the channel, you can use the Uyuni WebUI to update it on all
clients and proxies, by synchronizing them with the channel. Alternatively, for Salt clients, you can use
Salt › Remote Commands, or apply the highstate.

You will also need to update your proxies to remove the copy of the certificate and the associated RPM.
Your proxies must have the same certificate content as the server. Check the /srv/www/htdocs/pub/
directory and ensure it contains:

RHN-ORG-TRUSTED-SSL-CERT
rhn-org-trusted-ssl-cert-*.noarch.rpm

To complete the process, you need to update the database with this command:

/usr/bin/rhn-ssl-dbstore --ca-cert=/root/ssl-build/RHN-ORG-TRUSTED-SSL-CERT

If you use bootstrap, remember to also update your bootstrap scripts to reflect the new certificate
information.

Import SSL Certificates
By default, Uyuni uses a self-signed certificate. For additional security, you can import a custom
certificate, signed by a third party certificate authority (CA).

This section covers how to use an imported SSL certificate with a new Uyuni installation, and how to
replace existing self-signed certificates with imported certificates.

Before you begin, ensure you have:

• A certificate authority (CA) SSL public certificate

• An SSL server key

Import SSL Certificates

67 / 131 Import SSL Certificates | Uyuni 2020.09

• An SSL server certificate

Your key and certificate files must be in PEM format.

The host name of the SSL keys and certificates must match the fully qualified host name of the machine
you deploy them on. You can set the host names in the X509v3 Subject Alternative Name
section of the certificate. You can also list multiple host names if your environment requires it.

Import Certificates for New Installations

By default, Uyuni uses a self-signed certificate. After you have completed the initial setup, you can replace
the default certificate with an imported certificate.

Procedure: Import Certificates on a New Uyuni Server

1. Install the Uyuni Server according to the instructions in [Installation › Install-intro ›].

2. Complete the initial setup according to [Installation › Server-setup ›].

3. At the command prompt, point the SSL environment variables to the certificate file locations:

export CA_CERT=<path_to_CA_certificate_file>
export SERVER_KEY=<path_to_web_server_key>
export SERVER_CERT=<path_to_web_server_certificate>

4. Complete Uyuni setup:

yast susemanager_setup

When you are prompted for certificate details during setup, fill in random values. The values will be
overridden by the values you specified at the command prompt.

 Execute the yast susemanager_setup command from the same shell you
exported the environment variables from.

Import Certificates for New Proxy Installations

By default, Uyuni Proxy uses a self-signed certificate. After you have completed the initial setup, you can
replace the default certificate with an imported certificate.

Procedure: Import Certificates on a New Uyuni Proxy

1. Install the Uyuni Proxy according to the instructions in [Installation › Install-intro ›].

2. Complete the initial setup according to [Installation › Proxy-setup ›].

3. At the command prompt, run:

Import SSL Certificates

68 / 131 Import SSL Certificates | Uyuni 2020.09

configure-proxy.sh

4. At the Do you want to import existing certificates? prompt, type y.

5. Follow the prompts to complete setup.

 Use the same certificate authority to sign all server certificates for servers and
proxies. Certificates signed with different CAs will not match.

Replace Certificates with a Third Party Certificate

You can replace active certificates on your Uyuni installation with a new third party certificate. To replace
the certificates, you can replace the installed CA certificate RPM with a new RPM containing the third
party certificate, and then update the database.

This procedure is similar to the one described in administration:ssl-certs-selfsigned.pdf. The difference is
that we import the certificates generated by an external PKI.

Procedure: Replacing Existing Certificates

1. On the Uyuni Server, at the command prompt, move the old certificate directory to a backup
location:

mv /root/ssl-build /root/old-ssl-build

2. Generate a CA certificate RPM from the new certificate:

rhn-ssl-tool --gen-ca --rpm-only --dir="/root/ssl-build" --from-ca
-cert=<Path_to_CA_Certificate>

3. Generate a new server certificate RPM:

rhn-ssl-tool --gen-server --rpm-only --dir="/root/ssl-build" --from-server
-key=<Server_Key_File> --from-server-cert=<Server_Cert_File>

When you create the new server certificate RPM, you might get a warning that server certificate request
file could not be found. This file is not required, and the procedure will complete correctly without it.
However, if you want to avoid the error, you can copy the file into the server directory, and name it
server.csr:

cp <Certificate_Request_File>.csr /root/ssl-build/<Server_Name>/server.csr

When you have created the new ssl-build directory, you can create combined certificate RPMs and
deploy them on the clients. For the procedures to do this, see [Administration › Ssl-certs-selfsigned ›].

Import SSL Certificates

69 / 131 Import SSL Certificates | Uyuni 2020.09

administration:ssl-certs-selfsigned.pdf#ssl-certs-selfsigned-create-replace

If you are using a proxy, you will need to generate a server certificate RPM for each proxy, using their
host names and cnames.

Import SSL Certificates

70 / 131 Import SSL Certificates | Uyuni 2020.09

Inter-Server Synchronization
If you have more than one Uyuni installation, you need to ensure that they stay aligned on content and
permissions. Inter-Server Synchronization (ISS) allows you to connect two or more Uyuni Servers and
keep them up-to-date.

To set up ISS, you need to define one Uyuni Server as a master, with the other as a slave. If conflicting
configurations exist, the system will prioritize the master configuration.

ISS Masters are masters only because they have slaves attached to them. This
means that you need to set up the ISS Master first, by defining its slaves. You
can then set up the ISS Slaves, by attaching them to a master.

Procedure: Setting up an ISS Master

1. In the Uyuni WebUI, navigate to Admin › ISS Configuration › Master Setup, and click [ Add new
slave ].

2. In the Edit Slave Details dialog, provide these details for the ISS Master’s first slave:

◦ In the Slave Fully-Qualified Domain Name field, enter the FQDN of the ISS Slave.
For example: server2.example.com.

◦ Check the Allow Slave to Sync? checkbox to enable the slave to synchronize with the
master.

◦ Check the Sync All Orgs to Slave? checkbox to synchronize all organizations to this
slave.

3. Click [ Create ] to add the ISS slave.

4. In the Allow Export of the Selected Organizations section, check the organizations
you want to allow this slave to export to the master, and click [ Allow Orgs ].

Before you set up the ISS Slave, you will need to ensure you have the appropriate CA certificate.

Procedure: Copying the Master CA Certificate to an ISS Slave

1. On the ISS Master, locate the CA Certificate at /srv/www/htdocs/pub/RHN-ORG-TRUSTED-
SSL-CERT and create a copy that can be transferred to the ISS Slave.

2. On the ISS Slave, save the CA certificate file to the /etc/pki/trust/anchors/ directory.

When you have copied the certificate, you can set up the ISS Slave.

Procedure: Setting up an ISS Slave

1. In the Uyuni WebUI, navigate to Admin › ISS Configuration › Slave Setup, and click [ Add new
master ].

2. In the Details for new Master dialog, provide these details for the server to use as the ISS
master:

71 / 131 Inter-Server Synchronization | Uyuni 2020.09

◦ In the Master Fully-Qualified Domain Name field, enter the FQDN of the ISS Master
for this slave. For example: server1.example.com.

◦ In the Filename of this Master’s CA Certificate field, enter the absolute path to
the CA certificate on the ISS master. This should be /etc/pki/trust/anchors/RHN-ORG-
TRUSTED-SSL-CERT.

3. Click [ Add new master ] to add the ISS Slave to this master.

Procedure: Completing ISS Setup

1. At the command prompt on the ISS Slave, synchronize with the ISS Master:

mgr-inter-sync

2. OPTIONAL: To synchronize a single channel, use this command:

mgr-inter-sync -c <channel-name>

3. In the Uyuni WebUI, navigate to Admin › ISS Configuration › Configure Master-to-Slave
Mappings and select the organizations you want to synchronize.

72 / 131 Inter-Server Synchronization | Uyuni 2020.09

Actions
You can manage actions on your clients in a number of different ways.

For Salt clients, you can schedule automated recurring actions to apply the highstate to clients on a
specified schedule. You can apply recurring actions to individual clients, to all clients in a system group,
or to an entire organization.

On both Salt and traditional clients, you can set actions to be performed in a particular order by creating
action chains. Action chains can be created and edited ahead of time, and scheduled to run at a time that
suits you.

You can also perform remote commands on one or more of your Salt clients. Remote commands allows
you to issue commands to individual Salt clients, or to all clients that match a search term.

Recurring Actions
You can apply recurring actions on individual Salt clients, or to all clients in an organization.

Procedure: Creating a New Recurring Action

1. To apply a recurring action to an individual client, navigate to Systems, click the client to configure
schedules for, and navigate to the States › Recurring States tab.

2. To apply a recurring action to a system group, navigate to Systems › System Groups, select the
group to configure schedules for, and navigate to States › Recurring States tab.

3. Click [ Create ].

4. Type a name for the new schedule.

5. Choose the frequency of the recurring action:

◦ Hourly: Type the minute of each hour. For example, 15 will run the action at fifteen minutes
past every hour.

◦ Daily: Select the time of each day. For example, 01:00 will run the action at 0100 every day,
in the timezone of the Uyuni Server.

◦ Weekly: Select the day of the week and the time of the day, to execute the action every week
at the specified time.

◦ Monthly: Select the day of the month and the time of the day, to execute the action every
month at the specified time.

◦ Custom Quartz format: For more detailed options, enter a custom quartz string. For
example, to run a recurring action at 0215 every Saturday of every month, enter:

0 15 2 ? * 7

6. OPTIONAL: Toggle the Test mode switch on to run the schedule in test mode.

Recurring Actions

73 / 131 Recurring Actions | Uyuni 2020.09

7. Click [ Create Schedule ] to save, and see the complete list of existing schedules.

Organization Administrators can set and edit recurring actions for all clients in the organization. Navigate
to Home › My Organization › Recurring States to see all recurring actions that apply to the entire
organization.

Uyuni Administrators can set and edit recurring actions for all clients in all organizations. Navigate to
Admin › Organizations, select the organization to manage, and navigate to the States › Recurring
States tab.

 Recurring actions can only be used with Salt clients. Traditional clients in your
group or organization are ignored.

Action Chains
If you need to perform a number of sequential actions on your clients, you can create an action chain to
ensure the order is respected.

By default, most clients will execute an action as soon as the command is issued. In some case, actions
will take a long time, which could mean that actions issued afterwards fail. For example, if you instruct a
client to reboot, then issue a second command, the second action could fail because the reboot is still
occurring. To ensure that actions occur in the correct order, use action chains.

You can use action chains on both traditional and Salt clients. Action chains can include any number of
these actions, in any order:

• System Details › Remote Command

• System Details › Schedule System Reboot

• System Details › States › Highstate

• System Details › Software › Packages › List/Remove

• System Details › Software › Packages › Install

• System Details › Software › Packages › Upgrade

• System Details › Software › Patches

• System Details › Software › Software Channels

• System Details › Configuration

• Images › Build

Procedure: Creating a New Action Chain

1. In the Uyuni WebUI, navigate to the first action you want to perform in the action chain. For
example, navigate to System Details for a client, and click [ Schedule System Reboot ].

2. Check the Add to field and select new action chain.

Action Chains

74 / 131 Action Chains | Uyuni 2020.09

3. Confirm the action. This will not perform the action immediately, it will instead create the new
action chain, and a blue bar confirming this appears at the top of the screen.

4. Continue adding actions to your action chain by checking the Add to field and selecting the name
of the action chain to add them to.

5. When you have finished adding actions, navigate to Schedule › Action Chains and selecting the
action chain from the list.

6. Re-order actions by dragging them and dropping them into the correct position. Click the blue plus
sign to see the clients an action will be performed on. Click [ Save ] to save your changes.

7. Schedule a time for your action chain to run, and click [ Save and Schedule ]. If you leave the page
without clicking either [ Save ] or [ Save and Schedule ] all unsaved changes will be discarded.

 If one action in an action chain fails, the action chain stops, and no further
actions are executed.

You can see scheduled actions from action chains by navigating to Schedule › Pending Actions.

Remote Commands
You can configure clients to run commands remotely. This allows you to issue scripts or individual
commands to a client, without having access to the client directly.

This feature is automatically enabled on Salt clients, and you do not need to perform any further
configuration. For traditional clients, the feature is enabled if you have registered the client using a
bootstrap script and have enabled remote commands. You can use this procedure to enable it manually,
instead.

Before you begin, ensure your client is subscribed to the appropriate tools child channel for its installed
operating system. For more information about subscribing to software channels, see [Client-
configuration › Channels ›].

Procedure: Configuring Traditional Clients to Accept Remote Commands

1. On the client, at the command prompt, use the package manager to install the rhncfg, rhncfg-
client, and rhncfg-actions packages, if not already installed. For example:

zypper in rhncfg rhncfg-client rhncfg-actions

2. On the client, at the command prompt, as root, create a path in the local configuration directory:

mkdir -p /etc/sysconfig/rhn/allowed-actions/script

3. Create an empty file called run in the new directory. This file grants the Uyuni Server permission to
run remote commands:

Remote Commands

75 / 131 Remote Commands | Uyuni 2020.09

touch /etc/sysconfig/rhn/allowed-actions/script/run

For Salt clients, remote commands are run from the /tmp/ directory on the client. To ensure that remote
commands work accurately, do not mount /tmp with the noexec option.

All commands run from the Remote Commands page are executed as root on
clients. Wildcards can be used to run commands across any number of systems.
Always take extra care to check your commands before issuing them.

Procedure: Running Remote Commands on Traditional Clients

1. In the Uyuni WebUI, navigate to Systems, click the client to run a remote command on, and
navigate to the Details › Remote Command tab.

2. In the Run as user field, type the user ID (UID) of the user on the client that you want to run the
command. Alternatively, you can specify a group to run the command, using the group ID (GID) in
the Run as group field.

3. OPTIONAL: In the Timeout field, type a timeout period for the command, in seconds. If the
command is not executed within this period, it will not be run.

4. In the Command label field, type a name for your command.

5. In the Script field, type the command or script to execute.

6. Select a date and time to execute the command, or add the remote command to an action chain.

7. Click [ Schedule ] to schedule the remote command.

For more information about action chains, see [Reference › Schedule ›].

Procedure: Running Remote Commands on Salt Clients

1. Navigate to Salt › Remote Commands.

2. In the first field, before the @ symbol, type the command you want to issue.

3. In the second field, after the @ symbol, type the client you want to issue the command on. You can
type the minion-id of an individual client, or you can use wildcards to target a range of clients.

4. Click [ Find targets ] to check which clients you have targeted, and confirm that you have used the
correct details.

5. Click [ Run command ] to issue the command to the target clients.

Remote Commands

76 / 131 Remote Commands | Uyuni 2020.09

Task Schedules
Under Admin › Task Schedules all predefined task bunches are listed.

Click a SUSE Manager Schedules › Schedule name to open its Schedule Name › Basic Schedule
Details where you can disable it or change the frequency. Click [ Edit Schedule ] to update the schedule
with your settings. To delete a schedule, click [ Delete Schedule ] in the upper right-hand corner.

 Only disable or delete a schedule if you are absolutely certain this is necessary as
they are essential for Uyuni to work properly.

If you click a bunch name, a list of runs of that bunch type and their status will be displayed. Clicking the
start time links takes you back to the Schedule Name › Basic Schedule Details.

For example, the following predefined task bunches are scheduled by default and can be configured:

channel-repodata-default:

(Re)generates repository metadata files.

77 / 131 Task Schedules | Uyuni 2020.09

cleanup-data-default:

Cleans up stale package change log and monitoring time series data from the database.

clear-taskologs-default:

Clears task engine (taskomatic) history data older than a specified number of days, depending on the
job type, from the database.

cobbler-sync-default:

Synchronizes distribution and profile data from Uyuni to Cobbler. For more information, see [
Client-configuration › Cobbler ›].

compare-configs-default:

Compares configuration files as stored in configuration channels with the files stored on all
configuration-enabled servers. To review comparisons, click Systems tab and select the system of
interest. Go to Configuration › Compare Files. For more information, see reference:systems/system-
details/sd-configuration.pdf.

cve-server-channels-default:

Updates internal pre-computed CVE data that is used to display results on the Audit › CVE Audit
page. Search results in the Audit › CVE Audit page are updated to the last run of this schedule). For
more information, see [Reference › Audit ›].

daily-status-default:

Sends daily report e-mails to relevant addresses. To learn more about how to configure notifications
for specific users, see [Reference › Users ›].

errata-cache-default:

Updates internal patch cache database tables, which are used to look up packages that need updates
for each server. Also, this sends notification emails to users that might be interested in certain patches.
For more information about patches, see [Reference › Patches ›].

errata-queue-default:

Queues automatic updates (patches) for servers that are configured to receive them.

kickstart-cleanup-default:

Cleans up stale kickstart session data.

kickstartfile-sync-default:

Generates Cobbler files corresponding to Kickstart profiles created by the configuration wizard.

mgr-register-default:

Calls the mgr-register command, which synchronizes client registration data with NCC (new,
changed or deleted clients' data are forwarded).

mgr-sync-refresh-default:

78 / 131 Task Schedules | Uyuni 2020.09

reference:systems/system-details/sd-configuration.pdf#sd-config-compare-files
reference:systems/system-details/sd-configuration.pdf#sd-config-compare-files

The default time at which the start of synchronization with SUSE Customer Center (SCC) takes place
(mgr-sync-refresh).

minion-action-cleanup-default:

Deletes stale client action data from the file system. First it tries to complete any possibly unfinished
actions by looking up the corresponding results; these results are stored in the Salt job cache. An
unfinished action can occur if the server has missed the results of the action. For successfully
completed actions it removes artifacts such as executed script files.

package-cleanup-default:

Deletes stale package files from the file system.

reboot-action-cleanup-default:

Any reboot actions pending for more than six hours are marked as failed and associated data is
cleaned up in the database. For more information on scheduling reboot actions, see
reference:systems/system-details/sd-provisioning.pdf.

sandbox-cleanup-default:

Cleans up Sandbox configuration files and channels that are older than the sandbox_lifetime
configuration parameter (3 days by default). Sandbox files are those imported from systems or files
under development. For more information, see reference:systems/system-details/sd-configuration.pdf.

session-cleanup-default:

Cleans up stale Web interface sessions, typically data that is temporarily stored when a user logs in
and then closes the browser before logging out.

ssh-push-default:

Prompts clients to check in with Uyuni via SSH if they are configured with a SSH Push contact
method.

token-cleanup-default:

Deletes expired repository tokens that are used by Salt clients to download packages and metadata.

79 / 131 Task Schedules | Uyuni 2020.09

reference:systems/system-details/sd-provisioning.pdf#sd-power-management
reference:systems/system-details/sd-configuration.pdf#sd-config-add-files

Crash Reporting
Crash reporting is used to automatically monitor and report on traditional Red Hat clients that have
experienced a crash.

Clients that have crash reporting enabled report any crashes to the Uyuni Server. This allows you to see
what crashes have occurred, manage crash reports, and add custom notes to crashes from within the
Uyuni WebUI. You can also run reports on crashes.

 Crash reporting works only with traditional Red Hat clients. It does not work
with Salt clients, or with traditional clients running any other operating system.

Crash reporting requires the spacewalk-abrt package installed on the client you want to monitor. To
manage crash reports in the WebUI, navigate to Systems › Software Crashes.

Crash Notes
You can create custom notes for each crash report using the Uyuni WebUI. Navigate to Systems ›
Systems List and select the client that crashed. Navigate to the Software › Software Crashes tab to see a
list of all current crashes for the selected client. Click the crash to see more information, and navigate to
the Crash Notes tab to add or edit notes.

Organization Crash Configuration
You can manage crash reporting for your entire organization, turning the feature on or off, changing
whether crash files are uploaded, and setting a size limit for file upload sizes. Navigate to Admin ›
Organizations and select the organization you want to manage. Navigate to the Configuration tab
and change the settings as required. Click [ Update Organization ] to save the changes.

Reporting
Uyuni allows you to use the following crash-related reports with the spacewalk-report tool:

system-crash-count
system-crash-details

For more information about reports, see [Administration › Reports ›].

Managing Crash Reports with the API
Use these API calls to manage reported software crashes:

Crash Notes

80 / 131 Crash Notes | Uyuni 2020.09

system.crash.getLastReportDate()
system.crash.getUniqueCrashCount()
system.crash.getTotalCrashCount()
system.crash.listSystemCrashes()
system.crash.listSystemCrashFiles()
system.crash.deleteCrash()
system.crash.getCrashFileUrl()
system.crash.getCrashFile()

Use these API calls to manage notes on crashes:

system.crash.createCrashNote()
system.crash.deleteCrashNote()
system.crash.getCrashNotesForCrash()

Use these API calls to manage organization settings for crash reporting:

org.getCrashFileSizeLimit()
org.setCrashFileSizeLimit()
org.isCrashReportingEnabled()
org.setCrashReporting()
org.isCrashfileUploadEnabled()
org.setCrashfileUpload()

For more information about the API, see the latest API documentation available from
https://documentation.suse.com/suma.

Managing Crash Reports with the API

81 / 131 Managing Crash Reports with the API | Uyuni 2020.09

https://documentation.suse.com/suma

Maintenance Windows
The maintenance windows feature in Uyuni allows you to schedule actions to occur during a scheduled
maintenance window period. When you have created your maintenance window schedule, and applied it
to a client, you are prevented from executing some actions outside of the specified period.

Maintenance windows operate in a different way to system locking. System locks
are switched on or off as required, while maintenance windows define periods of
time when actions are allowed. Additionally, the allowed and restricted actions
differ. For more information about system locks, see [Client-configuration ›
System-locking ›].

Maintenance windows require both a calendar, and a schedule. The calendar defines the date and time of
your maintenance window events, including recurring events, and must be in ical format. The schedule
uses the events defined in the calendar to create the maintenance windows. You must create an ical file
for upload, or link to an ical file to create the calendar, before you can create the schedule.

When you have created the schedule, you can assign it to clients that are registered to the Uyuni Server.
Clients that have a maintenance schedule assigned cannot run restricted actions outside of maintenance
windows.

Restricted actions significantly modify the client, and could potentially cause the client to stop running.
Some examples of restricted actions are:

• Package installation

• Client upgrade

• Service pack migration

• Highstate application (for Salt clients)

Unrestricted actions are minor actions that are considered safe and are unlikely to cause problems on the
client. Some examples of unrestricted actions are:

• Package profile update

• Hardware refresh

• Subscribing to software channels

Before you begin, you must create an ical file for upload, or link to an ical file to create the calendar.
You can create ical files in your preferred calendaring tool, such as Microsoft Outlook, Google
Calendar, or KOrganizer.

Procedure: Uploading a New Maintenance Calendar

1. In the Uyuni WebUI, navigate to Schedule › Maintenance Windows › Calendars, and click
[ Create ].

82 / 131 Maintenance Windows | Uyuni 2020.09

2. In the Calendar Name section, type a name for your calendar.

3. Either provide a URL to your ical file, or upload the file directly.

4. Click [ Create Calendar ] to save your calendar.

Procedure: Creating a New Schedule

1. In the Uyuni WebUI, navigate to Schedule › Maintenance Windows › Schedules, and click
[ Create ].

2. In the Schedule Name section, type a name for your schedule.

3. OPTIONAL: If your ical file contains events that apply to more than one schedule, check Multi.

4. Select the calendar to assign to this schedule.

5. Click [ Create Schedule ] to save your schedule.

Procedure: Assigning a Schedule to a Client

1. In the Uyuni WebUI, navigate to Systems › Systems List, select the client to be assigned to a
schedule, locate the System Properties panel, and click [ Edit These Properties ].
Alternatively, you can assign clients through the system set manager by navigating to Systems ›
System Set Manager and using the Misc › Maintenance Windows tab.

2. In the Edit System Details page, locate the Maintenance Schedule field, and select the
name of the schedule to be assigned.

3. Click [ Update Properties ] to assign the maintenance schedule.

When you assign a new maintenance schedule to a client, it is possible that the
client might already have some restricted actions scheduled, and that these might
now conflict with the new maintenance schedule. If this occurs, the WebUI will
display an error and you will not be able to assign the schedule to the client. To
resolve this, check the [ Cancel affected actions ] option when you assign the
schedule. This will cancel any previously scheduled actions that conflict with the
new maintenance schedule.

When you have created your maintenance windows, you can schedule restricted actions, such as package
upgrades, to be performed during the maintenance window.

Procedure: Scheduling a Package Upgrade

1. In the Uyuni WebUI, navigate to Systems › System List, select the client you want to upgrade, and
go to the Software › Packages › Upgrade tab.

2. Select the package to upgrade from the list, and click [ Upgrade Packages ].

3. In the Maintenance Window field, select which maintenance window the client should use to
perform the upgrade.

4. Click [ Confirm ] to schedule the package upgrade.

83 / 131 Maintenance Windows | Uyuni 2020.09

Maintenance Schedule Types
When you create a calendar, it contains a number of events, which can be either one-time events, or
recurring events. Each event contains a summary field. If you want to create multiple maintenance
schedules for one calendar, you can specify events for each using the summary field.

For example, you might like to create a schedule for production servers, and a different schedule for
testing servers. In this case, you would specify SUMMARY: Production Servers on events for the
production servers, and SUMMARY: Testing Servers on events for the testing servers.

There are two types of schedule: single, or multi. If your calendar contains events that apply to more than
one schedule, then you must select multi, and ensure you name the schedule according to the summary
field you used in the calendar file.

Procedure: Creating a Multi Schedule

1. In the Uyuni WebUI, navigate to Schedule › Maintenance Windows › Schedules, and click
[ Create ].

2. In the Schedule Name section, type the name for your schedule. Ensure it matches the summary
field of the calendar.

3. Check the Multi option.

4. Select the calendar to assign to this schedule.

5. Click [ Create Schedule ] to save your schedule.

6. To create the next schedule, click [ Create ].

7. In the Schedule Name section, type the name for your second schedule. Ensure it matches the
summary field of the second calendar.

8. Check the Multi option.

9. Click [ Create Schedule ] to save your schedule.

10. Repeat for each schedule you need to create.

Maintenance Schedule Types

84 / 131 Maintenance Schedule Types | Uyuni 2020.09

Restricted and Unrestricted Actions
This sections contains a complete list of restricted and unrestricted actions.

Restricted actions significantly modify the client, and could potentially cause the client to stop running.
Restricted actions can only be run during a maintenance window. The restricted actions are:

• Package operations (for example, installing, updating, or removing packages)

• Patch updates

• Rebooting a client

• Rolling back transactions

• Configuration management changing tasks

• Applying a highstate (for Salt clients)

• Autoinstallation and reinstallation

• Remote commands

• Service pack migrations

• Cluster operations

For Salt clients, it is possible to run remote commands directly at any time by
navigating to Salt › Remote Commands. This applies whether or not the Salt
client is in a maintenance window. For more information about remote
commands, see [Administration › Actions ›].

Unrestricted actions are minor actions that are considered safe and are unlikely to cause problems on the
client. If an action is not restricted it is, by definition, unrestricted, and can be be run at any time.

Maintenance Window Tasks
If you work with scheduled maintenance windows, you might find it difficult to remember all the things
that you need to do before, during, and after that critical downtime of the Uyuni Server. Uyuni Server
related systems such as Inter-Server Synchronization Slave Servers or Uyuni Proxies are also affected and
have to be considered.

SUSE recommends you always keep your Uyuni infrastructure updated. That includes servers, proxies,
and build hosts. If you do not keep the Uyuni Server updated, you might not be able to update some parts
of your environment when you need to.

This section contains a checklist for your maintenance window, with links to further information on
performing each of the steps.

Restricted and Unrestricted Actions

85 / 131 Restricted and Unrestricted Actions | Uyuni 2020.09

Server

1. Apply the latest updates. See [Upgrade › Server-intro ›].

2. Upgrade to the latest service pack, if required.

3. Run spacewalk-service status and check whether all required services are up and running.

For information about database schema upgrades and PostgreSQL migrations, see [Upgrade › Db-intro
›].

You can install updates using your package manager. For information on using YaST, see
https://documentation.suse.com/sles/15-SP2/html/SLES-all/cha-onlineupdate-you.html. For information
on using zypper, see https://documentation.suse.com/sles/15-SP2/html/SLES-all/cha-sw-cl.html#sec-
zypper.

By default, several update channels are configured and enabled for the Uyuni Server. New and updated
packages will become available automatically.

Client Tools

When the server is updated consider to update some tools on the clients, too. Updating salt-minion,
zypper, and other related management package on clients is not a strict requirement, but it is a best
practice in general. For example, a maintenance update on the server might introduce a major new Salt
version. Then minions will continue to work but might experience problems later on. To avoid this always
update the salt-minion package when available. SUSE makes sure that salt-minion can always be
updated safely.

Inter-Server Synchronization Slave Server

If you are using an inter-server synchronization slave server, update it after the Uyuni Server update is
complete.

For more in inter-server synchronization, see [Administration › Iss ›].

Monitoring Server

If you are using a monitoring server for Prometheus, update it after the Uyuni Server update is complete.

For more information on monitoring, see [Administration › Monitoring ›].

Proxy

Proxies should be updated as soon as Uyuni Server updates are complete.

In general, running a proxy connected to a server on a different version is not supported. The only
exception is for the duration of updates where it is expected that the server is updated first, so the proxy
could run the previous version temporarily.

Maintenance Window Tasks

86 / 131 Maintenance Window Tasks | Uyuni 2020.09

https://documentation.suse.com/sles/15-SP2/html/SLES-all/cha-onlineupdate-you.html
https://documentation.suse.com/sles/15-SP2/html/SLES-all/cha-sw-cl.html#sec-zypper
https://documentation.suse.com/sles/15-SP2/html/SLES-all/cha-sw-cl.html#sec-zypper

Especially if you are migrating from version 4.0 to 4.1, upgrade the server first, then any proxy.

For more information, see [Upgrade › Proxy-intro ›].

Maintenance Window Tasks

87 / 131 Maintenance Window Tasks | Uyuni 2020.09

Backup and Restore
Back up your Uyuni installation regularly, to prevent data loss. Because Uyuni relies on a database as well
as the installed program and configurations, it is important to back up all components of your installation.
This chapter contains information on the files you need to back up, and introduces the smdba tool to
manage database backups. It also contains information about restoring from your backups in the case of a
system failure.

Backup Space Requirements

Regardless of the backup method you use, you must have available at least three
times the amount of space your current installation uses. Running out of space
can result in backups failing, so check this often.

Backing up Uyuni
The most comprehensive method for backing up your Uyuni installation is to back up the relevant files
and directories. This can save you time in administering your backup, and can be faster to reinstall and re-
synchronize in the case of failure. However, this method requires significant disk space and could take a
long time to perform the backup.

If you want to only back up the required files and directories, use the following
list. To make this process simpler, and more comprehensive, we recommend
backing up the entire /etc and /root directories, not just the ones specified
here. Some files only exist if you are actually using the related SUSE Manager
feature.

• /etc/cobbler/

• /etc/dhcp.conf

• /etc/fstab and any ISO mountpoints you require.

• /etc/rhn/

• /etc/salt

• /etc/sudoers

• /etc/sysconfig/rhn/

• /root/.gnupg/

• /root/.ssh

This file exists if you are using an SSH tunnel or SSH push. You will also need to have saved a copy
of the id-susemanager key.

• /root/ssl-build/

Backing up Uyuni

88 / 131 Backing up Uyuni | Uyuni 2020.09

• /srv/formula_metadata

• /srv/pillar

• /srv/salt

• /srv/susemanager

• /srv/tftpboot/

• /srv/www/cobbler

• /srv/www/htdocs/pub/

• /srv/www/os-images

• /var/cache/rhn

• /var/cache/salt

• /var/lib/cobbler/

• /var/lib/cobbler/templates/ (before version 4.0 it was /var/lib/rhn/kickstarts/)

• /var/lib/Kiwi

• /var/lib/rhn/

• /var/spacewalk/

• Plus any directories containing custom data such as scripts, Kickstart or AutoYaST profiles, and
custom RPMs.

You will also need to back up your database, which you can do with the smdba
tool. For more information about the smdba tool, see [Administration ›
Backup-restore ›].

Procedure: Restore from a Manual Backup

1. Re-install Uyuni. For more information about recovering from a backup, see [Administration ›
Backup-restore ›].

2. Re-synchronize your Uyuni repositories with the mgr-sync tool. For more information about the
mgr-sync tool, see [syncing.suse.mgr.repositories.scc].

3. You can choose to re-register your product, or skip the registration and SSL certificate generation
sections.

4. Re-install the /root/ssl-build/rhn-org-httpd-ssl-key-pair-MACHINE_NAME-VER-
REL.noarch.rpm package.

5. Schedule the re-creation of search indexes next time the rhn-search service is started:

rhn-search cleanindex

Backing up Uyuni

89 / 131 Backing up Uyuni | Uyuni 2020.09

This command produces only debug messages. It does not produce error messages.

6. Check whether you need to restore /var/spacewalk/packages/. If
/var/spacewalk/packages/ was not in your backup, you will need to restore it. If the source
repository is available, you can restore /var/spacewalk/packages/ with a complete channel
synchronization:

mgr-sync refresh --refresh-channels

Check the progress by running tail -f /var/log/rhn/reposync/
<CHANNEL_NAME>.log as root.

Administering the Database with smdba
The smdba tool is used for managing a local PostgreSQL database. It allows you to back up and restore
your database, and manage backups. It can also be used to check the status of your database, and perform
administration tasks, such as restarting.

The smdba tool works with local PostgreSQL databases only, it will not work with remotely accessed
databases, or Oracle databases.

The smdba tool requires sudo access, to execute system changes. Ensure you
have enabled sudo access for the admin user before you begin, by checking the
/etc/sudoers file for this line:

admin ALL=(postgres) /usr/bin/smdba

Check the runtime status of your database with:

smdba db-status

This command will return either online or offline, for example:

Checking database core... online

Starting and stopping the database can be performed with:

smdba db-start

And:

Administering the Database with smdba

90 / 131 Administering the Database with smdba | Uyuni 2020.09

smdba db-stop

Database Backup with smdba
The smdba tool performs a continuous archiving backup. This backup method combines a log of every
change made to the database during the current session, with a series of more traditional backup files.
When a crash occurs, the database state is first restored from the most recent backup file on disk, then the
log of the current session is replayed exactly, to bring the database back to a current state. A continuous
archiving backup with smdba is performed with the database running, so there is no need for downtime.

This method of backing up is stable and generally creates consistent snapshots, however it can take up a
lot of storage space. Ensure you have at least three times the current database size of space available for
backups. You can check your current database size by navigating to /var/lib/pgsql/ and running df
-h.

The smdba tool also manages your archives, keeping only the most recent backup, and the current archive
of logs. The log files can only be a maximum file size of 16 MB, so a new log file will be created when
the files reach this size. Every time you create a new backup, previous backups will be purged to release
disk space. We recommend you use cron to schedule your smdba backups to ensure that your storage is
managed effectively, and you always have a backup ready in case of failure.

Performing a Manual Database Backup

The smdba tool can be run directly from the command line. We recommend you run a manual database
backup immediately after installation, or if you have made any significant changes to your configuration.

When smdba is run for the first time, or if you have changed the location of the
backup, it will need to restart your database before performing the archive. This
will result in a small amount of downtime. Regular database backups will not
require any downtime.

Procedure: Performing a Manual Database Backup

1. Allocate permanent storage space for your backup. This example uses a directory located at
/var/spacewalk/. This will become a permanent target for your backup, so ensure it will remain
accessible by your server at all times.

2. In your backup location, create a directory for the backup:

sudo -u postgres mkdir /var/spacewalk/db-backup

Or, as root:

install -d -o postgres -g postgres -m 700 /var/spacewalk/db-backup

Database Backup with smdba

91 / 131 Database Backup with smdba | Uyuni 2020.09

3. Ensure you have the correct permissions set on the backup location:

chown postgres:postgres /var/spacewalk/db-backup

4. To create a backup for the first time, run the smdba backup-hot command with the enable
option set. This will create the backup in the specified directory, and, if necessary, restart the
database:

smdba backup-hot --enable=on --backup-dir=/var/spacewalk/db-backup

This command produces debug messages and finishes sucessfully with the output:

INFO: Finished

5. Check that the backup files exist in the /var/spacewalk/db-backup directory, to ensure that
your backup has been successful.

Scheduling Automatic Backups

You do not need to shut down your system to perform a database backup with smdba. However, because
it is a large operation, database performance can slow down while the backup is running. We recommend
you schedule regular database backups for a low-traffic period, to minimize disruption.

Ensure you have at least three times the current database size of space available
for backups. You can check your current database size by navigating to
/var/lib/pgsql/ and running df -h.

Procedure: Scheduling Automatic Backups

1. Create a directory for the backup, and set the appropriate permissions (as root):

install -m 700 -o postgres -g postgres /var/spacewalk/db-backup

2. Open /etc/cron.d/db-backup-mgr, or create it if it does not exist, and add the following line
to create the cron job:

0 2 * * * root /usr/bin/smdba backup-hot --enable=on --backup-dir=/var/spacewalk/db
-backup

3. Check the backup directory regularly to ensure the backups are working as expected.

Database Backup with smdba

92 / 131 Database Backup with smdba | Uyuni 2020.09

Restoring from Backup
The smdba tool can be used to restore from backup in the case of failure.

Procedure: Restoring from Backup

1. Shut down the database:

smdba db-stop

2. Start the restore process and wait for it to complete:

smdba backup-restore start

3. Restart the database:

smdba db-start

4. Check if there are differences between the RPMs and the database.

spacewalk-data-fsck

Archive Log Settings
Archive logging allows the database management tool smdba to perform hot backups. In Uyuni with an
embedded database, archive logging is enabled by default.

PostgreSQL maintains a limited number of archive logs. Using the default configuration, approximately
64 files with a size of 16 MiB are stored.

Creating a user and syncing the channels:

• SLES12-SP2-Pool-x86_64

• SLES12-SP2-Updates-x86_64

• SLE-Manager-Tools12-Pool-x86_64-SP2

• SLE-Manager-Tools12-Updates-x86_64-SP2

PostgreSQL will generate an additional roughly 1 GB of data. So it is important to think about a backup
strategy and create a backups in a regular way.

Archive logs are stored at /var/lib/pgsql/data/pg_xlog/ (postgresql).

Restoring from Backup

93 / 131 Restoring from Backup | Uyuni 2020.09

Retrieving an Overview of Occupied Database Space
Database administrators may use the subcommand space-overview to get a report about occupied
table spaces, for example:

smdba space-overview

outputs:

SUSE Manager Database Control. Version 1.5.2
Copyright (c) 2012 by SUSE Linux Products GmbH

Tablespace | Size (Mb) | Avail (Mb) | Use %
------------+-----------+------------+------
postgres | 7 | 49168 | 0.013
susemanager | 776 | 48399 | 1.602

The smdba command is available for PostgreSQL. For a more detailed report, use the space-tables
subcommand. It lists the table and its size, for example:

smdba space-tables

outputs:

SUSE Manager Database Control. Version 1.5.2
Copyright (c) 2012 by SUSE Linux Products GmbH

Table | Size
--------------------------------------+-----------
public.all_primary_keys | 0 bytes
public.all_tab_columns | 0 bytes
public.allserverkeywordsincereboot | 0 bytes
public.dblink_pkey_results | 0 bytes
public.dual | 8192 bytes
public.evr_t | 0 bytes
public.log | 32 kB
...

Moving the Database
It is possible to move the database to another location. For example, move the database if the database
storage space is running low. The following procedure will guide you through moving the database to a
new location for use by Uyuni.

Procedure: Moving the Database

1. The default storage location for Uyuni is /var/lib/pgsql/. If you would like to move it, for
example to /storage/postgres/, proceed as follows.

Retrieving an Overview of Occupied Database Space

94 / 131 Retrieving an Overview of Occupied Database Space | Uyuni 2020.09

2. Stop the running database with (as root):

rcpostgresql stop

Shut down the running Spacewalk services with:

spacewalk-service stop

3. Copy the current working directory structure with cp using the -a, --archive option. For
example:

cp --archive /var/lib/pgsql/ /storage/postgres/

This command will copy the contents of /var/lib/pgsql/ to /storage/postgres/pgsql/.

The contents of the /var/lib/pgsql directory needs to remain the same,
otherwise the Uyuni database may malfunction. You also should ensure that
there is enough available disk space.

4. Mount the new database directory with:

mount /storage/postgres/pgsql

5. Make sure ownership is postgres:postgres and not root:root by changing to the new
directory and running the following commands:

cd /storage/postgres/pgsql/
ls -l

Outputs:

total 8
drwxr-x--- 4 postgres postgres 47 Jun 2 14:35 ./

6. Add the new database mount location to your servers fstab by editing etc/fstab.

7. Start the database with:

rcpostgresql start

8. Start the Spacewalk services with:

Moving the Database

95 / 131 Moving the Database | Uyuni 2020.09

spacewalk-service start

Recovering from a Crashed Root Partition
This section provides guidance on restoring your server after its root partition has crashed. This section
assumes you have setup your server similar to the procedure explained in Installation guide with separate
partitions for the database and for channels mounted at /var/lib/pgsql and /var/spacewalk/.

Procedure: Recovering from a Crashed Root Partition

1. Install Uyuni. Do not mount the /var/spacewalk and /var/lib/pgsql partitions. Wait for the
installation to complete before going on to the next step.

2. Shut down the services with spacewalk-service shutdown.

3. Shut down the database with rcpostgresql stop.

4. Mount /var/spacewalk and /var/lib/pgsql partitions.

5. Restore the directories listed in Backing up Uyuni.

6. Start the Spacewalk services with spacewalk-services start.

7. Start the database with rcpostgresql start.

Uyuni should now operate normally without loss of your database or synced channels.

Database Connection Information
The information for connecting to the Uyuni database is located in /etc/rhn/rhn.conf:

db_backend = postgresql
db_user = susemanager
db_password = susemanager
db_name = susemanager
db_host = localhost
db_port = 5432
db_ssl_enabled =

Recovering from a Crashed Root Partition

96 / 131 Recovering from a Crashed Root Partition | Uyuni 2020.09

Managing Disk Space
Running out of disk space can have a severe impact on the Uyuni database and file structure which, in
some cases, is not recoverable.

Uyuni monitors some directories for free disk space. You can modify which directories are monitored,
and the warnings that are created. All settings are configured in the /etc/rhn/rhn.conf configuration
file.

Monitored Directories
By default, Uyuni monitors these directories:

• /var/lib/pgsql

• /var/spacewalk

• /var/cache

• /srv

You can change which directories are monitored with the spacecheck_dirs parameter. You can
specify multiple directories by separating them with a space.

For example:

spacecheck_dirs = /var/lib/pgsql /var/spacewalk /var/cache /srv

Thresholds
By default, Uyuni will create a warning mail when a monitored directory has less than 10% of total space
available. A critical alert is created when a monitored directory falls below 5% space available.

You can change these alert thresholds with the spacecheck_free_alert and
spacecheck_free_critical parameters.

For example:

spacecheck_free_alert = 10
spacecheck_free_critical = 5

Shut Down Services
By default, Uyuni will shut down the spacewalk services when the critical alert threshold is reached.

You can change this behavior with the spacecheck_shutdown parameter. A value of true will enable

Monitored Directories

97 / 131 Monitored Directories | Uyuni 2020.09

the shut down feature. Any other value will disable it.

For example:

spacecheck_shutdown = true

Disable Space Checking
The space checking tool is enabled by default. You can disable it entirely with these commands:

systemctl stop spacewalk-diskcheck.timer
systemctl disable spacewalk-diskcheck.timer

Disable Space Checking

98 / 131 Disable Space Checking | Uyuni 2020.09

Using mgr-sync
The mgr-sync tool is used at the command prompt. It provides functions for using Uyuni that are not
always available in the WebUI. The primary use of mgr-sync is to connect to the SUSE Customer
Center, retrieve product and package information, and prepare channels for synchronization with the
Uyuni Server.

This tool is designed for use with a SUSE support subscription. It is not required for open source
distributions, including openSUSE, CentOS, and Ubuntu.

The available commands and arguments for mgr-sync are listed in this table. Use this syntax for mgr-
sync commands:

mgr-sync [-h] [--version] [-v] [-s] [-d {1,2,3}] {list,add,refresh,delete}

Table 1. mgr-sync Commands

Command Description Example Use

list List channels, organization
credentials, or products

mgr-sync list channels

add Add channels, organization
credentials, or products

mgr-sync add channel
<channel_name>

refresh Refresh the local copy of
products, channels, and
subscriptions

mgr-sync refresh

delete Delete existing SCC organization
credentials from the local system

mgr-sync delete
credentials

sync Synchronize specified channel or
ask for it when left blank

mgr-sync sync channel
<channel_name>

To see the full list of options specific to a command, use this command:

mgr-sync <command> --help

Table 2. mgr-sync Optional Arguments

Option Abbreviated option Description Example Use

help h Display the command
usage and options

mgr-sync --help

version N/A Display the currently
installed version of mgr-
sync

mgr-sync --version

99 / 131 Using mgr-sync | Uyuni 2020.09

Option Abbreviated option Description Example Use

verbose v Provide verbose output mgr-sync --verbose
refresh

store-credentials s Store credentials a local
hidden file

mgr-sync --store
-credentials

debug d Log additional
debugging information.
Requires a level of 1, 2,
3. 3 provides the highest
amnount of debugging
information

mgr-sync -d 3
refresh

no-sync N/A Use with the add
command to add
products or channels
without beginning a
synchronization

mgr-sync --no-sync
add <channel_name>

Logs for mgr-sync are located in:

• /var/log/rhn/mgr-sync.log

• /var/log/rhn/rhn_web_api.log

100 / 131 Using mgr-sync | Uyuni 2020.09

Security
Set up a Client to Master Validation Fingerprint
In highly secure network configurations you may wish to ensure your Salt clients are connecting a specific
master. To set up validation from client to master enter the master’s fingerprint within the
/etc/salt/minion configuration file.

See the following procedure:

1. On the master, at the command prompt, as root, use this command to find the master.pub
fingerprint:

salt-key -F master

On your client, open the /etc/salt/minion configuration file. Uncomment the following line
and enter the master’s fingerprint replacing the example fingerprint:

master_finger: 'ba:30:65:2a:d6:9e:20:4f:d8:b2:f3:a7:d4:65:11:13'

2. Restart the salt-minion service:

systemctl restart salt-minion

For information on configuring security from a client, see https://docs.saltstack.com/en/latest/ref/
configuration/minion.html.

Signing Repository Metadata
You will require a custom GPG key to be able to sign repository metadata.

Procedure: Generating a Custom GPG Key

1. As the root user, use the gpg command to generate a new key:

gpg --gen-key

2. At the prompts, select RSA as the key type, with a size of 2048 bits, and select an appropriate expiry
date for your key. Check the details for your new key, and type y to confirm.

3. At the prompts, enter a name and email address to be associated with your key. You can also add a
comment to help you identify the key, if desired. When you are happy with the user identity, type O
to confirm.

Set up a Client to Master Validation Fingerprint

101 / 131 Set up a Client to Master Validation Fingerprint | Uyuni 2020.09

https://docs.saltstack.com/en/latest/ref/configuration/minion.html
https://docs.saltstack.com/en/latest/ref/configuration/minion.html

4. At the prompt, enter a passphrase to protect your key.

5. The key should be automatically added to your keyring. You can check by listing the keys in your
keyring:

gpg --list-keys

6. Add the password for your keyring to the /etc/rhn/signing.conf configuration file, by
opening the file in your text editor and adding this line:

GPGPASS="password"

You can manage metadata signing on the command line using the mgr-sign-metadata-ctl
command.

Procedure: Enabling Metadata Signing

1. You will need to know the short identifier for the key to use. You can list your available public keys
in short format:

gpg --keyid-format short --list-keys
...
pub rsa2048/3E7BFE0A 2019-04-02 [SC] [expires: 2021-04-01]
 A43F9EC645ED838ED3014B035CFA51BF3E7BFE0A
uid [ultimate] SUSE Manager
sub rsa2048/118DE7FF 2019-04-02 [E] [expires: 2021-04-01]

2. Enable metadata signing with the mgr-sign-metadata-ctl command:

mgr-sign-metadata-ctl enable 3E7BFE0A
OK. Found key 3E7BFE0A in keyring.
DONE. Set key 3E7BFE0A in /etc/rhn/signing.conf.
DONE. Enabled metadata signing in /etc/rhn/rhn.conf.
DONE. Exported key 4E2C3DD8 to /srv/susemanager/salt/gpg/mgr-keyring.gpg.
DONE. Exported key 4E2C3DD8 to /srv/www/htdocs/pub/mgr-gpg-pub.key.
NOTE. For the changes to become effective run:
 mgr-sign-metadata-ctl regen-metadata

3. You can check that your configuration is correct with this command:

mgr-sign-metadata-ctl check-config

4. Restart the services and schedule metadata regeneration to pick up the changes:

mgr-sign-metadata-ctl regen-metadata

Signing Repository Metadata

102 / 131 Signing Repository Metadata | Uyuni 2020.09

You can also use the mgr-sign-metadata-ctl command to perform other tasks. Use mgr-sign-
metadata-ctl --help to see the complete list.

Repository metadata signing is a global option. When it is enabled, it is enabled on all software channels
on the server. This means that all clients connected to the server will need to trust the new GPG key to be
able to install or update packages.

Procedure: Importing GPG keys on Clients

1. For RPM-based client systems, use these remote commands:

rpm --import http://server.example.com/pub/mgr-gpg-pub.key

2. For Ubuntu clients, you will need to reassign the channels, which will automatically pick up the new
GPG key. You can do this through the Uyuni WebUI, or from the command line on the server with
this command:

salt <ubuntu-client> state.apply channels

3. OPTIONAL: For Salt clients, you might prefer to use a state to manage your GPG keys.

Mirror Source Packages
If you build your own packages locally, or if you require the source code for your packages for legal
reasons, it is possible to mirror the source packages on Uyuni Server.

 Mirroring source packages can consume a significant amount of disk space.

Procedure: Mirroring Source Packages

1. Open the /etc/rhn/rhn.conf configuration file, and add this line:

server.sync_source_packages = 1

2. Restart the Spacewalk service to pick up the changes:

spacewalk-service restart

Currently, this feature can only be enabled globally for all repositories. It is not possible to select
individual repositories for mirroring.

When this feature has been activated, the source packages will become available in the Uyuni WebUI
after the next repository synchronization. They will be shown as sources for the binary package, and can
be downloaded directly from the WebUI. Source packages cannot be installed on clients using the
WebUI.

Mirror Source Packages

103 / 131 Mirror Source Packages | Uyuni 2020.09

System Security with OpenSCAP
Uyuni uses OpenSCAP to audit clients. It allows you to schedule and view compliance scans for any
client.

 OpenSCAP auditing is not available on Salt SSH clients.

To use openSCAP, you will need the spacewalk-oscap package installed on the clients you want to
audit.

About SCAP

The Security Certification and Authorization Package (SCAP) is a standardized compliance checking
solution for enterprise-level Linux infrastructures. It is a line of specifications maintained by the National
Institute of Standards and Technology (NIST) for maintaining system security for enterprise systems.

SCAP was created to provide a standardized approach to maintaining system security, and the standards
that are used will therefore continually change to meet the needs of the community and enterprise
businesses. New specifications are governed by NIST’s SCAP Release cycle to provide a consistent and
repeatable revision work flow. For more information, see http://scap.nist.gov/timeline.html.

Uyuni uses OpenSCAP to implement the SCAP specifications. OpenSCAP is an auditing tool that utilizes
the Extensible Configuration Checklist Description Format (XCCDF). XCCDF is a standard way of
expressing checklist content and defines security checklists. It also combines with other specifications
such as Common Platform Enumeration (CPE), Common Configuration Enumeration (CCE), and Open
Vulnerability and Assessment Language (OVAL), to create a SCAP-expressed checklist that can be
processed by SCAP-validated products.

OpenSCAP verifies the presence of patches by using content produced by the SUSE Security Team.
OpenSCAP checks system security configuration settings and examines systems for signs of compromise
by using rules based on standards and specifications. For more information about the SUSE Security
Team, see https://www.suse.com/support/security.

Prepare Clients for an SCAP Scan

Before you begin, you need to prepare your client systems for SCAP scanning. Ensure clients have the
openscap-content and openscap-utils packages installed before you begin.

Use this command to determine the location of the appropriate SCAP files. Take a note of these paths for
performing the scan:

+

rpm -ql openscap-content

+ The output should include these files:

System Security with OpenSCAP

104 / 131 System Security with OpenSCAP | Uyuni 2020.09

http://scap.nist.gov/timeline.html
https://www.suse.com/support/security

+

/usr/share/openscap/scap-oval.xml
/usr/share/openscap/scap-xccdf.xml
/usr/share/openscap/scap-yast2sec-oval.xml
/usr/share/openscap/scap-yast2sec-xccdf.xml

OpenSCAP Content Files

OpenSCAP uses SCAP content files to define test rules. These content files are created based on the
XCCDF or OVAL standards. You can download publicly available content files and customize it to your
requirements. You can install the openscap-content package for default content file templates.
Alternatively, if you are familiar with XCCDF or OVAL, you can create your own content files.

We recommend you use templates to create your SCAP content files. If you
create and use your own custom content files, you do so at your own risk. If your
system becomes damaged through the use of custom content files, you might not
be supported by SUSE.

When you have created your content files, you need to transfer the file to the client. You can do this in
the same way as you move any other file, using physical storage media, or across a network with ftp or
scp.

We recommend that you create a package to distribute content files to clients that you are managing with
Uyuni. Packages can be signed and verified to ensure their integrity. For more information, see [
Administration › Custom-channels ›].

Perform an Audit Scan

When you have transferred your content files, you can perform audit scans. Audit scans can be triggered
using the Uyuni WebUI. You can also use the Uyuni API to schedule regular scans.

Procedure: Running an Audit Scan from the WebUI

1. In the Uyuni WebUI, navigate to Systems › Systems List and select the client you want to scan.

2. Navigate to the Audit tab, and the Schedule subtab.

3. In the Path to XCCDF Document field, enter the path to the XCCDF content file on the client.
For example: /usr/share/openscap/scap-yast2sec-xccdf.xml

4. The scan will run at the client’s next scheduled synchronization.

The XCCDF content file is validated before it is run on the remote system. If the content file
includes invalid arguments, the test will fail.

Procedure: Running an Audit Scan from the API

System Security with OpenSCAP

105 / 131 System Security with OpenSCAP | Uyuni 2020.09

1. Before you begin, ensure that the client to be scanned has Python and XML-RPC libraries installed.

2. Choose an existing script or create a script for scheduling a system scan through
system.scap.scheduleXccdfScan. For example:

#!/usr/bin/python
client = xmlrpclib.Server('https://spacewalk.example.com/rpc/api')
key = client.auth.login('username', 'password')
client.system.scap.scheduleXccdfScan(key, <1000010001>,
 '<path_to_xccdf_file.xml>',
 '--profile <profile_name>')

In this example: * <1000010001> is the system ID (sid). * <path_to_xccdf_file.xml> is the
path to the content file location on the client. For example, /usr/local/share/scap/usgcb-
sled15desktop-xccdf.xml. * <profile_name> is an additional argument for the oscap
command. For example, use united_states_government_configuration_baseline
(USGCB).

3. Run the script on the client you want to scan, from the command prompt.

Scan Results

Information about the scans you have run is in the Uyuni WebUI. Navigate to to Audit › OpenSCAP ›
All Scans for a table of results. For more information about the data in this table, see [Reference › Audit
›].

To ensure that detailed information about scans is available, you need to enable it on the client. In the
Uyuni WebUI, navigate to Admin › Organizations and click on the organization the client is a part of.
Navigate to the Configuration tab, and check the Enable Upload of Detailed SCAP Files
option. When enabled, this generates an additional HTML file on every scan, which contains extra
information. The results will show an extra line similar to this:

Detailed Results: xccdf-report.html xccdf-results.xml scap-yast2sec-oval.xml.result.xml

To retrieve scan information from the command line, use the spacewalk-report command:

spacewalk-report system-history-scap
spacewalk-report scap-scan
spacewalk-report scap-scan-results

You can also use the Uyuni API to view results, with the system.scap handler.

Auditing
In Uyuni, you can keep track of your clients through a series of auditing tasks. You can check that your
clients are up to date with all public security patches (CVEs), perform subscription matching, and use

Auditing

106 / 131 Auditing | Uyuni 2020.09

OpenSCAP to check for specification compliance.

In the Uyuni WebUI, navigate to Audit to perform auditing tasks.

CVE Audits

A CVE (common vulnerabilities and exposures) is a fix for a publicly known security vulnerability.

 You must apply CVEs to your clients as soon as they become available.

Each CVE contains an identification number, a description of the vulnerability, and links to further
information. CVE identification numbers use the form CVE-YEAR-XXXX.

In the Uyuni WebUI, navigate to Audit › CVE Audit to see a list of all clients and their current patch
status.

By default, the CVE data is updated at 2300 every day. We recommend that before you begin a CVE
audit you refresh the data to ensure you have the latest patches.

Procedure: Updating CVE Data

1. In the Uyuni WebUI, navigate to Admin › Task Schedules and select the cve-server-
channels-default schedule.

2. Click [ cve-server-channels-bunch ].

3. Click [ Single Run Schedule ] to schedule the task. Allow the task to complete before continuing
with the CVE audit.

Procedure: Verifying Patch Status

1. In the Uyuni WebUI, navigate to Audit › CVE Audit.

2. OPTIONAL: To check the patch status for a particular CVE, type the CVE identifier in the CVE
Number field.

3. Select the patch statuses you want to look for, or leave all statuses checked to look for all.

4. Click [ Audit Servers ] to check all systems, or click [ Audit Images ] to check all images.

For more information about the patch status icons used on this page, see [Reference › Audit ›].

For each system, the Next Action column provides information about what you need to do to address
vulnerabilities. If applicable, a list of candidate channels or patches is also given. You can also assign
systems to a System Set for further batch processing.

You can use the Uyuni API to verify the patch status of your clients. Use the
audit.listSystemsByPatchStatus API method. For more information about this method, see the
Uyuni API Guide.

Auditing

107 / 131 Auditing | Uyuni 2020.09

CVE Status

The CVE status of clients is usually either affected, not affected, or patched. These statuses are
based only on the information that is available to Uyuni.

Within Uyuni, these definitions apply:

System affected by a certain vulnerability

A system which has an installed package with version lower than the version of the same package in a
relevant patch marked for the vulnerability.

System not affected by a certain vulnerability

A system which has no installed package that is also in a relevant patch marked for the vulnerability.

System patched for a certain vulnerability

A system which has an installed package with version equal to or greater than the version of the same
package in a relevant patch marked for the vulnerability.

Relevant patch

A patch known by Uyuni in a relevant channel.

Relevant channel

A channel managed by Uyuni, which is either assigned to the system, the original of a cloned channel
which is assigned to the system, a channel linked to a product which is installed on the system or a
past or future service pack channel for the system.

Because of the definitions used within Uyuni, CVE audit results might be
incorrect in some circumstances. For example, unmanaged channels, unmanaged
packages, or non-compliant systems might report incorrectly.

Auditing

108 / 131 Auditing | Uyuni 2020.09

Generate Reports
The spacewalk-report command is used to produce a variety of reports. These reports can be helpful
for taking inventory of your subscribed systems, users, and organizations. Using reports is often simpler
than gathering information manually from the SUSE Manager WebUI, especially if you have many
systems under management.

To generate reports, you must have the spacewalk-reports package installed.

The spacewalk-report command allows you to organize and display reports about content, systems,
and user resources across Uyuni.

You can generate reports on:

1. System Inventory: list all the systems registered to Uyuni.

2. Patches: list all the patches relevant to the registered systems. You can sort patches by severity, as
well as the systems that apply to a particular patch.

3. Users: list all registered users and any systems associated with a particular user.

To get the report in CSV format, run this command at the command prompt on the server:

spacewalk-report <report_name>

This table lists the available reports:

Table 3. spacewalk-report Reports

Report Invoked as Description

Actions actions All actions.

Activation Keys activation-keys All activation keys, and the
entitlements, channels,
configuration channels, system
groups, and packages associated
with them.

Activation Keys: Channels activation-keys-channels All activation keys and the
entities associated with each key.

Activation Keys: Configuration activation-keys-config All activation keys and the
configuration channels associated
with each key.

Activation Keys: Server Groups activation-keys-groups All activation keys and the system
groups associated with each key.

Activation Keys: Packages activation-keys-packages All activation keys and the
packages each key can deploy.

109 / 131 Generate Reports | Uyuni 2020.09

Report Invoked as Description

Channel Packages channel-packages All packages in a channel.

Channel Report channels Detailed report of a given
channel.

Cloned Channel Report cloned-channels Detailed report of cloned
channels.

Configuration Files config-files All configuration file revisions for
all organizations, including file
contents and file information.

Latest Configuration Files config-files-latest The most recent configuration file
revisions for all organizations,
including file contents and file
information.

Custom Channels custom-channels Channel metadata for all channels
owned by specific organizations.

Custom Info custom-info Client custom information.

Patches in Channels errata-channels All patches in channels.

Patches Details errata-list All patches that affect registered
clients.

All patches errata-list-all All patches.

Patches for Clients errata-systems Applicable patches and any
registered clients that are affected.

Host Guests host-guests Host and guests mapping.

Inactive Clients inactive-systems Inactive clients.

System Inventory inventory Clients registered to the server,
together with hardware and
software information.

Kickstart Scripts kickstart-scripts All kickstart scripts, with details.

Kickstart Trees kickstartable-trees Kickstartable trees.

All Upgradable Versions packages-updates-all All newer package versions that
can be upgraded.

Newest Upgradable Version packages-updates-newest Newest package versions that can
be upgraded.

Proxy Overview proxies-overview All proxies and the clients
registered to each.

Repositories repositories All repositories, with their
associated SSL details, and any
filters.

110 / 131 Generate Reports | Uyuni 2020.09

Report Invoked as Description

Result of SCAP scap-scan Result of OpenSCAP sccdf
evaluations.

Result of SCAP scap-scan-results Result of OpenSCAP sccdf
evaluations, in a different format.

System Data splice-export Client data needed for splice
integration.

System Crash: Count system-crash-count The total number of client
crashes.

System Crash: Details system-crash-details Crash details for all clients.

System Currency system-currency Number of available patches for
each registered client.

System Extra Packages system-extra-packages All packages installed on all
clients that are not available from
channels the client is subscribed
to.

System Groups system-groups System groups.

Activation Keys for System
Groups

system-groups-keys Activation keys for system
groups.

Systems in System Groups system-groups-systems Clients in system groups.

System Groups Users system-groups-users System groups and users that
have permissions on them.

History: System system-history Event history for each client.

History: Channels system-history-channels Channel event history.

History: Configuration system-history-
configuration

Configuration event history.

History: Entitlements system-history-
entitlements

System entitlement event history.

History: Errata system-history-errata Errata event history.

History: Kickstart system-history-kickstart Kickstart event history.

History: Packages system-history-packages Package event history.

History: SCAP system-history-scap OpenSCAP event history.

MD5 Certificates system-md5-certificates All registered clients using
certificates with an MD5
checksum.

111 / 131 Generate Reports | Uyuni 2020.09

Report Invoked as Description

Installed Packages system-packages-
installed

Packages installed on clients.

System Profiles system-profiles All clients registered to the server,
with software and system group
information.

Users users All users registered to Uyuni.

MD5 Users users-md5 All users for all organizations
using MD5 encrypted passwords,
with their details and roles.

Systems administered users-systems Clients that individual users can
administer.

For more information about an individual report, run spacewalk-report with the option --info or
--list-fields-info and the report name. The description and list of possible fields in the report will
be shown.

For further information on program invocation and options, see the spacewalk-report(8) man page
as well as the --helpparameter of the spacewalk-report command.

112 / 131 Generate Reports | Uyuni 2020.09

Tuning Changelogs
Some packages have a long list of changelog entries. This data is downloaded by default, but it is not
always useful information to keep. In order to limit the amount of changelog metadata which is
downloaded and to save disk space, you can put a limit on how many entries to keep on disk.

This configuration option is in the /etc/rhn/rhn.conf configuration file. The parameter defaults to 0,
which means unlimited.

java.max_changelog_entries = 0

If you set this parameter, it will come into effect only for new packages when they are synchronized.

After changing this parameter, restart services with spacewalk-service restart.

You might like to delete and regenerate the cached data to remove older data.

Deleting and regenerating cached data can take a long time. Depending on the
number of channels you have and the amount of data to be deleted, it can
potentially take several hours. The task is run in the background by Taskomatic,
so you can continue to use Uyuni while the operation completes, however you
should expect some performance loss.

You can delete and request a regeneration of cached data from the command line:

spacewalk-sql -i

Then on the SQL database prompt, enter:

DELETE FROM rhnPackageRepodata;
INSERT INTO rhnRepoRegenQueue (id, CHANNEL_LABEL, REASON, FORCE)
(SELECT sequence_nextval('rhn_repo_regen_queue_id_seq'),
 C.label,
 'cached data regeneration',
 'Y'
 FROM rhnChannel C);
\q

113 / 131 Tuning Changelogs | Uyuni 2020.09

Troubleshooting
This section contains some common problems you might encounter with Uyuni, and solutions to
resolving them.

Troubleshooting Corrupt Repositories
The information in the repository metadata files can become corrupt or out of date. This can create
problems with updating clients. You can fix this by removing the files and regenerating it. With an new
repository data file, updates should operate as expected.

Procedure: Resolving Corrupt Repository Data

1. Remove all files from /var/cache/rhn/repodata/<channel-label>-updates-x86_64. If
you do not know the channel label, you can find it in the Uyuni WebUI, by navigating to Software ›
Channels › Channel Label.

2. Regenerate the file from the command line:

spacecmd softwarechannel_regenerateyumcache <channel-label>-updates-x86_64

Troubleshooting Disk Space
Running out of disk space can have a severe impact on the Uyuni database and file structure which, in
most cases, is not recoverable.

Uyuni monitors free space in specific directories, and has configurable alerts. For more on space
management, see [Administration › Space-management ›].

You can recover disk space by removing unused custom channels and redundant database entries before
you run out of space entirely.

For instructions on how to delete custom channels, see [Administration › Channel-management ›].

Procedure: Resolving redundant database entries

1. Use the spacewalk-data-fsck command to list any redundant database entries.

2. Use the spacewalk-data-fsck --remove command to delete them.

Troubleshooting Firewalls
If you are using a firewall that blocks outgoing traffic, it will either REJECT or DROP network requests. If
it is set to DROP then you might find that synchronizing with the SUSE Customer Center times out.

This occurs because the synchronization process needs to access third-party repositories that provide
packages for non-SUSE clients, and not just the SUSE Customer Center. When the Uyuni Server attempts

Troubleshooting Corrupt Repositories

114 / 131 Troubleshooting Corrupt Repositories | Uyuni 2020.09

to reach these repositories to check that they are valid, the firewall drops the requests, and the
synchronization continues to wait for the response until it times out.

If this occurs, you will notice that the synchronization will take a long time before it fails, and that your
non-SUSE products are not shown in the product list.

You can fix this problem in several different ways.

The simplest method is to configure your firewall to allow access to the URLs required by non-SUSE
repositories. This allows the synchronization process to reach the URLs and complete successfully.

If allowing external traffic is not possible, configure your firewall to REJECT requests from Uyuni instead
of DROP. This rejects requests to third-party URLs, so that the synchronization fails early rather than
times out, and the products are not shown in the list.

If you do not have configuration access to the firewall, you can consider setting up a separate firewall on
the Uyuni Server instead.

Troubleshooting Inactive clients
A Taskomatic job periodically pings clients to ensure they are connected. Clients are considered inactive
if they have not responded to a Taskomatic check in for 24 hours or more. To see a list of inactive clients
in the WebUI, navigate to Systems › System List › Inactive.

Clients can become inactive for a number of reasons:

• The client is not entitled to any Uyuni service. If the client remains unentitled for 180 days
(6 months), it is removed.

• On traditional clients, the rhnsd service has been disabled.

• The client is behind a firewall that does not allow HTTPS connections.

• The client is behind a proxy that is misconfigured.

• The client is communicating with a different Uyuni Server, or the connection has been
misconfigured.

• The client is not in a network that can communicate with the Uyuni Server.

• A firewall is blocking traffic between the client and the Uyuni Server.

• Taskomatic is misconfigured.

For more information about client connections to the server, see [Client-configuration › Contact-
methods-intro ›].

For more information about configuring ports, see [Installation › Ports ›].

For more information about troubleshooting firewalls, see [Administration › Tshoot-firewalls ›].

Troubleshooting Inactive clients

115 / 131 Troubleshooting Inactive clients | Uyuni 2020.09

Troubleshooting Local Issuer Certificates
Some older bootstrap scripts create a link to the local certificate in the wrong place. This results in zypper
returning an Unrecognized error about the local issuer certificate. You can ensure that the link to the
local issuer certificate has been created correctly by checking the /etc/ssl/certs/ directory. If you
come across this problem, you should consider updating your bootstrap scripts to ensure that zypper
operates as expected.

Troubleshooting Login Timeouts
By default, the Uyuni WebUI will require users to log in again after 30 minutes. Depending on your
environment, you might want to adjust the login timeout value.

To adjust the value, you will need to make the change in both rhn.conf and web.xml. Ensure you set
the value in seconds in /etc/rhn/rhn.conf, and in minutes in web.xml. The two values must equal
the same amount of time.

For example, to change the timeout value to one hour, set the value in rhn.conf to 3600 seconds, and
the value in web.xml to 60 minutes.

Procedure: Adjusting the WebUI Login Timeout Value

1. Stop services:

spacewalk-service stop

2. Open /etc/rhn/rhn.conf and add or edit this line to include the new timeout value in seconds:

web.session_database_lifetime = <Timeout_Value_in_Seconds>

3. Save and close the file.

4. Open /srv/tomcat/webapps/rhn/WEB-INF/web.xml and add or edit this line to include the
new timeout value in minutes:

<session-timeout>Timeout_Value_in_Minutes</session-timeout>

5. Save and close the file.

6. Restart services:

spacewalk-service start

Troubleshooting Local Issuer Certificates

116 / 131 Troubleshooting Local Issuer Certificates | Uyuni 2020.09

Troubleshooting Notifications
The default lifetime of notification messages is 30 days, after which messages are deleted from the
database, regardless of read status. To change this value, add or edit this line in /etc/rhn/rhn.conf:

java.notifications_lifetime = 30

All notification types are enabled by default. To disable a notification type, add or edit this line in
/etc/rhn/rhn.conf:

java.notifications_type_disabled = OnboardingFailed,ChannelSyncFailed,ChannelSyncFinished

Troubleshooting OSAD and jabberd
In some cases, the maximum number of files that jabber can open is lower than the number of connected
OSAD clients.

If this occurs, OSAD clients cannot contact the SUSE Manager Server, and jabberd will take an excessive
amount of time to respond on port 5222.

This fix is only required if you have more than 8192 clients connected using
OSAD. In this case, we recommend you consider using Salt clients instead. For
more information about tuning large scale installations, see [Salt › Large-scale
›].

You can increase the number of files available to jabber by editing the jabberd local configuration file. By
default, the file is located at /etc/systemd/system/jabberd.service.d/override.conf.

Procedure: Adjusting the Maximum File Count

1. At the command prompt, as root, open the local configuration file for editing:

systemctl edit jabberd

2. Add or edit this section:

[Service]
LimitNOFILE=<soft_limit>:<hard_limit>

The value you choose will vary depending on your environment. For example, if you have 9500
clients, increase the soft value by 100 to 9600, and the hard value by 1000 to 10500:

Troubleshooting Notifications

117 / 131 Troubleshooting Notifications | Uyuni 2020.09

[Unit]
LimitNOFILE=
LimitNOFILE=9600:10500

3. Save the file and exit the editor.

 The default editor for systemctl files is vim. To save the file and exit, press Esc
to enter normal mode, type :wq and press Enter.

Ensure you also update the max_fds parameter in /etc/jabberd/c2s.xml. For example:
<max_fds>10500</max_fds>

The soft file limit is the maximum number of open files for a single process. In Uyuni the highest
consuming process is c2s, which opens a connection per client. 100 additional files are added, here, to
accommodate for any non-connection file that c2s requires to work correctly. The hard limit applies to
all processes belonging to jabber, and also accounts for open files from the router, c2s and sm processes.

Troubleshooting Package Inconsistencies
When packages on a client are locked, Uyuni Server may not be able to correctly determine the set of
applicable patches. When this occurs, package updates will be available in the WebUI, but will not appear
on the client, and attempts to update the client will fail. Check package locks and exclude lists to
determine if packages are locked or excluded on the client.

On the client, check package locks and exclude lists to determine if packages are locked or excluded:

• On an Expanded Support Platform, check /etc/yum.conf and search for exclude=.

• On SUSE Linux Enterprise and openSUSE, use the zypper locks command.

Troubleshooting Registering Cloned Clients
If you are using Uyuni to manage virtual machines, you might find it useful to create clones of your VMs.
A clone is a VM that uses a primary disk that is an exact copy of an existing disk.

While cloning VMs can save you a lot of time, the duplicated identifying information on the disk can
sometimes cause problems.

If you have a client that is already registered, you create a clone of that client, and then try and register the
clone, you probably want Uyuni to register them as two separate clients. However, if the machine ID in
both the original client and the clone is the same, Uyuni will register both clients as one system, and the
existing client data will be over-written with that of the clone.

This can be resolved by changing the machine ID of the clone, so that Uyuni recognizes them as two
different clients.

Troubleshooting Package Inconsistencies

118 / 131 Troubleshooting Package Inconsistencies | Uyuni 2020.09

 Each step of this procedure is performed on the cloned client. This procedure
does not manipulate the original client, which will still be registered to Uyuni.

Procedure: Resolving Duplicate Machine IDs in Cloned Salt Clients

1. On the cloned machine, change the hostname and IP addresses. Make sure /etc/hosts contains
the changes you made and the correct host entries.

2. For distributions that support systemd: If your machines have the same machine ID, delete the file on
each duplicated client and re-create it:

rm /etc/machine-id
rm /var/lib/dbus/machine-id
dbus-uuidgen --ensure
systemd-machine-id-setup

3. For distributions that do not support systemd: Generate a machine ID from dbus:

rm /var/lib/dbus/machine-id
dbus-uuidgen --ensure

4. If your clients still have the same Salt client ID, delete the minion_id file on each client (FQDN
will be used when it is regenerated on client restart):

rm /etc/salt/minion_id

5. Delete accepted keys from the onboarding page and the system profile from Uyuni, and restart the
client with:

service salt-minion restart

6. Re-register the clients. Each client will now have a different /etc/machine-id and should be
correctly displayed on the System Overview page.

Procedure: Resolving Duplicate Machine IDs in Cloned Traditional Clients

1. On the cloned machine, change the hostname and IP addresses. Make sure /etc/hosts contains
the changes you made and the correct host entries.

2. Stop the rhnsd daemon, on Red Hat Enterprise Linux Server 6 and SUSE Linux Enterprise 11 with:

/etc/init.d/rhnsd stop

or, on newer systemd-based systems, with:

Troubleshooting Registering Cloned Clients

119 / 131 Troubleshooting Registering Cloned Clients | Uyuni 2020.09

service rhnsd stop

3. Stop osad with:

/etc/init.d/osad stop

or:

service osad stop

or:

rcosad stop

4. Remove the osad authentication configuration file and the system ID:

rm -f /etc/sysconfig/rhn/{osad-auth.conf,systemid}

5. Delete the files containing the machine IDs:

◦ SLES 12:

rm /etc/machine-id
rm /var/lib/dbus/machine-id
dbus-uuidgen --ensure
systemd-machine-id-setup

◦ SLES 11:

suse_register -E

6. Remove the credential files:

◦ SLES clients:

rm -f /etc/zypp/credentials.d/{SCCcredentials,NCCcredentials}

◦ Red Hat Enterprise Linux clients:

rm -f /etc/NCCcredentials

Troubleshooting Registering Cloned Clients

120 / 131 Troubleshooting Registering Cloned Clients | Uyuni 2020.09

7. Re-run the bootstrap script. You should now see the cloned system in Uyuni without overriding the
system it was cloned from.

Troubleshooting Renaming Uyuni Server
If you change the hostname of the Uyuni Server locally, your Uyuni installation will cease to work
properly. This is because the changes have not been made in the database, which prevents the changes
from propagating out your clients and any proxies.

If you need to change the hostname of the Uyuni Server, you can do so using the spacewalk-
hostname-rename script. This script updates the settings in the PostgreSQL database and the internal
structures of Uyuni.

The spacewalk-hostname-rename script is part of the spacewalk-utils package.

The only mandatory parameter for the script is the newly configured IP address of the Uyuni Server.

Procedure: Renaming Uyuni Server

1. Change the network settings of the server on the system level locally and remotely at the DNS server.
You will also need to provide configuration settings for reverse name resolution. Changing network
settings is done in the same way as with renaming any other system.

2. Reboot the Uyuni Server to use the new network configuration and to ensure the hostname has
changed.

3. Remove the old rhn-org-httpd-ssl-key-pair package:

zypper rm package rhn-org-httpd-ssl-key-pair

4. Run the script spacewalk-hostname-rename script with the public IP address of the server. If
the server is not using the new hostname, the script will fail.

5. Re-configure your clients to make your environment aware of the new hostname and IP address.

In the Salt minion configuration file /etc/salt/minion, you must make sure to specify the name
of the new Salt master (Uyuni Server):

master: <new_hostname>

Traditional clients have the /etc/sysconfig/rhn/up2date configuration file that must be
changed. With a re-activation key you can re-register traditional clients (if there are any). For more
information, see [Client-configuration › Registration-cli ›].

6. OPTIONAL: If you use PXE boot through a Uyuni Proxy, you must check the configuration settings
of the proxy. On the proxy, run the configure-tftpsync.sh setup script and enter the requested
information. For more information, see [Installation › Proxy-setup ›].

Troubleshooting Renaming Uyuni Server

121 / 131 Troubleshooting Renaming Uyuni Server | Uyuni 2020.09

Troubleshooting RPC Connection Timeouts
RPC connections can sometimes time out due to slow networks or a network link going down. This
results in package downloads or batch jobs hanging or taking longer than expected. You can adjust the
maximum time that an RPC connection can take by editing the configuration file. While this will not
resolve networking problems, it will cause a process to fail rather than hang.

Procedure: Resolving RPC connection timeouts

1. On the Uyuni Server, open the /etc/rhn/rhn.conf file and set a maximum timeout value (in
seconds):

server.timeout =`number`

2. On the Uyuni Proxy, open the /etc/rhn/rhn.conf file and set a maximum timeout value (in
seconds):

proxy.timeout =`number`

3. On a SUSE Linux Enterprise Server client that uses zypper, open the /etc/zypp/zypp.conf file
and set a maximum timeout value (in seconds):

Valid values: [0,3600]
Default value: 180
download.transfer_timeout = 180

4. On a Red Hat Enterprise Linux client that uses yum, open the /etc/yum.conf file and set a
maximum timeout value (in seconds):

timeout =`number`

 If you limit RPC timeouts to less than 180 seconds, you risk aborting perfectly
normal operations.

Troubleshooting the Saltboot Formula
Because of a problem in the computed partition size value, the saltboot formula can sometimes fail when
it is created on SLE 11 SP3 clients, with an error like this:

Troubleshooting RPC Connection Timeouts

122 / 131 Troubleshooting RPC Connection Timeouts | Uyuni 2020.09

 ID: disk1_partitioned
 Function: saltboot.partitioned
 Name: disk1
 Result: false
 Comment: An exception occurred in this state: Traceback (most recent call last):
 File "/usr/lib/python2.6/site-packages/salt/state.py", line 1767, in call
 **cdata['kwargs'])
 File "/usr/lib/python2.6/site-packages/salt/loader.py", line 1705, in wrapper
 return f(*args, **kwargs)
 File "/var/cache/salt/minion/extmods/states/saltboot.py", line 393, in disk_partitioned
 existing = __salt__['partition.list'](device, unit='MiB')
 File "/usr/lib/python2.6/site-packages/salt/modules/parted.py", line 177, in list_
 'Problem encountered while parsing output from parted')
CommandExecutionError: Problem encountered while parsing output from parted

This problem can be resolved by manually configuring the size of the partition containing the operating
system. When the size is set correctly, formula creation will work as expected.

Procedure: Manually Configuring the Partition Size in the Saltboot Formula

1. In the Uyuni WebUI, navigate to Systems › System Groups and select the Hardware Type
Group that contains the SLE 11 SP3 client that is causing the error. In the Formulas tab, navigate
to the Saltboot subtab.

2. Locate the partition that contains the operating system, and in the Partition Size field, type the
appropriate size (in MiB).

3. Click [ Save Formula ], and apply the highstate to save your changes.

Troubleshooting Package Synchronization
Uyuni does not automatically trust third party GPG keys. If package synchronization fails, it could be
because of an untrusted GPG key. You can find out if this is the case by opening
/var/log/rhn/reposync and looking for an error like this:

['/usr/bin/spacewalk-repo-sync', '--channel', 'sle-12-sp1-ga-desktop-
nvidia-driver-x86_64', '--type', 'yum', '--non-interactive']
ChannelException: The GPG key for this repository is not part of the keyring.
Please run spacewalk-repo-sync in interactive mode to import it.

To resolve the problem, you need to import the GPG key to Uyuni. For more on importing GPG keys, see
[Administration › Repo-metadata ›].

Troubleshooting Taskomatic
Repository metadata regeneration is a relatively intensive process, so Taskomatic can take several minutes
to complete. Additionally, if Taskomatic crashes, repository metadata regeneration can be interrupted.

If Taskomatic is still running, or if the process has crashed, package updates can seem available in the
WebUI, but will not appear on the client, and attempts to update the client will fail. In this case, the
zypper ref command will show an error like this:

Troubleshooting Package Synchronization

123 / 131 Troubleshooting Package Synchronization | Uyuni 2020.09

Valid metadata not found at specified URL

To correct this, determine if Taskomatic is still in the process of generating repository metadata, or if a
crash could have occurred. Wait for metadata regeneration to complete or restart Taskomatic after a crash
in order for client updates to be carried out correctly.

Procedure: Resolving Taskomatic Problems

1. On the Uyuni Server, check the /var/log/rhn/rhn_taskomatic_daemon.log file to
determine if any metadata regeneration processes are still running, or if a crash occurred.

2. Restart taskomatic:

service taskomatic restart

In the Taskomatic log files, you can identify the section related to metadata regeneration by looking for
opening and closing lines that look like this:

<YYYY-DD-MM> <HH:MM:SS>,174 [Thread-584] INFO
com.redhat.rhn.taskomatic.task.repomd.RepositoryWriter - Generating new repository metadata
for channel 'cloned-2018-q1-sles12-sp3-updates-x86_64'(sha256) 550 packages, 140 errata

...

<YYYY-DD-MM> <HH:MM:SS>,704 [Thread-584] INFO
com.redhat.rhn.taskomatic.task.repomd.RepositoryWriter - Repository metadata generation for
'cloned-2018-q1-sles12-sp3-updates-x86_64' finished in 4 seconds

Troubleshooting Taskomatic

124 / 131 Troubleshooting Taskomatic | Uyuni 2020.09

GNU Free Documentation License
Copyright © 2000, 2001, 2002 Free Software Foundation, Inc. 51 Franklin St, Fifth Floor, Boston, MA
02110-1301 USA. Everyone is permitted to copy and distribute verbatim copies of this license document,
but changing it is not allowed.

0. PREAMBLE
The purpose of this License is to make a manual, textbook, or other functional and useful document
"free" in the sense of freedom: to assure everyone the effective freedom to copy and redistribute it, with
or without modifying it, either commercially or noncommercially. Secondarily, this License preserves for
the author and publisher a way to get credit for their work, while not being considered responsible for
modifications made by others.

This License is a kind of "copyleft", which means that derivative works of the document must themselves
be free in the same sense. It complements the GNU General Public License, which is a copyleft license
designed for free software.

We have designed this License in order to use it for manuals for free software, because free software
needs free documentation: a free program should come with manuals providing the same freedoms that
the software does. But this License is not limited to software manuals; it can be used for any textual work,
regardless of subject matter or whether it is published as a printed book. We recommend this License
principally for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS
This License applies to any manual or other work, in any medium, that contains a notice placed by the
copyright holder saying it can be distributed under the terms of this License. Such a notice grants a world-
wide, royalty-free license, unlimited in duration, to use that work under the conditions stated herein. The
"Document", below, refers to any such manual or work. Any member of the public is a licensee, and is
addressed as "you". You accept the license if you copy, modify or distribute the work in a way requiring
permission under copyright law.

A "Modified Version" of the Document means any work containing the Document or a portion of it,
either copied verbatim, or with modifications and/or translated into another language.

A "Secondary Section" is a named appendix or a front-matter section of the Document that deals
exclusively with the relationship of the publishers or authors of the Document to the Document’s overall
subject (or to related matters) and contains nothing that could fall directly within that overall subject.
(Thus, if the Document is in part a textbook of mathematics, a Secondary Section may not explain any
mathematics.) The relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding them.

The "Invariant Sections" are certain Secondary Sections whose titles are designated, as being those of
Invariant Sections, in the notice that says that the Document is released under this License. If a section
does not fit the above definition of Secondary then it is not allowed to be designated as Invariant. The
Document may contain zero Invariant Sections. If the Document does not identify any Invariant Sections

125 / 131 GNU Free Documentation License | Uyuni 2020.09

then there are none.

The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover
Texts, in the notice that says that the Document is released under this License. A Front-Cover Text may
be at most 5 words, and a Back-Cover Text may be at most 25 words.

A "Transparent" copy of the Document means a machine-readable copy, represented in a format whose
specification is available to the general public, that is suitable for revising the document straightforwardly
with generic text editors or (for images composed of pixels) generic paint programs or (for drawings)
some widely available drawing editor, and that is suitable for input to text formatters or for automatic
translation to a variety of formats suitable for input to text formatters. A copy made in an otherwise
Transparent file format whose markup, or absence of markup, has been arranged to thwart or discourage
subsequent modification by readers is not Transparent. An image format is not Transparent if used for any
substantial amount of text. A copy that is not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input
format, LaTeX input format, SGML or XML using a publicly available DTD, and standard-conforming
simple HTML, PostScript or PDF designed for human modification. Examples of transparent image
formats include PNG, XCF and JPG. Opaque formats include proprietary formats that can be read and
edited only by proprietary word processors, SGML or XML for which the DTD and/or processing tools
are not generally available, and the machine-generated HTML, PostScript or PDF produced by some
word processors for output purposes only.

The "Title Page" means, for a printed book, the title page itself, plus such following pages as are needed
to hold, legibly, the material this License requires to appear in the title page. For works in formats which
do not have any title page as such, "Title Page" means the text near the most prominent appearance of the
work’s title, preceding the beginning of the body of the text.

A section "Entitled XYZ" means a named subunit of the Document whose title either is precisely XYZ or
contains XYZ in parentheses following text that translates XYZ in another language. (Here XYZ stands
for a specific section name mentioned below, such as "Acknowledgements", "Dedications",
"Endorsements", or "History".) To "Preserve the Title" of such a section when you modify the Document
means that it remains a section "Entitled XYZ" according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that this License applies
to the Document. These Warranty Disclaimers are considered to be included by reference in this License,
but only as regards disclaiming warranties: any other implication that these Warranty Disclaimers may
have is void and has no effect on the meaning of this License.

2. VERBATIM COPYING
You may copy and distribute the Document in any medium, either commercially or noncommercially,
provided that this License, the copyright notices, and the license notice saying this License applies to the
Document are reproduced in all copies, and that you add no other conditions whatsoever to those of this
License. You may not use technical measures to obstruct or control the reading or further copying of the
copies you make or distribute. However, you may accept compensation in exchange for copies. If you
distribute a large enough number of copies you must also follow the conditions in section 3.

126 / 131 GNU Free Documentation License | Uyuni 2020.09

You may also lend copies, under the same conditions stated above, and you may publicly display copies.

3. COPYING IN QUANTITY
If you publish printed copies (or copies in media that commonly have printed covers) of the Document,
numbering more than 100, and the Document’s license notice requires Cover Texts, you must enclose the
copies in covers that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front cover,
and Back-Cover Texts on the back cover. Both covers must also clearly and legibly identify you as the
publisher of these copies. The front cover must present the full title with all words of the title equally
prominent and visible. You may add other material on the covers in addition. Copying with changes
limited to the covers, as long as they preserve the title of the Document and satisfy these conditions, can
be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed
(as many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must either
include a machine-readable Transparent copy along with each Opaque copy, or state in or with each
Opaque copy a computer-network location from which the general network-using public has access to
download using public-standard network protocols a complete Transparent copy of the Document, free of
added material. If you use the latter option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this Transparent copy will remain thus accessible
at the stated location until at least one year after the last time you distribute an Opaque copy (directly or
through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before redistributing
any large number of copies, to give them a chance to provide you with an updated version of the
Document.

4. MODIFICATIONS
You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and
3 above, provided that you release the Modified Version under precisely this License, with the Modified
Version filling the role of the Document, thus licensing distribution and modification of the Modified
Version to whoever possesses a copy of it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and from
those of previous versions (which should, if there were any, be listed in the History section of the
Document). You may use the same title as a previous version if the original publisher of that version
gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of the
modifications in the Modified Version, together with at least five of the principal authors of the
Document (all of its principal authors, if it has fewer than five), unless they release you from this
requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the publisher.

127 / 131 GNU Free Documentation License | Uyuni 2020.09

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public permission to use
the Modified Version under the terms of this License, in the form shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given in
the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled "History", Preserve its Title, and add to it an item stating at least the
title, year, new authors, and publisher of the Modified Version as given on the Title Page. If there is
no section Entitled "History" in the Document, create one stating the title, year, authors, and
publisher of the Document as given on its Title Page, then add an item describing the Modified
Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to a Transparent copy
of the Document, and likewise the network locations given in the Document for previous versions it
was based on. These may be placed in the "History" section. You may omit a network location for a
work that was published at least four years before the Document itself, or if the original publisher of
the version it refers to gives permission.

K. For any section Entitled "Acknowledgements" or "Dedications", Preserve the Title of the section,
and preserve in the section all the substance and tone of each of the contributor acknowledgements
and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles. Section
numbers or the equivalent are not considered part of the section titles.

M. Delete any section Entitled "Endorsements". Such a section may not be included in the Modified
Version.

N. Do not retitle any existing section to be Entitled "Endorsements" or to conflict in title with any
Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary
Sections and contain no material copied from the Document, you may at your option designate some or
all of these sections as invariant. To do this, add their titles to the list of Invariant Sections in the
Modified Version’s license notice. These titles must be distinct from any other section titles.

You may add a section Entitled "Endorsements", provided it contains nothing but endorsements of your
Modified Version by various parties—for example, statements of peer review or that the text has been
approved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as a
Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of
Front-Cover Text and one of Back-Cover Text may be added by (or through arrangements made by) any
one entity. If the Document already includes a cover text for the same cover, previously added by you or
by arrangement made by the same entity you are acting on behalf of, you may not add another; but you
may replace the old one, on explicit permission from the previous publisher that added the old one.

128 / 131 GNU Free Documentation License | Uyuni 2020.09

The author(s) and publisher(s) of the Document do not by this License give permission to use their names
for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS
You may combine the Document with other documents released under this License, under the terms
defined in section 4 above for modified versions, provided that you include in the combination all of the
Invariant Sections of all of the original documents, unmodified, and list them all as Invariant Sections of
your combined work in its license notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invariant Sections
may be replaced with a single copy. If there are multiple Invariant Sections with the same name but
different contents, make the title of each such section unique by adding at the end of it, in parentheses, the
name of the original author or publisher of that section if known, or else a unique number. Make the same
adjustment to the section titles in the list of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled "History" in the various original documents,
forming one section Entitled "History"; likewise combine any sections Entitled "Acknowledgements", and
any sections Entitled "Dedications". You must delete all sections Entitled "Endorsements".

6. COLLECTIONS OF DOCUMENTS
You may make a collection consisting of the Document and other documents released under this License,
and replace the individual copies of this License in the various documents with a single copy that is
included in the collection, provided that you follow the rules of this License for verbatim copying of each
of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under this
License, provided you insert a copy of this License into the extracted document, and follow this License
in all other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS
A compilation of the Document or its derivatives with other separate and independent documents or
works, in or on a volume of a storage or distribution medium, is called an "aggregate" if the copyright
resulting from the compilation is not used to limit the legal rights of the compilation’s users beyond what
the individual works permit. When the Document is included in an aggregate, this License does not apply
to the other works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the
Document is less than one half of the entire aggregate, the Document’s Cover Texts may be placed on
covers that bracket the Document within the aggregate, or the electronic equivalent of covers if the
Document is in electronic form. Otherwise they must appear on printed covers that bracket the whole
aggregate.

8. TRANSLATION

129 / 131 GNU Free Documentation License | Uyuni 2020.09

Translation is considered a kind of modification, so you may distribute translations of the Document
under the terms of section 4. Replacing Invariant Sections with translations requires special permission
from their copyright holders, but you may include translations of some or all Invariant Sections in
addition to the original versions of these Invariant Sections. You may include a translation of this License,
and all the license notices in the Document, and any Warranty Disclaimers, provided that you also include
the original English version of this License and the original versions of those notices and disclaimers. In
case of a disagreement between the translation and the original version of this License or a notice or
disclaimer, the original version will prevail.

If a section in the Document is Entitled "Acknowledgements", "Dedications", or "History", the
requirement (section 4) to Preserve its Title (section 1) will typically require changing the actual title.

9. TERMINATION
You may not copy, modify, sublicense, or distribute the Document except as expressly provided for under
this License. Any other attempt to copy, modify, sublicense or distribute the Document is void, and will
automatically terminate your rights under this License. However, parties who have received copies, or
rights, from you under this License will not have their licenses terminated so long as such parties remain
in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE
The Free Software Foundation may publish new, revised versions of the GNU Free Documentation
License from time to time. Such new versions will be similar in spirit to the present version, but may
differ in detail to address new problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies that a
particular numbered version of this License "or any later version" applies to it, you have the option of
following the terms and conditions either of that specified version or of any later version that has been
published (not as a draft) by the Free Software Foundation. If the Document does not specify a version
number of this License, you may choose any version ever published (not as a draft) by the Free Software
Foundation.

ADDENDUM: How to use this License for your documents

Copyright (c) YEAR YOUR NAME.
 Permission is granted to copy, distribute and/or modify this document
 under the terms of the GNU Free Documentation License, Version 1.2
 or any later version published by the Free Software Foundation;
 with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
 A copy of the license is included in the section entitled{ldquo}GNU
 Free Documentation License{rdquo}.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the “ with…Texts.” line
with this:

130 / 131 GNU Free Documentation License | Uyuni 2020.09

http://www.gnu.org/copyleft/

with the Invariant Sections being LIST THEIR TITLES, with the
 Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combination of the three, merge those
two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing these examples
in parallel under your choice of free software license, such as the GNU General Public License, to permit
their use in free software.

131 / 131 GNU Free Documentation License | Uyuni 2020.09

	Administration Guide: Uyuni 2020.09
	Table of Contents
	Administration Guide Overview
	Image Building and Management
	Image Building Overview
	Container Images
	Requirements
	Create a Build Host
	Create an Activation Key for Containers
	Create an Image Store
	Create an Image Profile
	Build an Image
	Import an Image
	Troubleshooting

	OS Images
	Requirements
	Create a Build Host
	Create an Activation Key for OS Images
	Create an Image Store
	Create an Image Profile
	Build an Image
	Troubleshooting
	Limitations

	List Image Profiles Available for Building

	Channel Management
	Channel Administration
	Custom Channels
	Creating Custom Channels and Repositories
	Add Packages and Patches to Custom Channels
	Manage Custom Channels

	Subscription Matching
	Pin Clients to Subscriptions

	Live Patching with SUSE Manager
	Set up Channels for Live Patching
	Use spacewalk-manage-channel-lifecycle for Live Patching

	Live Patching on SLES 15
	Live Patching on SLES 12

	Monitoring with Prometheus and Grafana
	Prometheus and Grafana
	Set up the Monitoring Server
	Install Prometheus
	Install Grafana

	Configure Uyuni Monitoring
	Server Self Monitoring
	Monitoring Managed Systems

	Network Boundaries
	Reverse Proxy Setup

	Organizations
	Manage Organizations
	Organization Users
	Trusted Organizations
	Configure Organizations

	Manage States
	Manage Configuration Channels

	Content Staging
	Enable Content Staging
	Configure Content Staging

	Disconnected Setup
	Synchronize RMT
	Synchronize SMT
	Synchronize a Disconnected Server

	Content Lifecycle Management
	Create a Content Lifecycle Project
	Filter Types
	Filter rule Parameter

	Build a Content Lifecycle Project
	Promote Environments
	Assign Clients to Environments
	Content Lifecycle Management Examples
	Creating a Project for a Monthly Patch Cycle
	Update an Existing Monthly Patch Cycle
	Enhance a Project with Live Patching
	Switch to a New Kernel Version for Live Patching
	AppStream Filters

	Authentication Methods
	Authentication With Single Sign-On (SSO)
	Prerequisites
	Enable SSO

	Authentication With PAM

	SSL Certificates
	Self-Signed SSL Certificates
	Re-Create Existing Server Certificates
	Create and Replace CA and Server Certificates

	Import SSL Certificates
	Import Certificates for New Installations
	Import Certificates for New Proxy Installations
	Replace Certificates with a Third Party Certificate

	Inter-Server Synchronization
	Actions
	Recurring Actions
	Action Chains
	Remote Commands

	Task Schedules
	Crash Reporting
	Crash Notes
	Organization Crash Configuration
	Reporting
	Managing Crash Reports with the API

	Maintenance Windows
	Maintenance Schedule Types
	Restricted and Unrestricted Actions
	Maintenance Window Tasks
	Server
	Inter-Server Synchronization Slave Server
	Monitoring Server
	Proxy

	Backup and Restore
	Backing up Uyuni
	Administering the Database with smdba
	Database Backup with smdba
	Performing a Manual Database Backup
	Scheduling Automatic Backups

	Restoring from Backup
	Archive Log Settings
	Retrieving an Overview of Occupied Database Space
	Moving the Database
	Recovering from a Crashed Root Partition
	Database Connection Information

	Managing Disk Space
	Monitored Directories
	Thresholds
	Shut Down Services
	Disable Space Checking

	Using mgr-sync
	Security
	Set up a Client to Master Validation Fingerprint
	Signing Repository Metadata
	Mirror Source Packages
	System Security with OpenSCAP
	About SCAP
	Prepare Clients for an SCAP Scan
	OpenSCAP Content Files
	Perform an Audit Scan
	Scan Results

	Auditing
	CVE Audits
	CVE Status

	Generate Reports
	Tuning Changelogs
	Troubleshooting
	Troubleshooting Corrupt Repositories
	Troubleshooting Disk Space
	Troubleshooting Firewalls
	Troubleshooting Inactive clients
	Troubleshooting Local Issuer Certificates
	Troubleshooting Login Timeouts
	Troubleshooting Notifications
	Troubleshooting OSAD and jabberd
	Troubleshooting Package Inconsistencies
	Troubleshooting Registering Cloned Clients
	Troubleshooting Renaming Uyuni Server
	Troubleshooting RPC Connection Timeouts
	Troubleshooting the Saltboot Formula
	Troubleshooting Package Synchronization
	Troubleshooting Taskomatic

	GNU Free Documentation License

